MATH 4Q03, Sample Test for Test 1

1.Consider the function

$$
f(x)=x^{3}-2 x^{2}
$$

on the three-point grid at $x_{1}=0, x_{2}=2$ and $x_{3}=3$.
a) Compute the Vandermonde interpolating polynomial $p_{2}(x)$.
b) Compute the Lagrange interpolating polynomial $p_{2}(x)$.
c) Compute the Newton interpolating polynomial $p_{2}(x)$.
d) Add a missing point to the grid at $x_{4}=1$ and upgrade the Newton interpolating polynomial $p_{2}(x)$ into $p_{3}(x)$. Confirm that $p_{3}(x)=f(x)$. Why this result could have been found without any calculations?
2. Consider the data points

$$
\left(x_{1}, y_{1}\right)=(0,2), \quad\left(x_{2}, y_{2}\right)=(-1,1), \quad\left(x_{3}, y_{3}\right)=(1,1), \quad\left(x_{4}, y_{4}\right)=(2,0)
$$

a) Compute the interpolating polynomial $p(x)$.
b) Find the linear regression of this set of data points.
c) Find the polynomial $p_{2} \in \mathcal{P}_{2}$ of better approximation of these data points, using the basis $\left\{1, x, x^{2}\right\}$.
d) What would be the result of question c) if we were looking for $p_{3} \in \mathcal{P}_{3}$?
e) Construct a basis $\left\{\pi_{0}, \pi_{1}, \pi_{2}\right\}$ of \mathcal{P}_{2} using the algorithm seen in class.
f) Find again the result of question c) using this new basis.
3. If f is a continous function on $[a, b]$, if p_{n} is its interpolation polynomial constructed using an equally spaced grid with $n+1$ points, the interpolation error

$$
E_{n}=\max _{a \leq x \leq b}\left|f(x)-p_{n}(x)\right|
$$

can be estimated by

$$
\begin{equation*}
E_{n} \leq \frac{C_{n} M_{n+1} h^{n}}{(n+1)!} \tag{1}
\end{equation*}
$$

where h is the grid step, $M_{n}=\max _{a \leq x \leq b}\left|f^{(n)}(x)\right|, C_{n}=\max _{0 \leq z \leq n} g_{n}(z)$ and $g_{n}(z)=\prod_{j=0}^{n}|z-j|$.
a) For $a=0, b=5$ and $f(x)=\cos (x)$, can the Runge phenomenon occur? Justify. Same question for $f(x)=e^{x}$, for $f(x)=e^{2 x}$. (you can use that $C_{n} /(n+1)$! ≤ 1)
b) For $a=0, b=5$ and $f(x)=\cos (2 x)$, according to (1), for which values of n are we sure that $E_{n} \leq 10^{-3}$?
c) We assume $0<a<b$. Find M_{n} if $f(x)=1 / x^{2}$.
d) Evaluate $g_{n}(z)$ at $z=1 / 2$ and deduce that $C_{n} \geq(2 n)!/\left(2^{2 n+1} \cdot n!\right)$. Hint:

$$
1 \cdot 3 \cdot 5 \cdots(2 n-1)=\frac{(2 n)!}{(2 \cdot 1)(2 \cdot 2)(2 \cdot 3) \cdots(2 n)}
$$

e) (if you are not familiar with equivalents, you can skip this question) Using the Stirling formula

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \quad \text { as } n \rightarrow \infty
$$

show that (for $f(x)=1 / x^{2}$ and $0<a<b$), for n sufficiently large,

$$
\frac{C_{n} M_{n+1} h^{n}}{(n+1)!} \geq \frac{n(b-a)^{n}}{a^{n+3}}
$$

f) If $a=1, b=3$ and $f(x)=1 / x^{2}$, does (1) prevent the Runge phenomenon to happen?

