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Abstract

We show that, for each value of α ∈ (−1, 1), the only Riemannian
metrics on the space of positive definite matrices for which the ∇(α)

and ∇(−α) connections are mutually dual are matrix multiples of the
Wigner-Yanase-Dyson metric. If we further impose that the metric be
monotone, then this set is reduced to scalar multiples of the Wigner-
Yanase-Dyson metric.

1 Introduction

Classical information geometry addresses the differential geometric prop-
erties of families of classical probability densities. Quantum information
geometry is its noncommutative counterpart, dealing with the geometric
structure of families of quantum probabilities. The classical theory has
been already explored and extended substantially, to the point of treating
the geometric structures of the infinite dimensional Banach manifold of all
probability measures equivalent to a given one [28, 9]. All the ingredients of
the original Amari’s theory [1, 2], such as the Fisher metric, the exponen-
tial, mixture and α-connections, have been defined for this general manifold,
from which the finite dimensional results follow by restricting them to its
finite dimensional submanifolds [10]. In comparison, the quantum version
∗Research supported by the Natural Sciences and Engineering Research Council of
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still has “miles to go before sleep” [6], being so far mostly restricted to the
geometry of density matrices on finite dimensional Hilbert spaces. It stands
as a proof of the richness of the quantum domain that even this limited
setup already offers many challenging problems, completely absent in the
classical case.

A central theme in the passage from classical to quantum information
geometry is the breakdown of Chentsov’s result [4] that the Fisher metric is
the unique Riemannian metric (up to scalar multiples) on finite dimensional
classical information manifolds which is reduced by all Markov morphisms.
As proved by Petz [25], there are infinitely many Riemannian metrics on a
matrix space with the property of being reduced by stochastic maps (the
quantum analogue of Markov morphisms). Having characterized all these
possible monotone metrics in terms of operator monotone functions, Petz’s
result opened the way to two different trends: to deal with the whole set
of monotone metrics at once and try to find yet other characterizations
[22, 8, 26] or to find out which among them are more natural than the
others according to properties beyond monotonicity [17, 35]. This paper
is dedicated to the second of these trends. Its general attitude could be
rephrase as: if monotonicity is not enough to single out one particular metric,
what are the other conditions that should be further imposed in order to
obtain a unique metric on the information manifolds of density matrices ?
The answer we offer is based on the concept of duality for affine connections
with respect to a given metric.

There are two flat connections that can be introduced on information
manifolds in a fundamental way: the mixture connection, coming from the
linear structure of the manifold itself (either as a subset of L1 in the classical
case or as a subset of the trace class operators in the quantum case), and the
exponential connection, coming from the linear structure of their logarithms.
The former, denoted by ∇(−1) or ∇(m), arises naturally when we consider
mixed states (classical or quantum), whereas the latter, denoted by ∇(1) or
∇(e), is intimately related to the concepts of moment generating functionals
and partition functions. For infinite dimensional classical manifolds, the ex-
ponential and mixture connections were defined in [9], making use of Orlicz
spaces of exponential and L logL types (recently this approach has been im-
proved in [11]). Of course the nonparametric definitions are designed in such
a way that when restricted to finite dimensional submanifolds they reduce
to the long standing definitions of the parametric theory [2]. For infinite di-
mensional quantum information manifolds, the exponential connection was
obtained in [33, 32, 12], using the technique of small perturbations of forms
and operators in Hilbert spaces, but the mixture connection poses a much
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harder problem, which is to some extent still open [34]. Fortunately, the sit-
uation is straightforward as far as finite dimensional quantum systems are
concerned. Many authors have proposed essentially equivalent definitions
for the exponential and mixture connections on manifolds of density matri-
ces [15, 24, 21]. We summarize our views on these definitions for ∇(1) and
∇(−1) in [13], where we observed that they are flat connections by explicitly
constructing affine coordinate systems for each of them.

Two connections are said to be dual with respect to a metric if the com-
bined action of their parallel transport is compatible with the metric (see
section 3 below for the technical definition). The same pair of connections
can be dual with respect to a multitude of metrics. It is then meaning-
ful to ask, for a given pair of connections, what are the all the possible
metrics that make them dual. When we looked at the mixture and the ex-
ponential connection on finite dimensional quantum systems, we found in
[13] that the only metrics with this duality property are matrix multiples
of the Bogoliubov-Kubo-Mori inner product. Using Petz’s characterization,
we then obtained the improved result that the only monotone metrics which
make the ±1-connections dual are scalar multiples of the BKM metric. The
purpose of the present paper is to investigate the same kind of question for
the more general pairs of ±α-connections.

In the classical version of Information Geometry, there are two equivalent
ways of defining the α-connections ∇(α) on an information manifoldM, for
α ∈ (0, 1). The first approach consists of using the α-embeddings of the
form p 7→ 2

1−αp
1−α

2 to map M into the sphere of radius r in the Banach
space Lr, for r = 2

1−α . One then looks at the natural connection on Lr,
that is, the one for which the parallel transport is just the identity map,
and its canonical projection onto the sphere of radius r. The pullback of the
latter (again using the α-embedding) is then defined to be the α-connection
on M. For finite dimensional manifolds, this can be traced back to the
early works of Amari [1] and [4], where they are introduced without explicit
mention of what the target spaces for the α-embeddings should be. For
infinite dimensional information manifolds, one has to explicitly make use
of the functional analytic properties of the spaces Lr (namely that they are
uniformly convex spaces), in order to unequivocally define what is meant by
the canonical projection onto a sphere. This was done in detail for the first
time in [9] and in a slightly different fashion in [11]. In any event, one can
prove that

∇(α) =
1 + α

2
∇(1) +

1− α
2
∇(−1), (1)
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which can then be taken as an equivalent definition for ∇(α). Proposals
for the quantum analogues of α-connections, for both finite and infinite
dimensional manifolds, have appeared in number of papers [16, 21, 7]. They
all use the α-embeddings in one way or another. We present them in section
2, where we review some of their most relevant properties. As it turns out,
the α-embedding definitions are no longer equivalent to (1), that is, to the
definition based on the convex mixture of the ±1-connections. We shall have
more to say about this point later on in the paper.

As it is well known, the BKM metric is a limiting case of the more
general family of Wigner-Yanase-Dyson metrics, denoted by gα (more about
this notation later). The WYD metrics made their first appearance in the
context of quantum information geometry in the work of Hasegawa [14]. It
was later proved that they are monotone for all values of α ∈ [−3, 3] [27]. In
the spirit of the α-embeddings discussed above, for which the target spaces
are Lr, with r = 2

1−α , we restrict our discussion to the range α ∈ (−1, 1),
thus corresponding to r ∈ (1,∞). It is straightforward to prove that, for
each fixed value of α in this range, the ±α-connections are dual with respect
to the metric gα [15]. The formal limits α→ ±1 lead to the BKM metric and
the exponential and mixture connections, for which the duality is established
separately [24].

Following the same technique of [13], we obtain the converse of this
result. We find in section 3 that, for each fixed value of α ∈ (−1, 1), the
only metrics for which ∇(α) and ∇(−α) are dual are matrix multiples of the
WYD metric gα. Using Petz’s characterization, we obtain in section 4 that
the only monotone metrics on positive definite matrices which make the
±α-connections dual are scalar multiples of gα.

2 The quantum α-connections

2.1 The α-representation

Following the notation in [13], let HN be a finite dimensional complex
Hilbert space, B(HN ) the algebra of operators on HN , A its N2-dimensional
real vector subspace of self-adjoint operators andM the n-dimensional sub-
manifold of all invertible density operators on HN , with n = N2 − 1. For
α ∈ (−1, 1), define the α-embedding of M into A as

`α : M→A

ρ 7→ 2
1− α

ρ
1−α

2 .
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Since A is itself a vector space, its tangent vectors consist of the partial
derivatives of curves in A. Therefore we can use the α-embedding to obtain
an explicit representation of the tangent bundle ofM in terms of operators
in A, provided we can efficiently take partial derivatives of functions of
operators in A. The noncommutative nature of quantum manifolds makes
a full appearance at this point, since the derivative of a matrix with respect
its parameters does not necessarily commute with the original matrix. As
a result, tools such as the chain rule do not hold in matrix calculus. To
overcome this difficulty, at least for functions of density matrices, we make
use of the following decomposition. In the sequel, for A ∈ B(HN ), let
C(A) = {B ∈ B(HN ) : [A,B] = 0} denote its commutant.

Lemma 2.1 (Hasegawa, 1997) Let S = ρ(θ) be a smooth manifold of
invertible density matrices. Then there exist a anti-selfadjoint operator ∆i

such that

∂ρ

∂θi
=
∂cρ

∂θi
+ [ρ,∆i],

∂cρ

∂θi
∈ C(ρ), [ρ,∆i] ∈ C(ρ)⊥, (2)

the orthogonality being with respect to the Hilbert-Schmidt inner product in
B(HN ). Moreover, for any function F which is differentiable on a neigh-
bourhood of the spectrum of ρ we have

∂F (ρ)
∂θi

=
∂cF (ρ)
∂θi

+ [F (ρ),∆i],
∂cF (ρ)
∂θi

∈ C(ρ), [F (ρ),∆i] ∈ C(ρ)⊥. (3)

At each point ρ ∈M, consider the subspace of A defined by

A(α)
ρ =

{
A ∈ A : Tr

(
ρ

1+α
2 A

)
= 0
}
.

Using (3) with F (ρ) = `α(ρ), we obtain

∂`α(ρ)
∂θi

= ρ
1−α

2
∂c log ρ
∂θi

+
2

1− α
[ρ

1−α
2 ,∆i]. (4)

Therefore, it follows from the normalization condition Trρ = 1 and the
cyclicity of the trace that

Tr
(
ρ

1+α
2
∂`α(ρ)
∂θi

)
= Tr

(
∂cρ

∂θi
+

2
1− α

[ρ,∆i]
)

= 0,

so that ∂`α(ρ)
∂θi

∈ A(α)
ρ .
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We can then define the isomorphism

(`α)∗(ρ) : TρM→A(α)
ρ

v 7→ (`α ◦ γ)′(0), (5)

where γ : (−ε, ε) → M is a curve in the equivalence class of the tan-
gent vector v. We call this isomorphism the α-representation of the tan-
gent space TρM. If (θ1, . . . , θn) is a coordinate system for M, then the

α-representation of the basis
{

∂
∂θ1 , . . . ,

∂
∂θn

}
of TρM is

{
∂`α(ρ)
∂θ1 , . . . , ∂`α(ρ)

∂θn

}
.

The α-representation of a vector field X on M is therefore the A-valued
function (X)(α) given by (X)(α)(ρ) = (`α)∗(ρ)Xρ.

2.2 The covariant derivative ∇(α)

The ±1-connections have a simple definition in terms of their parallel trans-
ports, essentially because the ±1-embeddings mapM into sets with an affine
structure (the density operators themselves in the −1-embedding and their
logarithms in the 1-embedding). Once their (flat) parallel transports are
defined, it is then a simple matter to find the coefficients of their covariant
derivatives, as well as to exhibit affine coordinate systems for them, as ex-
plained for instance in the second section of [13]. However, as noted in the
introduction, the α-embeddings can be viewed as a map from M into the
positive orthant of the sphere of radius r = 2

1−α in A when we equip A with
the the r-norm

‖A‖r := (Tr|A|r)1/r .

Indeed, we can readily verify that, for any ρ ∈M,

‖`α(ρ)‖r =
(

Tr
∣∣∣rρ1/r

∣∣∣r)1/r
= r,

so that `α(ρ) ∈ Sr, the sphere of radius r in A. More interestingly, it can
be shown that the tangent space at a point 0 ≤ σ ∈ Sr is

TσS
r =

{
A ∈ A : Tr(Aσr−1) = 0

}
(see the second section of [7] for a quick review of the geometry of spheres
in the more general context of uniformly convex Banach spaces). If we put
σ = `α(ρ) = rρ1/r, we find that

Trρ1/rSr =
{
A ∈ A : Tr(Aρ1−1/r) = 0

}
= A(α)

ρ ,
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so that the α-representation (5) is indeed an isomorphism between tangent
spaces, as the push-forward notation suggests.

The sphere Sr inherits a natural connection obtained by projecting the
trivial connection on A (the one where parallel transport is just the identity
map) onto its tangent space at each point. For each 0 ≤ σ ∈ Sr, the
canonical projection from the tangent space TσA onto the tangent space
TσS

r is uniquely given by [7]

Πσ : TσA → TσS
r

A 7→ A−
(
r−rTr

[
Aσr−1

])
σ.

For σ = `α(ρ) = rρ1/r, this gives

Πrρ1/r : Trρ1/rA → Trρ1/rSr

A 7→ A−
(

Tr
[
ρ

1+α
2 A

])
ρ

1−α
2 .

We can now define the covariant derivative of the α-connection. Starting
with a differentiable vector field s ∈ S(TM), we first push it forward under
the α-embedding along a curve γ to obtain (`α)∗(γ(t))s ∈ TA. We then take
its covariant derivative with respect to the trivial connection on A, denoted
by ∇̃, in the direction of (`α)∗(ρ)v, that is, the push-forward of a tangent
vector v ∈ TρM. The result is a vector in Trρ1/rA, which we then project
down to Trρ1/rSr using the operator Πrρ1/r above. Finally, we pull it back to
TρM using (`α)−1

∗(ρ) and call it the α-covariant derivative of the vector field
s in the direction of the tangent vector v at the point ρ ∈ M. The formula
for all these operations reads like the following.

Definition 1 For α ∈ (−1, 1), let γ : (−ε, ε)→M be a smooth curve such
that ρ = γ(0) and v = γ̇(0) and let s ∈ S(TM) be a differentiable vector
field. The α-connection on TM is given by(

∇(α)
v s

)
(ρ) = (`α)−1

∗(ρ)

[
Πrρ1/r∇̃(`α)∗(ρ)v(`α)∗(γ(t))s

]
. (6)

Using the definition (6), we find that the α-representation of the α-
covariant derivative of the vector field ∂/∂θj in the direction of the tangent
vector ∂i := ∂/∂θi is(

∇(α)
∂i

∂

∂θj

)(α)

=
∂2`α(ρ)
∂θi∂θj

− Tr
(
ρ

1+α
2
∂2`α(ρ)
∂θi∂θj

)
ρ

1−α
2 . (7)
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2.3 The α-parallel transport and the extended manifold M̂

The α-parallel transport of a tangent vector from tangent spaces at different
points inM is the pull-back of the parallel transport of its α-representation
in A. The latter, by its turn, consists of identity map followed by the
canonical projection onto the TSr at all points along a curve on Sr. It is
obviously path dependent, and therefore no longer flat, like the ±1-parallel
transports were. This is a consequence of the fact that among all Lp-spaces,
for 1 ≤ p ≤ ∞, only the spaces L1 and L∞ have spheres which are flat with
respect to their trivial connections (recall the shape of the unit circles in R2

for all the different Lp-norms).
Now let us consider the extended manifold of faithful weights M̂ (the

positive definite matrices). Observe first that the α-embedding in this case
maps M̂ to itself. Moreover, for any σ ∈ M̂, TσM̂ = TσA ' A, so that
there is no need to do any projection in order to obtain the parallel transport
on M̂ induced by the α-embedding. We can therefore define the α-parallel
transport on M̂ simply by

τ̂ (α)
σ0,σ1

: Tσ0M̂ → Tσ1M̂
v 7→ (`α)−1

∗(σ1)

(
(`α)∗(σ0)v

)
,

and we find (using (6) without the projection step) that the α-representation
of its covariant derivative is(

∇̂(α)
∂i

∂

∂θj

)(α)

=
∂2`α(ρ)
∂θi∂θj

, (8)

where θ = {θ1, . . . , θn+1} is any coordinate system for the extended manifold
M̂. Now let {X1, . . . , Xn+1} be a basis for A. For each σ ∈ M̂, we have
that σ

1−α
2 ∈ A, so that there exist real numbers ξ = {ξ1, . . . , ξn+1} such

that
2

1− α
σ

1−α
2 = ξ1X1 + · · ·+ ξn+1Xn+1.

Then ξ = {ξ1, . . . , ξn+1} is a ∇̂(α)-affine coordinate system for M̂, since (8)
gives (

∇̂(α)
∂i

∂

∂ξj

)(α)

=
∂2`α(ρ)
∂ξi∂ξj

=
∂Xj

∂ξi
= 0.

Therefore, M̂ is ∇̂(α)-flat, even though its submanifold M is not ∇(α)-
flat. We note in passing that the connection ∇(α) on the submanifold M is
a restriction of the connection ∇̂(α), which acts on the larger manifold M̂,
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obtained without the use of any metric onM, but rather using the canonical
projection existing in A, the target space for the α-embedding.

We finish this section with a couple of comparative remarks. Definition
1 is the verbatim analogue for finite dimensional quantum systems of the
general definition for α-connections for infinite dimensional classical infor-
mation manifolds [9, 11] and are, consequently, the quantum analogue of
the original definition by Amari [1] and Chentsov [4] as well. Formulae (7)
and (8) are special cases of those obtained by Jenčová using an embedding
by a more general monotone function g, which include the α-embeddings
(see respectively line 3, page 150 and line 10, page 149 of [20]). Finally,
quantum α-connection in the spirit we present here had been hinted before
by Hasegawa in [15, equation 35] and [16, equation 16], although in the
less general form of Christoffel’s symbols, which depend on a metric to be
defined, as opposed to covariant derivatives and parallel transports, which
are therefore more intrinsic. Infinite dimensional quantum α-connections
were proposed in [7], making heavy use of the geometry of uniformly con-
vex Banach spaces, of which the definitions given here are concrete finite
dimensional realizations.

3 Duality and the WYD metrics

We recall some purely geometrical definitions of duality, which apply to any
statistical manifold, classical or quantum: dual affine connections and dual
coordinate systems.

Two connections ∇ and ∇∗ on a Riemannian manifold (M, g) are dual
with respect to g if and only if

Xg(Y, Z) = g (∇XY, Z) + g (Y,∇∗XZ) , (9)

for any vector fields X,Y, Z on M [1, 23]. Equivalently, if τγ(t) and τ∗γ(t)

are the respective parallel transports along a curve {γ(t)}0≤t≤1 onM, with
γ(0) = ρ, then ∇ and ∇∗ are dual with respect to g if and only if for all
t ∈ [0, 1],

gρ(Y, Z) = gγ(t)

(
τγ(t)Y, τ

∗
γ(t)Z

)
. (10)

Two coordinate systems θ = (θi) and η = (ηi) on a Riemannian manifold
(M, g) are dual with respect to g if and only if their natural bases for TρM
are biorthogonal at every point ρ ∈M, that is,

g

(
∂

∂θi
,
∂

∂ηj

)
= δij .
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Equivalently, θ = (θi) and η = (ηi) are dual with respect to g if and only if

gij =
∂ηi
∂θj

and gij =
∂θi
∂ηj

at every point ρ ∈M, where, as usual, gij = (gij)−1.
The next two theorems establishes the role of potential functions as well

as the relation between dual connections and dual coordinate systems for
the case of flat manifolds. In the sense used in this paper, a connection ∇
on manifold M is said to be flat if M admits a global ∇-affine coordinate
system. This is equivalent to its curvature and torsion both being zero.

Theorem 3.1 (Amari, 1985) When a Riemannian manifold (M, g) has
a pair of dual coordinate systems (θ, η), there exist potential functions Ψ(θ)
and Φ(η) such that

gij(θ) =
∂2Ψ(θ)
∂θi∂θj

and gij =
∂2Φ(η)
∂ηi∂ηj

.

Conversely, when either potential function Ψ or Φ exists from which the
metric is derived by differentiating it twice, there exist a pair of dual coordi-
nate systems. The dual coordinate systems and the potential functions are
related by the following Legendre transforms

θi =
∂Φ(η)
∂ηi

, ηi =
∂Ψ(θ)
∂θi

and
Ψ(θ) + Φ(η)− θiηi = 0

Theorem 3.2 (Amari, 1985) Suppose that ∇ and ∇∗ are two flat con-
nections on a manifold M. If they are dual with respect to a Riemannian
metric g on M, then there exists a pair (θ, η) of dual coordinate systems
such that θ is ∇-affine and η is a ∇∗-affine.

Let us now consider the definition of a Riemannian metric for our mani-
foldM of density matrices. Using the α-representation to obtain a concrete
realization of tangent vectors on M in terms of operators in A, a Rieman-
nian metric on M is deemed to be provided by the smooth assignment of
an inner product 〈·, ·〉ρ in A ⊂ B(HN ) for each point ρ ∈M.
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For a fixed α ∈ (−1, 1), the WYD (Wigner-Yanase-Dyson) metric onM
is given by

g(α)
ρ (A,B) := Tr

(
A(α)B(−α)

)
, A,B ∈ TρM. (11)

The symmetry properties of this definition are more apparent if one
express it in a coordinate system (θ1, . . . , θn) for M. By virtue of the de-
composition lemma 2.1, we have that

g
(α)
ij (θ) := g(α)

ρ

(
∂

∂θi
,
∂

∂θj

)
= Tr

(
∂`α(ρ)
∂θi

∂`−α(ρ)
∂θj

)
(12)

= Tr
(
ρ
∂c log ρ
∂θi

∂c log ρ
∂θj

)
+

4
1− α2

Tr
[
ρ

1−α
2 ,∆i

] [
ρ

1+α
2 ,∆j

]
.

It is then clear that g(α)
ij = g

(α)
ji = g

(−α)
ij . Observe also that for the

extreme cases α→ ±1, formula (11) leads to the familiar BKM (Bogoliubov-
Kubo-Mori) metric

g(±1)
ρ (A,B) = gBρ (A,B) = Tr

(
A(−1)B(1)

)
(13)

where A(±1), B(±1) are the ±1-representations of the tangent vectors A,B ∈
TρM, as explained, for instance, in [13]. In coordinates, the BKM metric
assumes the form

gBij(θ) := gBρ

(
∂

∂θi
,
∂

∂θj

)
= Tr

(
∂ log ρ
∂θi

∂ρ

∂θj

)
= Tr

(
ρ
∂c log ρ
∂θi

∂c log ρ
∂θj

)
+ Tr[log ρ,∆i][ρ,∆j ]. (14)

It follows directly from the definition (11), as has been observed in a
number of papers [16, 21], that the ±α-connections are dual with respect to
the metric g(α) for each fixed value of α ∈ (−1, 1) (just as the ±1-connections
are dual with respect to the BKM metric). Our purpose is to discover what
other metrics have the same property.

As suggested by the statement in theorem 3.2, most of the ingredients of
Amari’s theory, such as statistical divergences and the projection theorems
[1, pp. 84-93], can only be a priori defined for flat manifolds. Only in
a later stage, one consider what happens when they are applied to curved
submanifolds of flat manifolds. Following this trend, we from now on confine
our attention to those metrics on M which are obtained as restrictions of
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metrics on the extended manifold M̂, which is ∇̂(±α)-flat, and treat the
latter as our primary objects

Observe first that the WYD metric extends quite naturally to M̂, simply
using the ±α-representations of tangent vectors Â, B̂ (that is, the represen-
tation induced by the ±α-embedding of M̂ into A):

ĝ(α)
σ

(
Â, B̂

)
:= Tr

(
Â(α)B̂(−α)

)
, Â, B̂ ∈ TσM̂. (15)

It is also obvious that ĝ(α) has the same symmetry and duality properties
of g(α). We now show how ĝ(α) can be obtained from a potential function
on M̂.

Lemma 3.3 If (θ1, . . . , θn+1) is a ∇̂(α)-affine coordinate system for the ex-
tended manifold M̂, then the function

Ψ̃α(θ) =
2

1 + α
Trσ(θ), σ(θ) ∈ M̂ (16)

satisfies

ĝ
(α)
ij (θ) =

∂2Ψ̃α(θ)
∂θi∂θj

. (17)

Moreover,

η̃i =
∂Ψ̃α(θ)
∂θi

(18)

is a ∇̂(−α)-affine coordinate system for M̂.

Proof: Since θ is ∇̂(α)-affine, there exist linearly independent operators
{X1, . . . , Xn+1} such that

`α(σ) =
2

1− α
σ

1−α
2 = θ1X1 + · · ·+ θn+1Xn+1. (19)

Since the point σ ∈ M̂ is fixed in the course of this proof, we omit it from
the notation and just write `α and `−α for `α(σ) and `−α(σ), respectively.
From lemma 2.1 we obtain that

Xi =
∂`α
∂θi

=
∂c`α
∂θi

+ [`α,∆i], (20)

that is
∂c`α
∂θi

= Xi + [∆i, `α]. (21)
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Also, since

`−α =
2

1 + α
σ

1+α
2 =

(
2

1 + α

)(
1− α

2

) 1+α
1−α

`
1+α
1−α
α

we have that
∂c`−α
∂θj

=
(

1− α
2

) 2α
1−α

`
2α

1−α
α

∂c`α
∂θj

. (22)

Now observe that

∂2Ψ̃α(θ)
∂θi∂θj

=
∂2

∂θi∂θj

(
2

1 + α
Trσ

)
=

2
1 + α

Tr
(

∂2σ

∂θi∂θj

)
=

2
1 + α

Tr

(
∂2σ

1−α
2 σ

1+α
2

∂θi∂θj

)
=

1− α
2

Tr
(
∂2`α`−α
∂θi∂θj

)
=

1− α
2

∂

∂θi
Tr
(
Xj`−α + `α

∂`−α
∂θj

)
=

1− α
2

∂

∂θi
Tr
[
Xj`−α + `α

(
∂c`−α
∂θi

+ [`−α,∆j ]
)]

. (23)

Now using (22) and taking into account that the trace of the term involving
the commutator vanishes, we obtain that

∂2Ψ̃α(θ)
∂θi∂θj

=
1− α

2
∂

∂θi
Tr

[
Xj`−α + `α

(
1− α

2

) 2α
1−α

`
2α

1−α
α

∂c`α
∂θj

]

=
1− α

2
∂

∂θi
Tr

[
Xj`−α +

(
1− α

2

) 2α
1−α

`
1+α
1−α
α (Xj + [∆j , `α])

]

=
1− α

2
∂

∂θi
Tr

[
Xj`−α +

(
1− α

2

) 2α
1−α

`
1+α
1−α
α Xj

]

=
1− α

2
∂

∂θi
Tr
[
Xj`−α +

(
1 + α

2

)(
2

1− α

)
`−αXj

]
= Tr

[
Xj

∂`−α
∂θi

]
. (24)

But by definition, the WYD in this ∇̂α-affine coordinate system assumes
the form

g
(α)
ij (θ) = Tr

(
Xj

∂`−α
∂θi

)
(25)
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which proves the first assertion of the lemma. For the second part of the
lemma, we have seen in the previous section that there exists a ∇̂−α-affine
coordinate system ξ = {ξ1, . . . , ξn+1} in terms of which we can write

`−α = ξ1Y
1 + · · ·+ ξn+1Y

n+1,

for some other set of linearly independent operators {Y 1, . . . , Y n+1}. Now
following the same reasoning that led to (23) we obtain that

∂Ψ̃α(θ)
∂θi

=
1− α

2
Tr
(
∂`α`−α
∂θi

)
=

1− α
2

Tr
(
Xi`α + `α

∂`−α
∂θi

)
=

1− α
2

Tr
[(

1 +
1 + α

1− α

)
Xi`−α

]
= Tr

[
Xi

(
ξ1Y

1 + · · ·+ ξn+1Y
n+1
)]

= ξ1Tr
(
XiY

1
)

+ · · ·+ ξn+1Tr
(
XiY

n+1
)

(26)

=
n+1∑
j=1

Tr
(
XiY

j
)
ξj . (27)

This means that the coordinate system (η̃) is affinely related to (ξ) and
therefore it is itself ∇̂−α-affine.

We end this section with the next theorem, which is the extension for a
general α-connections of the result proved in [13] for the case α = ±1.

Theorem 3.4 For a fixed value of α ∈ (−1, 1), suppose that the connections
∇(α) and ∇(−α) are dual with respect to a Riemannian metric ĝ on M̂. Then
there exist a constant (independent of σ) (n+ 1)× (n+ 1) matrix M , such

that (ĝσ)ij =
n+1∑
k=1

Mk
i (ĝ(α)

σ )kj, in some α-affine coordinate system.

Proof: Since the two connections are flat on the extended manifold M̂,
theorem 3.2 tell us that there exist dual coordinate systems (θ, η) such that
θ is ∇(α)-affine and η is ∇(−α)-affine. Using lemma 3.3, we know that the
function Ψ̃α(θ) = 2

1+2Trσ(θ) satisfies

ĝ
(α)
ij (θ) =

∂2Ψ̃α(θ)
∂θi∂θj

(28)
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and also that

η̃i =
∂Ψ̃α(θ)
∂θi

(29)

is a another ∇̂(−α)-affine coordinate system for M̂. Therefore, the coordi-
nate systems (η) and (η̃) are related by an affine transformation, so there
must exist a matrix M and numbers (a1, . . . , an+1) such that

ηi =
n+1∑
k=1

Mk
i η̃k + ai. (30)

But from theorem 3.1, there exists a potential function Ψ(θ) such that

ĝij(θ) =
∂2Ψ(θ)
∂θi∂θj

and
ηi =

∂Ψ(θ)
∂θi

.

Equation (30) then gives

∂Ψ(θ)
∂θi

=
n+1∑
k=1

Mk
i

∂Ψ̃α(θ)
∂θk

+ ai,

and differentiating this equation with respect to θj leads to

ĝij(θ) =
∂2Ψ(θ)
∂θi∂θj

=
n+1∑
k=1

Mk
i

∂2Ψ̃α(θ)
∂θj∂θk

=
n+1∑
k=1

Mk
i ĝ

(α)
kj (θ). (31)

4 The condition of monotonicity

We have seen in the previous section that requiring duality between the ∇(α)

and ∇(−α) connections reduces the set of possible Riemannian metrics on M̂
to matrix multiples of the WYD metric. Following [13], we now investigate
the effect of imposing a monotonicity property on this set.

Recall that the −1-representation is the limiting case α = −1 of the
α-representations defined in section 2.1. If we use it to define to define a
Riemannian metric ĝ on M̂ by means of the inner product 〈·, ·〉ρ in A ⊂
B(HN ), then we say that ĝ is monotone if and only if〈

S(A(−1)), S(A(−1))
〉
S(ρ)
≤
〈
A(−1), A(−1)

〉
ρ
, (32)
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for every ρ ∈M, A ∈ TρM, and every completely positive, trace preserving
map S : A → A.

For any metric ĝ on TM̂, define the positive (super) operator Kσ on A
by

ĝσ(Â, B̂) =
〈
Â(−1),Kσ

(
B̂(−1)

)〉
HS

= Tr
(
Â(−1)Kσ

(
B̂(−1)

))
. (33)

Note that our K is denoted K−1 by Petz in [25]. Define also the (super)
operators, LσX := σX and RσX := Xσ, for X ∈ A, which are also positive.
The aforementioned characterization of monotone metrics obtained by Petz
is the content of the following theorem.

Theorem 4.1 (Petz 96) A Riemannian metric g on A is monotone if and
only if

Kσ =
(
R1/2
σ f(LσR−1

σ )R1/2
σ

)−1
,

where Kσ is defined in (33) and f : R+ → R+ is an operator monotone
function satisfying f(t) = tf(t−1).

In particular, the WYD metric is monotone and its corresponding oper-
ator monotone function is

fp(x) =
p(1− p)(x− 1)2

(xp − 1)(x1−p − 1)
, (34)

for p = 1+α
2 [27].

Combining this characterization with our theorem (3.4), we obtain the
following improved uniqueness result.

Theorem 4.2 If the connections ∇(α) and ∇(−α) are dual with respect to
a monotone Riemannian metric ĝ on M̂, then ĝ is a scalar multiple of the
WYD metric.

Proof: Let θ = (θ1, . . . , θn) be the ∇(α)-affine coordinate system of theorem
3.4. Given σ ∈ M̂, we have that TσM ' A. In particular,

{
∂σ
∂θ1 , . . . ,

∂σ
∂θn

}
is the basis for A obtained as the −1-representation of

{
∂
∂θ1 , . . . ,

∂
∂θn

}
. Now

let Kg and K(α) be the kernels of ĝ and ĝ(α), respectively. Then it follows
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from theorem 3.4 that〈
∂σ

∂θi
,Kg

σ

(
∂σ

∂θj

)〉
HS

= ĝσ

(
∂

∂θi
,
∂

∂θj

)
= (ĝσ)ij

=
n+1∑
k=1

Mk
i (ĝ(α)

σ )kj

=
n+1∑
k=1

Mk
i ĝ

(α)
σ

(
∂

∂θk
,
∂

∂θj

)

=
n+1∑
k=1

Mk
i

〈
∂σ

∂θk
,K(α)

σ

(
∂σ

∂θj

)〉
HS

. (35)

Thus, as operators on A, the kernels Kg and K(α) are related by

Kg
σ = MK(α)

σ . (36)

Therefore, if fg and f (α) are the operator monotone functions corresponding
respectively to g and g(α), from theorem 4.1, we have(

R1/2
σ fg(LσR−1

σ )R1/2
σ

)−1
= M

(
R1/2
σ f (α)(LσR−1

σ )R1/2
σ

)−1

(
R1/2
σ fg(LσR−1

σ )R1/2
σ

)
M =

(
R1/2
σ f (α)(LσR−1

σ )R1/2
σ

)
M = fg(LσR−1

σ )−1f (α)(LσR−1
σ ),

as everything commutes. Thus, the operator M is given as a function of the
operator LσR−1

σ , but it is itself independent of the point σ, so we conclude
that it must be a scalar multiple of the identity operator.

5 Discussion

With the result of this paper, we have completed the programme initiated
in [13] of characterizing the BKM and the WYD metrics in terms of the
combining requirement of monotonicity and duality. The monotonicity con-
dition has an appealing motivation coming from estimation theory. If we
interpret the geodesic distance between two density matrices as a measure
of their statistical distinguishability, then (32) tells us that they will become
less distinguishable if we introduce randomness into the system under con-
sideration. In other words, their distance decreases under coarse-graining.

As it is, estimation theory is more basic than physics itself, since it
does not assume any particular underlying physical process, being just a

17



tool to help analyze statistical data. Nevertheless, the interpretation above
carries over to statistical mechanical systems as well, where stochastic (i.e
completely positive, trace-preserving) maps appear as a mathematical im-
plementation of the time evolution of a system whose states are described
by density matrices [29]. In this case, monotonicity means that the distance
between different states decreases under the same time evolution. If it de-
creases asymptotically to zero for any two points in a certain set of ‘initial’
states, then we are in the presence of a fixed point for the dynamics, or in
other words, an equilibrium state. From all this, it seems that imposing a
monotonicity condition on the possible Riemannian metrics on a statistical
manifold is not at all an artificial technicality.

Our motivation behind Amari’s duality is less general and ultimately
rests upon quantum statistical mechanics alone [31, 30]. Recall that the von
Neumann entropy for a state ρ ∈M is defined as [36]

S(ρ) := −Tr(ρ log ρ) (37)

and that the relative (Kullback-Leibler) entropy of the state ρ given the
state σ is

S(ρ|σ) = Tr[ρ(log ρ− log σ)] (38)

Now let us choose a set of m ≤ n observables Y1, . . . , Ym such that the set
{1, Y1, . . . , Ym} is a basis for A. Among all possible observables in A, these
ones represent the slow variables of the theory, that is, those whose means
we can measure at any given time. Then it is an easy exercise, using the
Lagrange multipliers technique, to show that the states which maximize the
von Neumann entropy subject to keeping the means of all {Yi}, i = 1, . . . ,m,
constant are the Gibbs states of the form

ρ = exp
(
θ1Y1 + · · ·+ θmYm −Ψ1

)
, (39)

where Ψ(θ) is determined by the normalization condition Trρ = 1. For
example, if Y1 = H is the energy operator, then we obtain the so called
canonical ensemble, whereas if we have Y1 = H,Y2 = N where N is the
number of particles, we get the grand canonical ensemble. We immediately
recognize these states as constituting a ∇(1)-flat, m-dimensional, submani-
fold Sm ⊂ S, which is determined by our choice of Y1, . . . , Ym, that is, by
our choice of the level of description adopted.

Inasmuch as entropy is negative information, the principle of maximum
entropy, advocated in information theory and statistical physics by Jaynes
[18, 19], tells us that, if the only information available about the system
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under consideration are the means of the random variables Y1, . . . , Ym, then
we should take as the state of the system the element in Sm with these
means. The replacement of the true state ρ ∈ S by the one in Sm with the
same means for Y1, . . . , Ym is a reflection of our ignorance of what really
goes on with the system. It is the least biased choice of state given the
information available.

The point of view in statistical dynamics [29] is somewhat different, in
the sense that it regards the same replacement as part of the true dynamics of
the system. For instance, the heat transfer in a local region of a fluid happens
108 times faster then most chemical reactions [5], so we can choose to regard
the concentrations of the chemicals reacting as the slow variables while all
other observables are thermalized (maximum entropy) along each time step
in the dynamics. The skill of the scientist using statistical dynamics thus
resides in correctly identifying which are the slow variables of the problem
at hand and then following the time evolution of the system, which involves,
apart from a stochastic dynamics particular to each problem, successive
projections onto Sm.

Information geometry provides a mathematical meaning for this projec-
tion [3, 31]. It is well known that the relative entropy (38) is the statistical
divergence associated with the dualistic triple (gB,∇(1),∇(−1)) [24]. It then
follows from the general theory [2] that, given an arbitrary point ρ ∈ S, the
point in Sm (which is ∇(1)-flat) that minimizes S(ρ|σ) is obtained uniquely
by following a −1-geodesic from ρ that intercepts S orthogonally with re-
spect to the BKM metric gB. This is equivalent to the projection described
above (maximum entropy subject to constant means) precisely because a
path preserving the mean parameters (or mixture coordinates) is a −1-
geodesic, that is, a straight line for the mixture connection.

However, if g is a general monotone metric, with respect to which ∇(1)

and ∇(−1) are not necessarily dual, then the relative entropy might fail to
be a divergence for (g,∇(1),∇(−1)) and nothing guarantees that minimizing
S(ρ|σ) will produce a point in Sm connected to ρ by a −1-geodesic intersect-
ing Sm perpendicularly with respect to g. Information geometry no longer
provides a mathematical implementation for statistical dynamics anymore.

As a final word for this paper, let us mention that a corollary to the-
orem 4.2 is the fact that the relation (1) does not hold for the quantum
α–connections defined using the α–representations as in section 2. If it did,
a simple calculation shows that ∇(α) and ∇(−α) would then be dual with
respect to the BKM metric (since the ±1–connections are). But from theo-
rem 4.2, this would imply that the BKM is a scalar multiple of the WYD,
which is only true in the extreme cases α = ±1.
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[4] N. N. Čencov. Statistical decision rules and optimal inference. American
Mathematical Society, Providence, R.I., 1982. Translation from the
Russian edited by Lev J. Leifman.

[5] R. H. Fowler. Statistical mechanics. Cambridge University Press, Cam-
bridge, 1980. The theory of the properties of matter in equilibrium,
Reprint of the second edition of 1936.

[6] R. Frost. Stopping by woods on a snowy evening. 1923.

[7] P. Gibilisco and T. Isola. Connections on statistical manifolds of density
operators by geometry of noncommutative Lp-spaces. Infin. Dimens.
Anal. Quantum Probab. Relat. Top., 2(1):169–178, 1999.

[8] P. Gibilisco and T. Isola. Monotone metrics on statistical manifolds of
density matrices by geometry of noncommutative L2-spaces. In P. Sol-
lich et al., editors, Disordered and Complex Systems, pages 129–139.
American Institute of Physics, 2001. AIP Conference Proceedings 553.

[9] P. Gibilisco and G. Pistone. Connections on non-parametric statistical
manifolds by Orlicz space geometry. Infin. Dimens. Anal. Quantum
Probab. Relat. Top., 1(2):325–347, 1998.

20



[10] M. R. Grasselli. Classical and Quantum Information Geometry. PhD
thesis, King’s College London, 2001.

[11] M. R. Grasselli. Dual connections in nonparametric classical informa-
tion geometry. Submitted to Annals of Applied Probability, 2002.

[12] M. R. Grasselli and R. F. Streater. The quantum information manifold
for ε-bounded forms. Rep. Math. Phys., 46(3):325–335, 2000.

[13] M. R. Grasselli and R. F. Streater. On the uniqueness of the Chentsov
metric in quantum information geometry. Infin. Dimens. Anal. Quan-
tum Probab. Relat. Top., 4(2):173–182, 2001.

[14] H. Hasegawa. α-divergence of the noncommutative information geom-
etry. In Proceedings of the XXV Symposium on Mathematical Physics
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