MATH 4Q03, Sample Test for Test 1

1.Consider the function

$$f(x) = x^3 - 2x^2$$

on the three-point grid at $x_1 = 0$, $x_2 = 2$ and $x_3 = 3$.

a) Compute the Vandermonde interpolating polynomial $p_2(x)$.

b) Compute the Lagrange interpolating polynomial $p_2(x)$.

c) Compute the Newton interpolating polynomial $p_2(x)$.

d) Add a missing point to the grid at $x_4 = 1$ and upgrade the Newton interpolating polynomial $p_2(x)$ into $p_3(x)$. Confirm that $p_3(x) = f(x)$. Why this result could have been found without any calculations?

2. Consider the data points

$$(x_1, y_1) = (0, 2), \quad (x_2, y_2) = (-1, 1), \quad (x_3, y_3) = (1, 1), \quad (x_4, y_4) = (2, 0)$$

a) Compute the interpolating polynomial p(x).

b) Find the linear regression of this set of data points.

c) Find the polynomial $p_2 \in \mathcal{P}_2$ of better approximation of these data points, using the basis $\{1, x, x^2\}$.

d) What would be the result of question c) if we were looking for $p_3 \in \mathcal{P}_3$?

e) Construct a basis $\{\pi_0, \pi_1, \pi_2\}$ of \mathcal{P}_2 using the algorithm seen in class.

f) Find again the result of question c) using this new basis.

3. If f is a continuus function on [a, b], if p_n is its interpolation polynomial constructed using an equally spaced grid with n + 1 points, the interpolation error

$$E_n = \max_{a \le x \le b} |f(x) - p_n(x)|$$

can be estimated by

$$E_n \le \frac{C_n M_{n+1} h^n}{(n+1)!},$$
(1)

where h is the grid step, $M_n = \max_{a \le x \le b} |f^{(n)}(x)|$, $C_n = \max_{0 \le z \le n} g_n(z)$ and $g_n(z) = \prod_{j=0}^n |z-j|$. **a)** For a = 0, b = 5 and $f(x) = \cos(x)$, can the Runge phenomenon occur? Justify. Same question for $f(x) = e^x$, for $f(x) = e^{2x}$. (you can use that $C_n/(n+1)! \le 1$)

b) For a = 0, b = 5 and $f(x) = \cos(2x)$, according to (1), for which values of n are we sure that $E_n \leq 10^{-3}$?

c) We assume 0 < a < b. Find M_n if $f(x) = 1/x^2$.

d) Evaluate $g_n(z)$ at z = 1/2 and deduce that $C_n \ge (2n)!/(2^{2n+1} \cdot n!)$. Hint:

$$1 \cdot 3 \cdot 5 \cdots (2n-1) = \frac{(2n)!}{(2 \cdot 1)(2 \cdot 2)(2 \cdot 3) \cdots (2n)}$$

e) (if you are not familiar with equivalents, you can skip this question) Using the Stirling formula $(n)^n$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \quad \text{as } n \to \infty,$$

show that (for $f(x) = 1/x^2$ and 0 < a < b), for n sufficiently large,

$$\frac{C_n M_{n+1} h^n}{(n+1)!} \ge \frac{n(b-a)^n}{a^{n+3}}.$$

f) If a = 1, b = 3 and $f(x) = 1/x^2$, does (1) prevent the Runge phenomenon to happen?