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Abstract

The aim of this thesis is to provide mathematical tools for an alternative to the

mainstream study of macroeconomics with a focus on debt-driven dynamics.

We start with a survey of the literature on formalizations of Minsky’s Financial

Instability Hypothesis in the context of stock-flow consistent models.

We then study a family of macro-economical models that date back to the Goodwin

model. In particular, we propose a stochastic extension where noise is introduced in

the productivity. Besides proving existence and uniqueness of solutions, we show that

orbits must loop around a specific point indefinitely.

Subsequently, we analyze the Keen model, where private debt is introduced. We

demonstrate that there are two key equilibrium points, intuitively denoted good and

bad equilibria. Analytical stability analysis is followed by numerical study of the basin

of attraction of the good equilibrium.

Assuming low interest rate levels, we derive an approximate solution through per-

turbation techniques, which can be solved analytically. The zero order solution, in

particular, is shown to converge to a limit cycle. The first order solution, on the other

hand, is shown to explode, rendering its use dubious for long term assessments.

Alternatively, we propose an extension of the Keen model that addresses the im-

mediate completion time of investment projects. Using distributed time delays, we

verify the existence of the key equilibrium points, good and bad, followed by their

stability analysis. Through bifurcation theory, we verify the existence of limit cycles

for certain mean completion times, which are absent in the original Keen model.

Finally, we examine the Keen model under government intervention, where we in-

troduce a general form for the government policy. Besides performing stability analy-

sis, we prove several results concerning the persistence of both profits and employment.

In economical terms, we demonstrate that when the government is responsive enough,

total economic meltdowns are avoidable.
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Chapter 1

Introduction

Neoclassical economics has been largely criticized over the past years, specially since

the crisis that unfolded in 2007–2008. Be it for their unreasonable rational expecta-

tions assumption, or be it for the aggregate “Law of Demand”, technically refuted

by the Sonnenschein-Mantel-Debreu theorems [Son72], it is time to seek for an alter-

native. We will argue that even though stock flow consistent macroeconomic models

represent a radical substitute [God04], they might be the ideal one. Rather than

studying economies at the equilibrium, we suggest the very opposite, as economies

rarely find themselves in equilibrium, yet their time evolution matters. Stock flow

representation of the economy can be translated into a system of dynamical equa-

tions (either deterministic or stochastic) which will describe how the many different

variables fluctuate over time.

Perhaps a deeper concern regarding neoclassical economics is its disregard for the

financial system. As pointed out by Lavoie in [Lav08], the aforementioned crisis “is a

reminder that macroeconomics cannot ignore financial relations, otherwise financial

crises cannot be explained”. For this reason, a great deal of this thesis is focused on

a family of models that represent a mathematical formalization of Minsky’s Financial

Instability Hypothesis.

The structure of the thesis is as follows. We begin by introducing the concepts

1
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behind stock flow consistent models in Chapter 2. In Sections 2.2.1 and 2.2.2, we

demonstrate that the Keen model both with (8.14) and without government interven-

tion (5.7) conform to the stock-flow consistency requirements.

Next, Chapter 3 discusses the very basic foundation behind this entire work: the

Goodwin model [Goo67]. Goodwin elegantly proposes one of the most prominent

mathematical formulations of Marx’s theory of class struggle. We show that the

solutions satisfy a constant Lyapunov equation, regardless of the choice of the Phillips

curve. In a later Section 6.3, we derive an analytical expression for the period of these

solutions, which depends exclusively on the initial value of the Lyapunov function.

A stochastic extension, where productivity is allowed to drift randomly according

to the level of employment, is then proposed in Chapter 4. In this chapter, based

on joint work with A. N. Huu and M. R. Grasselli [CGH13], we first obtain sufficient

conditions for existence and almost surely uniqueness of solutions. Next, we derive

a probabilistic estimate for the time it takes for solutions to deviate sufficiently far

from their initial orbit, in Lyapunov terms. More importantly, we show that solutions

almost surely orbit around a pivot point, indefinitely and in finite time. We end the

chapter by deriving a continuous extension of the proposed stochastic model that

approximates it when the volatility term is negligible. Such extension can be fully

solved analytically, as the sum of the solution to the Goodwin model plus a martingale

term.

The financial sector is taken into account in Chapter 5, where we introduce the

Keen model [Kee95] followed by a comprehensive analysis drawn from [GCL12], joint

work with M. R. Grasselli. After verifying the existence of two key equilibria, coined

“good” and “bad”, for they represent states of prosperity and collapse, respectively,

we perform local analysis. Necessary and sufficient conditions for their local stability

are obtained, showing the both fixed points are simultaneously stable under usual

conditions. Accordingly, solutions can converge to either equilibrium point, depending

on their initial position. As an illustration, we numerically integrate solutions starting

2
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in a fine grid around the good equilibrium point, recording when they converge to this

fixed point, roughly obtaining the basin of attraction of the good equilibrium.

Chapter 6 presents an extension of this model where we assume regimes of ex-

tremely low interest rate. There, we use perturbation techniques similar to those

used in Section 4.3 to derive an approximate model which can be fully solved analyt-

ically. The corresponding zero-order solution resembles the Goodwin model (3.12),

except for its non-linear investment function. Regardless, we show that the zero-order

solution converges to a limit cycle, whose period is also analytically determined. The

first-order solution, on the other hand, is shown to grow quadratically with time, thus

spoiling the accuracy of this approximation for long-term investigations.

In Chapter 7, we propose a second extension of the Keen model (5.7), where we

consider non-immediate capital project completion times. Usually, to study such im-

plications, one would have to deploy delay-differential equations machinery. Through

a clever mathematical device, commonly used in Mathematical Biology, we are able

to avoid these complications, and continue in the realm of ordinary differential equa-

tions, albeit with higher-dimension. The intuition behind this technique is that we

can approximate a discrete delay by the sum of exponentially distributed times, itself

Erlang distributed. As the number of intermediate stages increases to infinity, this

distribution converges to that of the Dirac delta, effectively representing the discrete

delay we started with. After verifying the existence of corresponding “good” and

“bad” equilibria, we show that the local stability of the first is only possible when the

mean completion time is shorter than a certain threshold. We perform bifurcation

analysis, which shows the existence of a super-critical Hopf bifurcation at that point.

In other words, for mean completion times higher than the mentioned threshold, we

have a limit cycle which attracts solutions which would otherwise converge to the

“good” equilibrium point. Unsurprisingly, the period of this limit cycle grows as the

mean completion time increases, until a second threshold is crossed, and the cycles

cease to exist. Beyond this point, solutions seem to converge exclusively to the bad

3
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equilibrium point.

Chapter 8 is based on joint work with M. R. Grasselli, X-S. Wang, and J. Wu

[CGWW13]. We propose an original extension of the Keen model where government

intervention is introduced in a general setting, while respecting the stock flow con-

sistent framework. First, we identify the “good” equilibrium, together with a variety

of “bad” equilibria characterized by zero employment and negative exploding profit

share, besides some extra finite equilibria associated to zero wage share, which are

either unattainable or unstable under usual conditions. Next, we obtain necessary

and sufficient conditions for their local stability, showing that all the “bad” equilib-

ria can be successfully destabilized if the government subsidies are non-negative and

responsive enough in a vicinity of zero employment. Meanwhile, the same cannot be

said for a government operating under austerity. Moreover, and most importantly,

we show that through a variety of reasonable conditions associated with a responsive

government, we have that the model (8.14) is uniformly weakly persistent with respect

to both the exponential of profit share and employment ratio. Ultimately, this result

means that solutions can never remain trapped below arbitrarily low levels of profit

share or employment, regardless of the specific initial conditions.

4



Chapter 2

Stock-Flow Consistent Minsky

Models

There have been several attempts to model (Hyman) Minsky’s Financial Instability

Hypothesis (FIH henceforth), as surveyed by Lavoie in [Lav08], and Dos Santos in

[DS05]. A short tour through the key aspects of the most influential of these models

follows below.

One of the earliest attempts of formalizing the FIH was carried out by Taylor

and O’Connell in their influential article [TO85], itself a variation of another paper

by Taylor [Tay85]. Taylor and O’Connell [TO85] introduced innovative concepts, of

which three deserve further discussion. First, they used the notion of a portfolio

choice. Secondly, their investment function was modeled as a function of the spread

between expected profit rate of firms (actual profit rate plus a confidence indicator)

and the interest rate. Lastly, and perhaps most strikingly, they introduced cyclical

dynamics through a differential equation linking the confidence indicator and the

interest rate. Notwithstanding the remarkable impact of [TO85], their model has

been criticized for numerous flaws. As Lavoie [Lav08] and Dos Santos [DS05] both

point out, Taylor and O’Connell [TO85] model is not stock-flow consistent (SFC

hereafter), as there are inconsistencies in how they treat the government debt. On

5
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top of that, the banking sector and the firms’ leverage ratio do not play an explicit

role in the model, while the supply of money is not endogenous. Relatedly, Taylor and

O’Connell do not model firms’ debt commitments, they can only finance themselves

through equity issuance.

Another attempt of modeling Minsky’s ideas was put forward by Franke and

Semmler in [FS91]. They modified Taylor and O’Connell model incorporating the

banking system. In addition, they introduced the firms’ leverage ratio together with

the interest rate to the dynamical equation driving the confidence indicator. Unfortu-

nately, Frank and Semmler model shares most of the criticism targeted towards Taylor

and O’Connell [TO85]. For instance, the fact that stock price is not determined by

supply and demand, and the remaining problems with stock-flow consistency. In addi-

tion, Dos Santos [DS05] criticizes the (unrealistic) assumption that the whole stock of

high-powered money (i.e. cash) is kept by banks as reserves. Still, its most celebrated

contribution was to track the leverage ratio of the firms explicitly.

Yet another extension of Taylor and O’Connell [TO85] was developed by Radke

in[Rad05]. He presented a rather complete model, which assumes that the confidence

indicator is driven by the spread between the profit rate and the interest rate, and the

firms’ debt ratio. Simultaneously, he allowed for credit rationing, by assuming that

banks can choose to grant a higher amount of loans to firms offering more collateral.

Delli Gatti and Gellagati published several papers in this topic by the 90s, for ex-

ample [DGGG90] coauthored with Gardini,[DGGM98] coauthored with Minsky him-

self, and [DGG92]. The essence of their model is captured by the investment strategy,

which is modeled as a function of Tobin’s q ratio [BT68], retained earning and lever-

age over retained earning. The key insight is that when firms rely more heavily on

external finance, instability ensues, despite any interest rate movement. Nonetheless,

despite being faithful to Minsky’s ideas, their model has suffered extensive criticism.

As Lavoie [Lav08] observes, besides not being SFC, the model ignores the role inter-

est payments from the firm debt have in the consumption function. Moreover, bank

6
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reserves seem to have no counterpart. In addition, as Dos Santos [DS05] points out,

by assuming the supply of bank loans is a function of the interest earned alone, the

authors are (perhaps not intentionally) assuming as well that either the amount of

bank deposits or reserves do not fluctuate wildly, or that bank behaviour is not af-

fected by such fluctuations. Lastly, the authors oversimplify the government sector

when, as Dos Santos [DS05] words it, they “heroically assume that all taxes are zero”.

Perhaps the earliest SFC formulations of the FIH was developed by Skott in

[Sko81]. The model, further enhanced in an article [Sko88] and a book [Sko89a],

introduces a firm that finances its investing through three sources: retained profits,

equity, and debt. At the same time, households choose to consume based on their

wealth, and decide their allocation on money or equities, while the government sector

is completely absent. As Lavoie [Lav08] remarks, the money supply in this model is

endogenous, while the stock price is determined by demand and supply, features not

found in Franke and Semmler [FS91], or Taylor and O’Connell [TO85]. Lavoie con-

tinues to say that this model has had an “unfortunate lack of impact”, which can be

partially blamed on the fact that Skott leaves leverage ratios out of the picture. In a

more recent publication [Sko94], Skott introduces the leverage ratio as an upper bound

on the amount of loans supplied by banks, together with an investment function that

depends on financial variables coined “fragility” – the sensitivity of investment to ad-

verse shocks – and “tranquility” – the firms’ ability to meet their financial obligations

(as discussed in [DS05]).

None of the models mentioned up to this point consider household indebtedness.

As Isenberg concluded in her study on the FIH in the 1920s [Ise88], “the production

sector, non-financial firms, which is at the center of the financial instability hypothesis,

did not exhibit a rising debt equity ratio”. In a later article [Ise94], she explains

that even though firms did not experience a rise in their their leverage ratios up to

1929, households did suffer from higher debt ratios. With this in mind, we bring

our attention to Palley’s work [Pal96], where he introduces two classes of households

7



Bernardo R. C. da Costa Lima – PhD Thesis – McMaster University – Dept. of Math and Stats

that borrow/lend from one another. By linking the debt-to-income ratio of borrowers

positively with GDP, he is able to obtain Minsky’s paradox of tranquility (Lavoie

[Lav08]), along with an economic slowdown associated with higher levels of the interest

rate and/or debt-to-income ratio. Just like many of the other models discussed here,

this one is not SFC, as banks’ reserves share no counterpart (Lavoie [Lav08]).

More recently, Lavoie and Godley [LG01] have designed a simple SFC model with

only three sectors, households, banks, and firms, that has generated numerous exten-

sions. For instance, Skott and Ryoo [SR08] made different behavioral assumptions,

changing the arguments of the consumption function, which led to rather different

results, indicating some sort of structural instability around the model specification.

On a different note, Zezza and Dos Santos [ZDS04] extend the model by adding the

central bank and a government sector, besides explicitly taking inflation in considera-

tion. At a later stage, Zezza [Zez08] introduces two classes of households, the workers

and the rich. While the former would rent houses, or rely on mortgages when pur-

chasing real estate, the latter rather purchase houses without the need of financing,

to collect rental income and/or capital gains (i.e. as an investment).

As an extreme example of how versatile this line of research can be, we turn to

the model developed by Eatwell, Mouakil and Taylor [EMT08]. Not only they include

a housing market, but they also split the financial sector in banks and their special

purpose vehicles (SPV), which issue the mortgages and pack them into mortgage-back

securities (MBS). Going further, repos are exchanged between the central bank and

every other bank to meet their reserve requirements (therefore relaxing the treasure

bills repurchase agreement mechanism). Furthermore, demand for houses is modeled

as decreasing with housing prices, yet increasing with their rate of change, and de-

creasing with the mortgage rate and the leverage ratio of both households and banks.

To end this quick survey, we mention the work developed by Steve Keen. In

[Kee95], he introduces a simple, yet beautiful extension of the popular, predator-prey

like, Goodwin model [Goo67]. Without attempting to suit SFC requirements (even
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though such requirements can be met, as we will see), he directly derives the dynamics

of macroeconomical variables (wage share, employment, and capitalist debt) by intro-

ducing a nonlinear investment function that depends solely on the profit share of the

capitalists. Immediately after, he introduces an extension accounting for government

intervention, whose policy includes both spending, when employment shrinks, and

taxation, when profits soar. Its simplicity, and hence analytical tractability, allied

with the fact that it captures the essence of the FIH, invites further investigation,

turning it into the ideal candidate for a serious mathematical tour de force.

2.1 Constructing a stock-flow consistent model

We have thus far discussed several implementations of the FIH, pointing out which

are SFC, and which are not, while leaving aside the description of this property. In

this section, we will explore the basic ideas and concepts involved with a SFC model.

Schematically, SFC modeling involves three steps:

1. double-entry accounting: build the balance sheets, together with the transac-

tions table and the flow of funds;

2. determine the behavioral assumptions, e.g. investment, consumption, financing

flows;

3. perform “comparative dynamics” and/or prove desired analytical properties.

The output of the first two steps is a system of differential equations that seldom

can be solved analytically. A numerical approximation is thus useful when assessing

behaviour of a system under certain conditions. In addition, as explored throughout

this thesis, one can prove various properties of the system analytically, e.g. determine

its fixed points, together with their respective local/global stability, study bifurcations,

and establish persistence of key variables.

9
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Borrowing a few words from Dos Santos [DS05], “a fair depiction of Minsky’s Wall

Street paradigm requires an economy with households, firms, banks and a government

(including a central bank)”. Clearly, one can expand this list by including SPV’s,

along with different classes of households, as previously discussed in some of the

surveyed models. These decisions are to be made by the researcher, having in mind

the trade-off between tractability and explanatory power. In praise of parsimony,

we shall stick with the first four sectors mentioned, plus the central bank. In terms

of balance sheet items, a decent starting set is composed by cash, deposits, bank

loans, government (treasury) bills, central bank advances and stock shares, besides,

naturally, the capital goods.

Without further delay, let us introduce a somewhat general balance sheet, trans-

actions and flow of funds. The entries in Table 2.1 are in real terms and mimic closely

the framework developed by Godley and Lavoie [GL07] and Dos Santos [DS05].

A few assumptions go embedded in Table 2.1:

1. households can purchase stocks issued by both the firms and the banks (in line

with [GL07]);

2. the central bank has zero net worth (in line with Dos Santos [DS05]);

3. the firms’ current account distributes its profits to either the capital account,

or its shareholders (households). In other words, the resulting sum of all the

current account transactions is zero (in line with Godley and Lavoie [GL07] and

Godley [God04]);

4. banks distribute a portion Fb of their profits to their shareholders, which in-

cludes, but is not limited to, the households (shares can be traded amongst

other banks as well) – here we depart slightly from Godley and Lavoie [GL07],

where they oddly assume that banks pay no dividends to the households;

5. banks do not pay taxes;

10
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Table 2.1: Balance sheet, transactions and flow of funds for a general Minsky model.

Balance Sheet Households
Firms

Banks Central Bank Government Sum
current capital

Cash +Hh +Hb −H 0

Deposits +Mh +Mf −M 0

Loans −L +L 0

Bills +Bh +Bb +Bc −B 0

Equities +Ef .pf + Eb.pb −Ef .pf −Eb.pb 0

Central bank
advances

−A +A 0

Capital goods +K +K

Sum (net worth) Vh 0 Vf Vb 0 −B K

Transactions

Consumption −C +C 0

Investment +I −I 0

Government
expenditures

+G −G 0

Accounting memo
[GDP ]

[Y ]

Wages +W −W 0

Government subsidies +GS −GS

Government taxes −Th −Tf +T 0

Interest on deposits +rM .Mh +rM .Mf −rM .M 0

Interest on loans −rL.L +rL.L 0

Interest on bills +rB.Bh +rB.Bb +rB.Bc −rB.B 0

Dividends +Fd + Fb −F +Fu −Fb −Fc +Fc 0

Sum Sh 0 Sf Sb 0 Sg

Flow of Funds

Cash +Ḣh +Ḣb −Ḣ 0

Deposits +Ṁh +Ṁf −Ṁ 0

Loans −L̇ +L̇ 0

Bills +Ḃh +Ḃb +Ḃc −Ḃ 0

Equities +Ėf .pf + Ėb.pb −Ėf .pf −Ėb.pb 0

Central bank
advances

−Ȧ +Ȧ 0

Sum Sh 0 Sf Sb 0 Sg 0

11



Bernardo R. C. da Costa Lima – PhD Thesis – McMaster University – Dept. of Math and Stats

6. the central bank sends its profits to the government, hence its zero net worth;

The final ingredient necessary is the set of behavioral assumptions. Naturally,

a crucial hypothesis is the investment function, which directly assigns the dynamics

of capital goods. Moreover, one needs to specify, among others, how households

consume, what the government policies are in terms of spending and taxation, and

how does the stock price evolve with time.

This crucial step is notably vulnerable to controversy and criticism. Once the

“skeleton” of the model is laid down, there are numerous ways to close the system,

each with its own advantages and disadvantages. Many of the models surveyed in

the last section shared similar accounting structure, yet possessed distinct behavioral

characteristics, rendering diverging results (e.g. Lavoie and Godley [LG01], and Skott

and Ryoo [SR08]).

By way of example, in the next section, we will show that both the Keen model

[Kee95], and its extension with government intervention, which will be explored later

in Chapters 5, and 8, satisfy the SFC requirements.

2.2 Adapting Keen to the SFC framework

2.2.1 Standard Keen model

Our goal in this subsection is to derive the Keen model from the framework set in the

previous section. To this end, we need to simplify and eliminate most of the items

in Table 2.1, as the Keen model [Kee95] does not involve many of the sectors we just

described. To begin with, we remove both the government and the central bank. As

well, we get rid of stock shares, and cash (due to the absence of a central bank), while

assuming that rM = rL = r.

The simplified “skeleton” is described in Table 2.2, from which we obtain the

following

12



Bernardo R. C. da Costa Lima – PhD Thesis – McMaster University – Dept. of Math and Stats

Table 2.2: Balance sheet, transactions and flow of funds for the standard Keen model.

Balance Sheet Households
Firms

Banks Sum
current capital

Deposits +Mh +Mf −M 0

Loans −L +L 0

Capital goods +K +K

Sum (net worth) Vh 0 Vf 0 K

Transactions

Consumption −C +C 0

Investment +I −I 0

Accounting memo
[GDP ]

[Y ]

Wages +W −W 0

Interest on deposits +r.Mh +r.Mf −r.M 0

Interest on loans −r.L +r.L 0

Dividends −F +Fu 0

Sum Sh 0 Sf Sb

Flow of Funds

Deposits +Ṁh +Ṁf −Ṁ 0

Loans −L̇ +L̇ 0

Sum Sh 0 Sf Sb 0
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Ṁh = W − C + rMh (2.1)

Ṁf − L̇ = Fu − I = C −W + rMf − rL (2.2)

L̇− Ṁ = rL− rM (2.3)

with output

Y = C + I (2.4)

Define now the firms’ profit share of the output as

π =
Fu
Y

=
F

Y

= Y −1 (Y −W − r(L−Mf ))

= 1− ω − rd

(2.5)

where ω = W/Y , D = L−Mf = Mh, and d = D/Y . Just like Keen [Kee95], assume

that investment is given by a general function of π

I = κ(π)Y (2.6)

meaning that the change in capital stock is investment minus depreciation,

K̇ = I − δK = κ(π)Y − δK (2.7)

The dynamics of debt can be derived through (2.2) and (2.4)
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Ḋ = L̇− Ṁf = W − C + r(L−Mf )

= ωY − (Y − I) + rD

= Y (ω − 1 + κ(π) + rD)

= Y (κ(π)− π)

(2.8)

Following Goodwin’s [Goo67] steps, diligently explained in Chapter 3, we assume

that the capital to output ratio remains constant, K = νY , which yields the following

dynamics for Y

Ẏ = Y

(
κ(π)

ν
− δ
)

(2.9)

Next, we assume that productivity (in goods/workers) and the total labor force

both grow exponentially

ȧ = αa (2.10)

Ṅ = βN (2.11)

Assuming full capital utilization, the employed labor force is then given by L =

Y/a, while the employment ratio is then λ = L/N . We now make another behavioral

assumption, that the bargaining equation for wages w = W/L follows from the Phillips

curve depending solely on the employment level,

ẇ = Φ(λ)w (2.12)

As a result, we have the following three-dimensional model for ω, λ and d
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ω̇ = ω [Φ(λ)− α]

λ̇ = λ

[
κ(π)

ν
− α− β − δ

]
ḋ = κ(π)− π −

[
κ(π)

ν
− δ
] (2.13)

and we have recovered the standard Keen model, just as defined in [Kee95], in full

STC form. Observe that consumption is fully determined by the investment strategy

of the capitalist sector,

C = Y − I = Y [1− κ(π)] (2.14)

This shortcoming can be avoided by assuming households can decide their savings

policy, as done by Skott in [Sko89b], where the accommodating variable is the price

of goods.

2.2.2 Keen model with government intervention

In [Kee95], Keen immediately extends the model previously introduced by adding the

government sector. Table 2.3 shows the augmented balance sheet, transactions and

flow of funds representing all the relevant exchanges. Notice that we added a row

representing government subsidies, which add to the firms’ current account, yet do

not contribute to the economy output.

From the second and third columns of Table 2.3, we obtain

C +Ge +GS −W − T + r(Mf − L) = Fu − I = Ṁf − L̇ (2.15)

If we define the firms’ profit share as
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Table 2.3: Balance sheet, transactions and flow of funds for the Keen model with
government intervention.

Balance Sheet Households
Firms

Banks Government Sum
current capital

Deposits +Mh +Mf −M 0

Loans −L +L 0

Bills +Bh +Bb −B 0

Capital goods +K +K

Sum (net worth) Vh 0 Vf 0 −B K

Transactions

Consumption −C +C 0

Investment +I −I 0

Government
expenditures

+Ge −Ge 0

Accounting memo
[non-government GDP ]

[Y ]

Government
subsidies

+GS −GS 0

Wages +W −W 0

Government taxes 0 −Tf +T 0

Interest on deposits +r.Mh +r.Mf −r.M 0

Interest on loans −r.L +r.L 0

Interest on bills +rg.Bh +rg.Bb −rg.B 0

Dividends −F +Fu 0

Sum Sh 0 Sf Sb Sg

Flow of Funds

Deposits +Ṁh +Ṁf −Ṁ 0

Loans −L̇ +L̇ 0

Bills +Ḃh +Ḃb −Ḃ 0

Sum Sh 0 Sf Sb 0
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π = 1− ω − rd+ g − τ (2.16)

while the firms debt is

Dk = L−Mf (2.17)

along with dk = Dk

Y
, g = GS

Y
, and τ =

Tf
Y

. The dynamics of the firms debt Dk follows

as

Ḋk = L̇− Ṁf = W + Tf + r(L−Mf )− C −Ge −GS

= W + T + rDk + I − Y −GS

= Y (κ(π)− (1− ω − rdk − τ + g))

= Y (κ(π)− π)

(2.18)

Observe that Y = C + I +Ge, excluding any form of subsidies, GS. Government

debt dynamics is thus

Ḃ = rgB +GS +Ge − T = Y (rgb+ g − τ + ge) (2.19)

where dg = B/Y , and ge = Ge/Y . In order to match the government debt’s dy-

namics of [Kee95], we need to assume that Ge = 0, that is, government expenditures

are zero. In Chapter 8 we will see another form of government expenditure that re-

spects the non-negative consumption constraint. As before, consumption is implicitly

determined, this time by investment and government expenditure,

C = Y − I −Ge = Y [1− κ(π)− ge] (2.20)

Once more, we follow Goodwin’s [Goo67] steps, and arrive at the following differ-

ential equations for ω, λ, and dk:
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ω̇ = ω [Φ(λ)− α]

λ̇ = λ

[
κ(π)

ν
− α− β − δ

]
ḋk = κ(π)− π − dk

[
κ(π)

ν
− δ
] (2.21)

We are left to specify the dynamics of g, and τ . One alternative is to follow Keen

[Kee95], who proposes non-linear functions that drive GS and T proportionally to

Y . In Chapter 8, we extend this idea by splitting GS and T into two variables each,

one with growth proportional to Y , and another that varies proportionally to itself.

Through this more general design, we are able to reproduce a plethora of behaviors,

including what was originally proposed by Keen [Kee95].

In any case, it is straightforward to see that the interaction between the gov-

ernment debt dg and the primary variables (ω, λ, dk, g, τ) is unilateral: one does not

need dg to determine the value of the remaining variables. For this reason, even if

we consider that the government expenditure (excluding subsidies) is non-zero, the

dynamics of (ω, λ, dk, g, τ) are not affected. On the other hand, determining dg now

requires the knowledge of ge, which is specified in a way that guarantees non-negative

consumption.

19



Chapter 3

Goodwin Model

Ever since its introduction in 1967, the model developed by Richard Goodwin in

[Goo67] has been heavily studied and extended. Its importance is due perhaps to

the fact that it pioneered the field of macroeconomics with endogenous economical

cycles, whereas most models had so far relied on exogenous shocks to produce the

same effect.

By adopting the Lotka-Volterra equations of population dynamics ([Lot25] and

[Vol27]), Goodwin proposed one of the first and most elegant formulations of Marx’s

theory of class struggle. Indeed, the inspiration is evident: when profits are on the rise,

investments will follow, adding more jobs to the economy and, in consequence, giving

more bargaining power to the labor force. The workers will, in turn, demand higher

wages, depleting the capitalists’ surplus, which will lead to more frequent layoffs. The

labor force will have less bargaining power, becoming more susceptible to reducing

their wages, thus increasing profitability, and starting a new cycle.

In this chapter, we review the model under a minor modification, we introduce an

exploding Phillips curve in order to bound the employment rate from above by unity.

Moreover, we derive the solution in terms of a Lyapunov function, and illustrate the

general behaviour through examples.
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3.1 Mathematical formulation

We start with a model for wages and employment proposed by Goodwin [Goo67].

Consider the following Leontief production function for two homogeneous factors

Y (t) = min

{
K(t)

ν
, a(t)L(t)

}
. (3.1)

Here Y is the total yearly output, K is the stock of capital, ν is a constant capital–to–

output ratio, L is the number of employed workers, and a is the labor productivity,

that is to say, the number of units of output per worker per year. All quantities are

assumed to be quoted in real rather than nominal terms, thereby already incorporating

the effects of inflation, and are net quantities, meaning that intermediate revenues and

expenditures are deducted from the final yearly output. Let the total labor force be

given by

N(t) = N0e
βt (3.2)

and define the employment rate by

λ(t) =
L(t)

N(t)
(3.3)

Furthermore, let the labor productivity be

a(t) = a0e
αt. (3.4)

where α and β are constants. Finally, assume full capital utilization, so that

Y (t) =
K(t)

ν
= a(t)L(t). (3.5)

In addition to (3.1)–(3.5), Goodwin makes two key behavioral assumptions. The

first is that the rate of change in real wages is a function of the employment rate.
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Specifically, denoting real wages per unit of labor by w, Goodwin assumes that

ẇ = Φ(λ)w (3.6)

where Φ(λ) is an increasing function known as the Phillips curve. The second key

assumption is known as Say’s law and states that all wages are consumed and all

profits are reinvested, so that the change in capital is given by

K̇ = (Y − wL)− δK = (1− ω)Y − δK (3.7)

where δ is a constant depreciation rate and ω is the wage share of the economy defined

by

ω(t) :=
w(t)L(t)

a(t)L(t)
=

w(t)

a(t)
. (3.8)

It then follows from (3.5) and (3.7) that the growth rate for the economy in this model

is given by
Ẏ

Y
=

1− ω
ν
− δ := µ(ω). (3.9)

Using (3.4), (3.6) and (3.8), we conclude that the wage share evolves according to

ω̇

ω
=

ẇ

w
− ȧ

a
= Φ(λ)− α. (3.10)

Similarly, it follows from (3.2), (3.3), (3.4) and (3.9) that the dynamics for the em-

ployment rate is
λ̇

λ
=
Ẏ

Y
− ȧ

a
− Ṅ

N
=

1− ω
ν
− α− β − δ. (3.11)

Combining (3.10) and (3.11) we arrive at the following two–dimensional system of

differential equations:

ω̇ = ω[Φ(λ)− α]

λ̇ = λ

[
1− ω
ν
− α− β − δ

] (3.12)
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3.2 Properties

In Goodwin’s original article [Goo67] the Phillips curve is taken to be the linear

relationship

Φ(λ) = −φ0 + φ1λ, (3.13)

for positive constants φ0, φ1, so that the system (3.12) reduces to the Lotka–Volterra

equations describing the dynamics of a predator ω and a prey λ. Provided

1

ν
− α− β − δ > 0, (3.14)

it is well known (see for example [HSD04]) that the trivial equilibrium (ω, λ) = (0, 0)

is a saddle point, whereas the only non-trivial equilibrium

(ω, λ) =

(
1− ν(α + β + δ),

α + φ0

φ1

)
(3.15)

is non-hyperbolic. Moreover, solution curves with initial conditions in the positive

quadrant are periodic orbits centered at (ω, λ).

One obvious drawback of the model is that is does not constrain the variables

ω and λ to remain in the unit square, as should be the case given their economic

interpretation. At a later stage, we will drop Say’s law as an assumption and replace

(3.7) with a more general investment function allowing for external financing in the

form of debt, giving rise to the Keen model [Kee95]. Accordingly, the wage share of

economic output can exceed unity, so there is no need to impose a constraint on ω.

The employment rate λ, however, still needs to satisfy 0 ≤ λ(t) ≤ 1 for all times.

As shown in [DHMP06] this can be achieved by taking the Phillips curve to be a
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continuously differentiable function Φ on (0, 1) satisfying

Φ′(λ) > 0 on (0, 1) (3.16)

Φ(0) < α (3.17)

lim
λ→1−

Φ(λ) =∞. (3.18)

It can then be verified again that (ω, λ) = (0, 0) is a saddle point and that the non–

trivial equilibrium

(ω, λ) =
(
1− ν(α + β + δ),Φ−1(α)

)
(3.19)

is non-hyperbolic. Using separation of variables and integrating the equation for

dλ/dω, we find that the solution passing through the initial condition (ω0, λ0) satisfies

the equation

(
1

ν
− α− β − δ

)
log

ω

ω0

− 1

ν
(ω − ω0) = −α log

λ

λ0

+

∫ λ

λ0

Φ(s)

s
ds. (3.20)

It follows that

V (ω, λ) =

∫ ω

ω

x− ω
νx

dx+

∫ λ

λ

Φ(y)− Φ(λ)

y
dy (3.21)

is a Lyapunov function associated to the system. In fact, V (ω0, λ0) is a constant of

motion, since
dV

dt
= ∇V · (ω̇, λ̇) = 0, (3.22)

so that solutions starting at (ω0, λ0) ∈ (0,∞)× (0, 1) remain bounded and satisfy 0 <

λ < 1 because of condition (3.18). Moreover, conditions (3.16) and (3.17) guarantee

that the right–hand side of (3.20) has exactly one critical point at λ = Φ−1(α) in

(0, 1), so that any line of the form ω = p intersects it twice at most, which shows

that the solution curves above do not spiral and are therefore closed bounded orbits

around the equilibrium (ω, λ).

Unsurprisingly, the growth rate for the economy at the equilibrium point (ω, λ) is
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given by

µ(ω) =
1− ω
ν
− δ = α + β, (3.23)

which is the sum of the population and productivity growth rates.

3.3 Example

We choose the fundamental economic constants to be

α = 0.025, β = 0.02, δ = 0.01, ν = 3 (3.24)

and, following [Kee95], take the Phillips curve to be

Φ(λ) =
φ1

(1− λ)2
− φ0, (3.25)

with parameters calibrated according to

Φ(0) = −0.04 Φ−1(α) = 0.96 (3.26)

so that λ = 0.96, and equations (3.16)–(3.18) are satisfied. It is then easy to see that

the trajectories are the closed orbits given by

(
1

ν
−α−β−δ

)
log

ω

ω0

−1

ν
(ω−ω0) = (φ1−φ0−α) log

λ

λ0

−φ1 log
1− λ
1− λ0

+φ1

(
λ− λ0

(1− λ)(1− λ0)

)

around the equilibrium point

(ω, λ) = (0.8350, 0.96) (3.27)

as shown in the phase portrait in Figure 3.1 for specific initial conditions (ω0, λ0).

The cyclical behaviour of the model can be seen in Figure 3.2, where we also plot the
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total output Y as a function of time, showing a clear growth trend with rate

µ(ω) = 0.045 (3.28)

but subject to the underlying fluctuations in wages and employment.
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Figure 3.1: Employment rate versus wage share in the Goodwin model

3.4 Criticisms and extensions

The Goodwin model has been extensively criticized for its structural instability, in

the sense that small perturbations of the vector field in (3.12) change the qualitative

properties of its solution. Most of the literature proposes some extension producing

a structurally stable limit cycle to address this issue, for example [Med79], [Sat85],

[DN88], [Chi90], [FK92], [Spo95], [FM98] and [MF01]. In particular, Desai [Des73]
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Figure 3.2: Employment rate, wages, and output over time in the Goodwin model

shows that expressing wages in nominal rather than real terms (as is common in the

literature related to the Phillips curve) turns the non-hyperbolic equilibrium into a

stable sink with trajectories spiraling towards it, whereas relaxing the assumption

of a constant capital to output ratio ν leads to two non-trivial equilibrium points.

In a different direction, van der Ploeg [vdP85] shows that introducing some degree

of substitutability between labor and capital in the form of a more general constant

elasticity of substitution (CES) production function also leads to a locally stable equi-

librium, whereas Goodwin himself [Goo91] showed that allowing labor productivity

to depend pro-cyclically on capital leads to unbounded oscillations, and the relative

strength of both effects were analyzed by Aguiar–Conraria [AC08].

These and other extensions are reviewed by Veneziani and Mohun [VM06], where

it is argued that instead of being a shortcoming, the structural instability of the

Goodwin model can be used to analyze the “factors that determine the fragility of
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the basic mechanism”. Not only they claim that “structurally stable models do not

necessarily represent more satisfactory formalizations of Marx’s theory of distributive

conflict”, but also continue “its structural instability is an extreme picture of the

fragility of the structure of the symbiotic mechanism regulating distributive conflict”.

Under this interpretation, the proposed extensions also help to explain the poor

fitting of the original model to data as reported by Solow [Sol90] and Harvie [Har00],

with structural changes being responsible for the observed long run phase portraits

for (λ, ω), which shows an overall tendency towards cycles, but nothing resembling

the closed trajectories implied by the Goodwin model.

Turning to the realm of stochastic dynamical systems, we introduce a stochastic

extension of the Goodwin model in the next chapter. By adding a random noise to

the productivity dynamics, we explore a variety of properties and concepts foreign to

deterministic systems, and not discussed thus far.
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Chapter 4

Stochastic Goodwin Model

In this Chapter, we will introduce a stochastic extension of the Goodwin model dis-

cussed in the previous Chapter. Rather than the economic interpretation of the pro-

posed extension, we believe that the tools developed here are the major contributions

to the field. Notions such as stochastic orbits and perturbation analysis will certainly

be ingredients of a more ambitious project where one considers stochasticity in a fully

developed Minsky model.

4.1 Introduction and mathematical formulation

Unlike what we had in the Goodwin model, let us consider a growth rate of productiv-

ity α which is not constant, but heterogeneous among the total labor force. We claim

that the effective growth rate of the productivity should depend negatively on the

level of employment. To understand why, imagine an economy close to full employ-

ment. The effective growth rate must be close to the average among the entire labor

force, as there can only be a few workers left out. On the other hand, consider the

opposite extreme: an economy where most of the labor force is unemployed. In such

situation, the turnover of the employed workers must be at its maximum, thus the set

of employed workers will compromise a different quality of workers at each instant of
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time. We can then expect to witness a wild fluctuation of the effective growth rate of

productivity. In any situation in between, we should expect such variations to settle

down as the employment rises. For this reason, we propose the following dynamics

for productivity

dat := atdαt = at (αdt− v(λt)dWt) (4.1)

where v(λ) is the volatility term, which we will assume to be a non-negative and

decreasing function of λ satisfying v(λ) = 0. The negative sign accompanying the

stochastic term was arbitrarily adopted simply for convenience. Here, Wt is a one

dimensional Brownian motion defined on a filtered probability space (Ω,F ,F,P) where

the filtration F = (Ft)t≥0 satisfies the usual conditions [Shr04].

Following the same definitions as in the Goodwin model, (3.1)–(3.3), (3.5)–(3.9),

and using Itô’s formula, we arrive at the following stochastic dynamical system

 dωt = ωt
[(

Φ(λt)− α + v2(λt)
)
dt+ v(λt)dWt

]
dλt = λt

[(
µ(ωt)− α− β + v2(λt)

)
dt+ v(λt)dWt

] (4.2)

where µ is defined just like (3.9) as µ(x) = 1−x
ν
− δ, and represents the growth rate

of the economy. Observe that the Dynkin operator associated to (4.2) applied to any

function f(t, ω, λ) ∈ C2,1(D × R+) is

Lf =
∂f

∂t
+ ω

∂f

∂ω

[
Φ(λ)− α + v2(λ)

]
+ λ

∂f

∂λ

[
µ(ω)− α− β + v2(λ)

]
+

1

2
v2(λ)

[
ω2 ∂

2f

∂ω2
+ λ2∂

2f

∂λ2
+ 2ωλ

∂2f

∂ω∂λ

] (4.3)

We propose to study a specific case of this system by assuming a unique root to

the deterministic part of the latter.

Assumption 1. We assume a unique non-trivial equilibrium point (0, 0) 6= (ω̃, λ̃) ∈
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D := (0,+∞)× (0, 1) to the deterministic system

 ω̇t = ωt
[
Φ(λt)− α + v2(λt)

]
λ̇t = λt

[
µ(ωt)− α− β + v2(λt)

] (4.4)

given by Φ(λ̃)− α + v2(λ̃) = 0 and ω̃ := µ−1(α + β − v2(λ̃)).

Remark 4.1. If we take the function Φ as (3.25), and the function v(λ) as

v(λ) = σ(1− λ)2 (4.5)

then Assumption 1 translates into the following bound for σ

0 ≤ σ < min

{√
α + φ0 − φ1;

α + φ0

2
√
φ1

}
(4.6)

Based on Assumption 1, we define the potential function

Ṽ (ω, λ) := Ṽ1(ω) + Ṽ2(λ) :=

∫ ω

ω̃

µ(ω̃)− µ(x)

x
dx+

∫ λ

λ̃

Φ(y)− Φ(λ̃)

y
dy (4.7)

as an extended version of (3.21) (if v ≡ 0, we recover the original Lyapunov function).

Remark 4.2. Taking the functions µ, Φ and v as they were defined in (3.9), (3.25)

and (4.5), we obtain

Ṽ1(ω) = ν−1 (ω − ω̃)−
(
ν−1 − µ(ω̃)

)
log(ω/ω̃) (4.8)

Ṽ2(λ) =
[
φ1 − φ0 − Φ(λ̃)

]
log

λ

λ̃
− φ1 log

1− λ
1− λ̃

+ φ1

[
1

1− λ
− 1

1− λ̃

]
(4.9)

According to [Kha12], a sufficient condition for our stochastic differential equation
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to have a unique global solution given any initial value is to require that the functions

Φ and µ are globally Lipschitz. As our choice of Φ explodes when λ approaches 1, we

need an alternative. This is the purpose of the next assumption.

Assumption 2. There exists two constants k1, k2 such that, for all (ω, λ) ∈ D,

− ωµ′(ω)− µ(ω) ≤ k1Ṽ1(ω) + k2 and v2(λ)Φ′(λ) ≤ k1Ṽ2(λ) + k2 (4.10)

Remark 4.3. Notice that the inequality with µ is readily satisfied for the function

(3.9). The other bound concerns both Φ and v, and ensures that λt ≤ 1 almost surely.

We need one last assumption before we dive into the analytical results. It concerns

the magnitude of the volatility term.

Assumption 3. The volatility term is such that v2(λ̃) < 1
2
v2(0). This seemingly arbi-

trary assumption is easily achieved, and will be useful when determining the behaviour

of the system close to the origin.

Based on Lyapunov techniques, and flavors of Theorem 2.1 from [MMR02], we

prove existence and uniqueness of a regular solution in D. For such, we require con-

ditions similar to those of Theorem 3.4 from [Kha12], which are recalled in Appendix

A for convenience.

Theorem 4.1. Provided Assumptions 1 and 2 hold, and assuming that (3.16)–(3.18),

there exists a regular solution (ωt, λt)t≥0 to system (4.2) starting at any point (ω0, λ0) ∈

D. Moreover, the solution is unique up to P-null sets, has the Markov property, and

remains in D with probability one.

Proof. The local Lipschitz growth and sub-linearity conditions of the coefficients of

the system on every compact subset included in D follow from the continuous dif-

ferentiability of the function Φ. We are left to check conditions (A.8) and (A.9) in
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Theorem A.2 of Appendix A. Applying the Dynkin operator defined in (4.3) to Ṽ we

get

LṼ (ω, λ) =
1

2

[
v2(λ)− v2(λ̃)

] [
Φ(λ)− Φ(λ̃)

]
− 1

2
v2(λ̃)

[
Φ(λ)− Φ(λ̃)

]
+

1

2
v2(λ)λΦ′(λ)

+ [µ(ω̃)− µ(ω)]

[
1

2
v2(λ)− v2(λ̃)

]
− 1

2
v2(λ)ωµ′(ω)

The first term is non-positive, while the second term is bounded from above by

1
2
v2(λ̃)

[
Φ(λ̃)− Φ(0)

]
and decreases to −∞ as λ goes to 1−. Condition (4.10) provides

the bound for third term since |λ| < 1, and also the bound for the last line, as

the function v is bounded. Altogether, there exist constants k1, k2 ∈ R+ such that

condition (A.8) holds for Ṽ . It is also clear from separation of variables in Ṽ that

inf
ω∈[0,+∞)

Ṽ (ω, λ) = Ṽ2(λ) + inf
ω∈[0,+∞)

Ṽ1(ω) = Ṽ2(λ) (4.11)

and tends to infinity when λ goes to 1 or 0. We also have infλ∈(0,1) Ṽ (ω, λ) going to

infinity as ω goes to 0 or +∞. Condition (A.9) is then satisfied, which allows to apply

Theorem A.2.

The next theorem states the divergence of system (4.2) in the path-wise sense. It

relies on another result of [Kha12], which is recalled in Appendix A as well.

Theorem 4.2. Let (ωt, λt) be a regular solution to (4.2). In addition to the require-

ments of Theorem 4.1, suppose that Assumption 3 holds as well. Then for any ξ ∈ Ω,

(ωt, λt)(ξ) cannot converge with time to any point (ω, λ) in the closure of D, as t→∞.

Proof. We will prove this result in three steps, for points in D first, then for the origin,

and last for points belonging to its boundary.

1. For any point (ω, λ) 6= (ω̃, λ̃) in D, we have either λ [µ(ω)− α− β + v2(λ)] 6= 0

or ω [Φ(λ)− α + v2(λ)] 6= 0. Then by the continuity of the functions µ and Φ, there
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must exist a neighborhood B ⊂ D of (ω, λ) such that

min(max
B

(Lωt),max
B

(−Lωt),max
B

(Lλt),max
B

(−Lλt)) < −ε (4.12)

for some small ε > 0. We can then find function W (x, y) defined in D (such as x,

K − x, y or K − y), yet non-negative in B, such that LW < −ε in B.

We then apply Theorem A.3 of Appendix A and obtain that if (ωt, λt) = (ω, λ)

at some arbitrary time t ≥ 0, then it must almost surely leave the region B in finite

time.

Otherwise, at the point (ω̃, λ̃), we have

LṼ (ω̃, λ̃) =
1

2
v2(λ̃)

[
λ̃Φ′(λ̃)− ω̃µ′(ω̃)

]
> 0 (4.13)

Using the same argument, we get that the process exits a small region around

(ω̃, λ̃) in finite time almost surely.

2. Take now (ω, λ) = (0, 0). We shall demonstrate that there exists a ball around

this point that must be exited in finite time almost surely. To see why, let’s look at

the Dynkin operator applied to Ṽ at (0, 0)

LṼ (0, 0) =

[
1

2
v2(0)− v2(λ̃)

] [
Φ(0)− Φ(λ̃) + µ(ω̃)− µ(0)

]
(4.14)

which is strictly negative under Assumption 3. Continuity implies the existence of

a ball around (0, 0) with LṼ < 0 inside it, while Theorem A.3 provides the almost

surely finiteness of its exit time.

3. Finally, for some d > 0 smaller than the radius of the ball obtained in step 2,
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define the regions

RB = [0,+∞)× [0, d] (4.15)

RL = [0, d]× [0, 1] (4.16)

RU = [0,+∞)× [1− d, 1] (4.17)

with the corresponding stopping times

τRB
= inf {t ≥ 0 : (ωt, λt) 6∈ RB} (4.18)

τRL
= inf {t ≥ 0 : (ωt, λt) 6∈ RL} (4.19)

τRU
= inf {t ≥ 0 : (ωt, λt) 6∈ RU} (4.20)

We wish to prove that each of these regions is exited in finite time almost surely,

that is, the boundary of D cannot attract solutions indefinitely. Using the Markov

property of the solution, we will consider a starting point in each of these regions and

seek to prove that each corresponding stopping time is finite almost surely.

For the first region, we look at the Dynkin of ω ≥ 0

Lω = ω
[
Φ(λ)− α + v2(λ)

]
≤ −Mω ≤ 0 (4.21)

where M = max[0,ε] [Φ(λ)− α + v2(λ)] < 0. Therefore, if we restrict ourselves to

ω > ε, for any ε > 0, we have through Theorem A.3 that every region RB ∩ {ω > ε}

must be exited in finite time almost surely. However, Doob’s martingale convergence

theorem (DMCT henceforward) on the non-negative super-martingale ωt guarantees

that ωt∧τRB
converges point-wise to some random variable ω∞. Assuming by contradic-

tion that τRB
is infinite in a set of positive measure, we can pick a ξ ∈ {τRB

= +∞}

and see that the solution linked to this random state must converge to a point in

{0} × [0, d]. This is, according to step 2, not possible. We have thus obtained our

contradiction, which implies that τRB
< +∞ almost surely.
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For the second region, use the function 1− λ, with

L(1− λ) = −λ
[
µ(ω)− α− β + v2(λ)

]
≤ −λ [µ(d)− α− β] ≤ 0 (4.22)

Restricting ourselves to λ > ε, we see that every region RL ∩ {λ > ε} must be

exited in finite time. With exactly the same argument as before, we find that τRL

must be finite almost surely.

Finally, for the third region, consider the function ω−2, with

Lω−2 = −2ω−2

[
Φ(λ)− α− 1

2
v2(λ)

]
≤ −2ω−2m ≤ 0 (4.23)

where m = Φ(1 − d) − α − 1
2
v2(1 − d) > 0. Restricting ourselves to ω < 1/ε we

obtain through the same argument as previously that either the region is exited in

finite time almost surely or ω explodes to +∞. As the latter would defy existence,

we have finished the proof.

Remark 4.4. Notice, quite importantly, that we do not prove that the region

RB∪RL∪RU is exited in finite time almost surely. Instead, we show this property for

each of these regions individually. Conveniently, this will be sufficient for the analysis

that follows.

One could also be interested in the departure from the deterministic model (3.12).

The next result provides a probabilistic estimate of the time it takes for the process

V (ωt, λt) to exit a ball around V (ω0, λ0), where V is the Lyapunov function defined

in (3.21).

Theorem 4.3. Let (ωt, λt)t≥0 be a solution of system (4.2) with initial condition

(ω0, λ0) ∈ D. For any ξ ∈ Ω and t ≥ 0, we define the quantity V0 := V (ω0, λ0) and

et(ξ) := V (ωt(ξ), λt(ξ))− V0, along with the stopping time

τc(ξ) := inf{t > 0 : |et(ξ)| ≥ c} (4.24)
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for any 0 < c < V0. We then have the following estimate

P
[
τc > B−1

c,ζ (c)
]
≥
(

1− I2(V0, c)

ζ2

)
(4.25)

with Bc,ζ(t) := 1
2
R(V0, c)t+ ζ

√
t for two constants R and I depending only on V0 and

c.

Proof. Applying Itô’s formula to et, we find

det =
1

2
v2(λ)

[
µ(ω)− µ(ω) + Φ(λ)− Φ(λ)− ωµ′(ω) + λΦ′(λ)

]
dt

+ v(λ)
[
µ(ω)− µ(ω) + Φ(λ)− Φ(λ)

]
dWt

(4.26)

Define the martingale by

Mt =
1√
t

∫ t

0

v(λs)
[
µ(ω)− µ(ωs) + Φ(λs)− Φ(λ)

]
dWs for t > 0 (4.27)

with M0 = 0, along with the Fτc-measurable set, for any ζ > 0

Aζ =

{
ξ ∈ Ω : sup

0≤t≤τc

∣∣Mt(ξ)
∣∣ ≤ ζ

}
(4.28)

Notice that for t and ξ ∈ Ω such that t < τc(ξ), we have that (ω, λ) ∈ E(V0, c) :=

{(ω, λ) ∈ D : |V (ω, λ)− V0| ≤ c}. With this in mind, we define the finite quantities

R(V0, c) := max
(ω,λ)∈E(V0,c)

v2(y)
[
µ(ω)− µ(ω)− ωµ′(ω) + λΦ′(λ) + Φ(λ)− Φ(λ)

]
(4.29)

I(V0, c) := max
(ω,λ)∈E(V0,c)

v(λ)
(
µ(ω)− µ(ω) + Φ(λ)− Φ(λ)

)
(4.30)

We can find the probability of the event Aζ by first using conditional probability

and then following with Doob’s martingale inequality for the absolute value of the
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càdlàg modification1 of Mt, which is a sub-martingale that agrees with |Mt| for all

t > 0, namely

P [Aζ ] =

∫ +∞

0

P
[
Aζ
∣∣τc = t

]
fτc(t) dt

≥
∫ +∞

0

(
1− 1

ζ2
E

[
1

t

∫ t

0

v2(λs)
(
µ(x)− µ(ωs)Φ(λs)− Φ(λ)

)2
ds

∣∣∣∣∣τc = t

])
fτc(t) dt

≥
∫ +∞

0

(
1− I2(V0, c)

ζ2

)
fτc(t) dt

=

(
1− I2(V0, c)

ζ2

)
(4.31)

where fτc is the probability density function of the random variable τc. At last, we

can integrate det to find the estimate, valid for any ξ ∈ Aζ and t < τc(ξ)

|et(ξ)| ≤
1

2

∫ t

0

v2(λs)
∣∣µ(ω)− µ(ωs)− ωsµ′(ωs) + λsΦ

′(λs) + Φ(λs)− Φ(λ)
∣∣ ds

+

∣∣∣∣ ∫ t

0

v(λs)
[
µ(ω)− µ(ωs) + Φ(λs)− Φ(λ)

]
dWs

∣∣∣∣
≤ 1

2
R(V0, c)t+ ζ

√
t = Bc,ζ(t)

(4.32)

Finally, since Bc,ζ(t) ≤ c for t ≤ B−1
c,ζ (c), we have that for ξ ∈ Aζ , τc(ξ) > B−1

c,ζ (c),

which leads to

P
[
τc > B−1

c,ζ (c)
]
≥ P

[
τc > B−1

c,ζ (c)
∣∣Aµ]P [Aµ] ≥

(
1− I2(V0, c)

ζ2

)
(4.33)

1In spite of the process |Mt| being discontinuous at t = 0, we can still verify through Chebyshev
inequality that

P
[

lim
t→0+

|Mt| ≥ ζ
]

= P [|Z| ≥ ζ/|h0|] ≤ V ar [Z] (h0/ζ)
2

= (|h0|/ζ)
2 ≤ I2(V0, c)/ζ

2

where hs is in the integrand in (4.27), and Z ∼ N(0, 1) is a Gaussian random variable.
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finishing the proof.

The interpretation of Theorem 4.3 is that we can, for a given confidence level,

bound the growth of the solution in terms of the Lyapunov function (3.21).

4.2 Stochastic orbits with recurrent domains

Along the spirit of Theorem 4.2, we have no hopes of obtaining periodicity for the

the stochastic system (4.2). In this section, we will address this issue by proposing

a convenient and intuitive alternative, the notion that solutions must almost surely

transition amongst regions that cover the domain D indefinitely.

Definition 1. Let ξ ∈ Ω denote a random state, while (ωt0 , λt0) represents a point on

the line L connecting the origin and (ω̃, λ̃), that is, ωt0 = ω̃

λ̃
λt0 while λt0 ∈ (0, 1). As

well, define θt(ξ) as the angle from the vector {ωt0 − ω̃;λt0 − λ̃} to the vector {ωt(ξ)−

ω̃;λt(ξ) − λ̃}, in clockwise direction. We define a stochastic orbit as the solution

(ωt(ξ), λt(ξ))t∈[t0,t0+T (ξ)] of the system (4.2), where T (ξ) = inf {t ≥ t0 : θt(ξ) ≥ 2π}.

The stopping time T (ξ) is called the period of the stochastic orbit.

Observe that the locus of the starting point was specifically chosen for a reason.

As we will see later in this section, solutions can only cross the line L in a specific

direction. The next theorem asserts the almost surely finiteness of the period.

Theorem 4.4. The period of any stochastic orbit is finite almost surely.

The rest of the section is devoted to prove Theorem 4.4. In order to achieve that,

we define regions (Ri)i of the domain D := (0,+∞)× (0, 1), illustrated by Figure 4.1,

and prove that the system exits each of them in finite time, transitioning in some

appropriate direction.

Consider the concave decreasing function on R+

f(ω) = Φ−1(µ(ω)− β) (4.34)
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Figure 4.1: Domain D and its covering by (Ri)i=1...8. Since f(0) < 1 and y = 1 is a
vertical asymptote of Φ, this corresponds to the general case, where x = 0 is possible
on R7.

We also introduce the process ρ := (ρt)t≥0 defined by ρt := λt/ωt, which is a finite

variation, F -adapted process with dynamics

dρt = ρt (µ(ω)− β − Φ(λ)) dt = ρt (Φ(f(ω))− Φ(λ)) dt (4.35)
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Define ρ̃ := λ̃/ω̃. We divide the domain D in 8 sets:

D =
8⋃
i=1

Ri with



R1 := {(ω, λ) ∈ D : λ ≥ λ̃ and λ/ω ≤ ρ̃}

R2 := {(ω, λ) ∈ D : f(ω) ≤ λ ≤ λ̃}

R3 := {(ω, λ) ∈ D : λ ≤ f(ω) and ω ≥ ω̃}

R4 := {(ω, λ) ∈ D : ω ≤ ω̃ and λ/ω ≤ ρ̃}

R5 := {(ω, λ) ∈ D : λ ≤ λ̃ and λ/ω ≥ ρ̃}

R6 := {(ω, λ) ∈ D : λ̃ ≤ λ ≤ f(ω)}

R7 := {(ω, λ) ∈ D : λ ≥ f(ω) and ω ≤ ω̃}

R8 := {(ω, λ) ∈ D : ω ≥ ω̃ and λ/ω ≥ ρ̃}

(4.36)

Remark 4.5. Notice that

8⋂
i=1

Ri = (ω̃, λ̃) and
8⋃
i=1

Ri = D . (4.37)

Moreover, λ̃ = f(ω̃). We also emphasize that v(λ̃) 6= 0, so that around the point

(ω̃, λ̃), the system locally behaves like a diffusion on the plane, which implies, along

Theorem 4.2, that

P
[
(ωt, λt) = (ω̃, λ̃), for some t > 0

]
= 0 ∀(ω0, λ0) ∈ D. (4.38)

Accordingly, we have that this particular point is almost surely never reached,

implying that, a priori, a solution can only leave a region Ri to one of its neighboring

regions Rj, where

j ∈

{mod(i± 1, 8)} if i > 1

{2, 8} if i = 1

(4.39)

According to Theorem A.2 any solution of system (4.2) is a Markovian process.

We can thus equivalently treat a time translation as a different initial condition for
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the system. We define, for (ωs, λs) ∈ D the stopping times

τi(ωs, λs) := inf{t ≥ s : (ωt, λt) ∈ Ri}, i = 1, . . . , 8. (4.40)

as the first-entry time to each region Ri. The dependence in s is implied in the above

formulation, yet we shall be exempt of any ambiguity in the proofs below: τi(ω, λ)

is a short notation for τi(ω0, λ0) with (ω0, λ0) = (ω, λ). Our first proposition will be

extremely useful in the proofs of the proceding results.

Proposition 4.1. Define

%(ω, λ) :=
λt − λ̃
ωt − ω̃

, (4.41)

and

Fc(x) = tan
(
tan−1(x) + tan−1(c)

)
(4.42)

for any

c ∈

(
0,

(
ρ̃+

M

m

)−1
)

(4.43)

where

M := max
(ω,λ)∈[ω̄,ω̃]×[λ̃,λ̄]

λ(ω − ω̃) [µ(ω)− α− β]− ω(λ− λ̃) [Φ(λ)− α] ≥ 0 (4.44)

m := min
(ω,λ)∈[ω̄,ω̃]×[λ̃,λ̄]

ωω̃v2(λ) ≥ 0 (4.45)

are finite constants. Then we have that the process

Fc ◦ %(ωt, λt) (4.46)

is a super-martingale in Sc := D \ {ρ̃ ≤ %(ω, λ) ≤ 1
c
}

Proof. Denote %t = %(ωt, λt), ∆ωt := ωt − ω̃, and ∆λt := λt − λ̃. Our goal is to prove

that the Dynkin operator applied to the function Fc ◦ %(ω, λ) is non-positive in the
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region Sc. We can apply Itô’s formula to %t and obtain

d%t =
dλt
∆ωt

− ∆λt
(∆ωt)2

dωt +
v2(λt)

(∆ωt)2

[
∆λt
∆ωt

ω2
t − ωtλt

]
dt . (4.47)

Then, noticing that Fc(%) = (%+ c)(1− %c), we get

dFc(%t) =
1 + c2

(1− %tc)2

(
d%t +

c

1− %tc
d 〈%t〉

)
(4.48)

Dropping the redundant t subscripts, we have explicitly

(∆ω)4 (1− %c)2

1 + c2
LFc = (∆ω)3λ

[
µ(ω)− α− β + v2(λ)

]
− (∆λ)(∆ω)2ω

[
Φ(λ)− α + v2(λ)

]
+ v2(λ)

[
ω(∆ω)

(
λω̃ − λ̃ω

)
+

c

1− %c

(
λ̃ω − λω̃

)2
] (4.49)

Besides, note that x 7→ 1/(x−%) is monotonically decreasing for x ∈ (−∞, %) and

x ∈ (%,+∞). Therefore, as c−1 > ρ̃, and % 6∈ [ρ̃, c−1], we have

c

1− %c
=

1

c−1 − %
<

1

λ̃/ω̃ − %
=

ω̃(∆ω)

λ̃ω − ω̃λ
(4.50)

in the region Sc, so that we can further bound LFc by

(∆ω)2 (1− %c)2

1 + c2
LFc ≤ λ(∆ω)

[
µ(ω)− α− β + v2(λ)

]
− ω(∆λ)

[
Φ(λ)− α + v2(λ)

]
− v2(λ)

(
λ̃ω − λω̃

)
= λ(∆ω) [µ(ω)− α− β]− ω(∆λ) [Φ(λ)− α]

≤ 0 in D \ [ω̄, ω̃]× [λ̃, λ̄]

(4.51)

Which proves the desired result in the region Sc \ [ω̄, ω̃] × [λ̃, λ̄]. We are left to

show the same in the rectangle [ω̄, ω̃] × [λ̃, λ̄] ⊂ Sc. In order to accomplish that, let
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us rewrite (4.49) as

(∆ω)2 (1− %c)2

1 + c2
LFc = λ∆ω

[
µ(ω)− α− β + v2(λ)

]
− ω∆λ

[
Φ(λ)− α + v2(λ)

]
+ v2(λ)ω̃

[
ω (%− ρ̃) +

ω̃ (%− ρ̃)2

c−1 − %

]
= λ∆ω

[
µ(ω)− α− β + v2(λ)

]
− ω∆λ

[
Φ(λ)− α + v2(λ)

]
+ v2(λ)ω̃

%− ρ̃
%− c−1

(λ− ω/c)

(4.52)

Since % ≤ 0 in the rectangle, %−ρ̃
%−c−1 ≤ 1, thus

(∆ω)2 (1− %c)2

1 + c2
LFc ≤ λ∆ω [µ(ω)− α− β]− ω∆λ [Φ(λ)− α]

+ v2(λ)

[
λ∆ω − ω∆λ+ ω̃

(
λ− ω

(
1

c
− ω̃ + ω̃

))]
= λ∆ω [µ(ω)− α− β]− ω∆λ [Φ(λ)− α]

− ωω̃v2(λ)

(
1

c
− ρ̃
)

≤M −m
(

1

c
− ρ̃
)
≤ 0 in [ω̄, ω̃]× [λ̃, λ̄]

(4.53)

For any c satisfying (4.43) which finishes the proof.

The next proposition provides the most straightforward result.

Proposition 4.2. Take (ω0, λ0) = (ω, λ) ∈ R1. Then, P [τ8(ω, λ) < τ7(ω, λ)] = 0.

Similarly, for (ω0, λ0) = (ω, λ) ∈ R5, P [τ4(ω, λ) < τ3(ω, λ)] = 0.

Proof. This is a direct consequence of the absence of Brownian motion in ρ. Take

(ω0, λ0) ∈ R1. Then on [0, τ3(ω0, λ0)], the process ρ is non increasing P−a.s., meaning

that R8 cannot be reached without first crossing region R7. The other side is similar.
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Remark 4.6. Note that the whole proof works even if τi = +∞ for any i involved.

Notice also that Proposition 4.2 implies that if (ω0, λ0) ∈ R1, then

τ2(ω0, λ0) < τ3(ω0, λ0) < τ4(ω0, λ0) < τ5(ω0, λ0) P− a.s. (4.54)

and that if (ω0, λ0) ∈ R5, τ6(ω0, λ0) < τ7(ω0, λ0) < τ8(ω0, λ0) < τ1(ω0, λ0) P− a.s.. As

well, observe that the definition of a stochastic orbit was inspired by this result.

In the following proposition, we use results of sections 3.7 and 3.8 in [Kha12] on

recurrent domains.

Proposition 4.3. Take (ω0, λ0) ∈ R1. Then P [τ2(ω0, λ0) < +∞] = 1.

Proof. To show that τ2 < +∞ P − a.s., we apply Theorem A.3 to the function
√
λ,

for which we have
√
λ ≥

√
λ̃ > 0, and

L
√
λ =

1

2

√
λ

[
µ(ω)− α− β +

3

4
v2(λ)

]
≤ −
√
λv2(λ̃)

8

≤ −

√
λ̃v2(λ̃)

8
< 0 ∀ω ≥ ω̃, λ ≥ λ̃

(4.55)

The theorem guarantees that (ωt, λt) leaves R1 in finite time, and this is only

possible via R2.

Proposition 4.4. Take (ω0, λ0) ∈ R2 ∪R3. Then P [τ1(ω0, λ0) ∧ τ4(ω0, λ0) < +∞] =

1.

Proof. Applying Itô’s formula to
√
ω, we find that

L
√
ω =

1

2

√
ω

[
Φ(λ)− α +

3

4
v2(λ)

]
≤ −
√
ωv2(λ)

8

≤ −
√
ω̃v2(λ̃)

8
< 0 ∀ω ≥ ω̃, λ ≤ λ̃

(4.56)

Resorting to Theorem A.3 once more, we obtain the desired result that the region
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R2 ∪ R3 is exited in finite time P − a.s., which translates into the statement of this

proposition.

The next couple of propositions deal with the opposite situation, concerning re-

gions on the left of λ/ω = ρ̃.

Proposition 4.5. Take (ω0, λ0) ∈ R5. Then P [τ6(ω0, λ0) < +∞] = 1.

Proof. Define the sequence of regions {Bn}n∈N through

Bn = R5 ∩ {λ > k/n} (4.57)

where k > 0 is small enough such that (ω0, λ0) ∈ B1. Applying Itô’s formula to the

function
√
λ̃− λ gives us

L(

√
λ̃− λ) = − 1

2
√
λ̃− λ

[
λ
[
µ(ω)− α− β + v2(λ)

]
+

1

4

λ2

λ̃− λ
v2(λ)

]
≤ −1

8

λ2

(λ̃− λ)3/2
v2(λ)

≤ −1

8

k2

√
n
(
nλ̃− k

)3/2
v2(λ̃) < 0 ∀(ω, λ) ∈ Bn

(4.58)

while L(
√
λ̃− λ) ≤ 0 in R5. DMCT implies that there exists the point-wise limit

lim
t

(√
λ̃− λ

)
t∧τ6

(ξ) =:

(√
λ̃− λ

)
∞

(ξ) (4.59)

for all ξ ∈ Ω. In addition, Theorem A.3 guarantees that every set Bn is exited in

finite time P − a.s.. As consequence, if ξ ∈ {τ5 = +∞}, we have that λ(ξ) → 0,

and consequently ωt(ξ) → 0 as well. As Theorem 4.2 states, however, this is a

contradiction to the very existence of the solution.

Proposition 4.6. If (ω0, λ0) ∈ R6 ∪R7, then P [τ5(ω0, λ0) ∧ τ8(ω0, λ0) < +∞] = 1.
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Proof. Define the sequence of regions {Bn}n∈N through

Bn = R6 ∪R7 ∩ {λ < 1− k/n} ∩ {ω > k/n} (4.60)

where k > 0 is small enough such that (ω0, λ0) ∈ B1. Applying Itô’s formula to
√
ω̃ − ω, we find that

L(
√
ω̃ − ω) = − 1

2
√
ω̃ − ω

[
ω
[
Φ(λ)− α + v2(λ)

]
+

1

4

ω2

ω̃ − ω
v2(λ)

]
≤ −1

8

ω2

(ω̃ − ω)3/2
v2(λ)

≤ −1

8

k2

√
n(nω̃ − k)3/2

v2(1− k/n) < 0 ∀(ω, λ) ∈ Bn

(4.61)

while L(
√
ω̃ − ω) ≤ 0 in R6 ∪ R7. DMCT implies that there exists the point-wise

limit

lim
t

(√
ω̃ − ω

)
t∧τ5,8

(ξ) =:
(√

ω̃ − ω
)
∞

(ξ) (4.62)

for all ξ ∈ Ω, where we use the notation τ5,8 = τ5(ω0, λ0) ∧ τ8(ω0, λ0). In addition,

Theorem A.3 guarantees that every set Bn is exited in finite time P− a.s.. As conse-

quence, if ξ ∈ {τ5,8 = +∞}, we have that either ωt(ξ)→ 0 or λt(ξ)→ 1. Either way,

according to Theorem 4.2, we have a contradiction.

Remark 4.7. With exactly the same argument, yet applied to the function√
ρ−1 − ω, it is possible to show that the region R6 ∪ R7 ∪ R8 is exited in finite

time P− a.s., which implies that τ1 ∧ τ5 < +∞P− a.s..

So far we have obtained that once in R1 (or rather in R5), one must exit to R2

(R6), and subsequently move to R1∪R4 (alternatively, R5∪R8) in finite time P−a.s..

Hence, we cannot conclude thus far that the region R4 (R8, respectively) will be

reached almost surely in finite time. To remediate this situation, we provide a direct

proof of these statements inspired by ideas present in the proof of Theorem 3.9 of
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[Kha12]. The key insight is that if the process alternates between regions R1 and R2

(or R5 and R7) indefinitely, then we arrive at a contradiction that defies existence.

Proposition 4.7. Take (ω0, λ0) ∈ R1 ∪R2. Then P [τ3(ω0, λ0) < +∞] = 1.

Proof. 1. Let (vn)n≥0 be a sequence of stopping times defined by v0 = 0 and

vn := inf{t ≥ vn−1 : λt = λ̃ or (ωt, λt) ∈ R3}, n ≥ 1. (4.63)

By construction, if for some n ≥ 1,(ωvn , λvn) ∈ R3, then vk = vn for all k > n.

Following Remark 4.6, Proposition 4.3 and Proposition 4.4, vn is almost surely

finite for all n ≥ 1 and {τ3(ω0, λ0) = +∞} ⊂
⋂
n≥1{λvn = λ̃}.

We make the following claim

lim
t→∞

ρt(ξ) = 0, ∀ξ ∈ {τ3(ω0, λ0) = +∞} (4.64)

to be proved in step 2 below. Assuming this holds, we immediately get

P [τ3(ω0, λ0) = +∞] ≤ P
[
lim
n
ωvn = +∞

]
= 0 (4.65)

2. Our goal is to show that for all ξ ∈ {τ3(ω0, λ0) = +∞}, ρt(ξ) converges to 0

(path wise). From DMCT on the non-negative super martingale ρt∧τ3 , we know that

there exists the random variable ρ∞(ξ) = limt→+∞ ρt(ξ) for ξ ∈ {τ3(ω0, λ0) = +∞}.

Assume by contradiction that ρ∞(ξ) > 0 for some ξ in a subset E ⊂ {τ3(ω0, λ0) =

+∞}.

Define the F∞-measurable random variable

lim
t

∫ t

0

1{µ(ωs(ξ))−β−Φ(λs(ξ))<−ε} ds = Cε(ξ) (4.66)

which measures the amount of time the process (ωt, λt) spends further than ε away
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from the boundary R2 ∩R3. Observe that we can control the growth of ρt through

d log ρt(ξ) = (µ(ωt(ξ))− β − Φ(λt(ξ))) dt < −ε1{µ(ωt(ξ))−β−Φ(λt(ξ))<−ε}dt (4.67)

which gives us the following

log ρt(ξ) < log(ρ0)− ε
∫ t

0

1{µ(ωs(ξ))−β−Φ(λs(ξ))<−ε} ds (4.68)

In other words, for all ξ ∈ E, we have

Cε(ξ) <
log(ρ0)− log(ρ∞(ξ))

ε
< +∞ (4.69)

Define now the following random times2

ζε,n := inf

{
t ≥ 0 :

∫ t

0

1{µ(ωs(ξ))−β−Φ(λs(ξ))<−ε}ds ≥ Cε(ξ)−
1

n

}
(4.70)

together with the subindices kn := inf{m : vm ≥ ζε,n} for n = 1, 2, · · · .

By definition, once ζε,n has elapsed, the process (ωt, λt) cannot be arbitrarily away

from the boundary R2 ∩ R3 for more than 1/n time units. Consequently, there must

exist yet another sequence of random times sn ∈ (vkn , vkn + 1/n) such that

− ε < µ(ωsn)− β − Φ(λsn) < 0 (4.71)

This immediately implies that limn(sn − vkn)(ξ) = 0 for all ξ ∈ E. Reminding

ourselves that λvkn = λ̃ in E, and invoking the continuity of the process (λt)t≥0, we

have

lim
n
λsn(ξ) = λ̃, ∀ξ ∈ E ⊂ {τ3(ω0, λ0) = +∞} (4.72)

This contradicts (4.71), if we choose ε sufficiently small, proving the desired result

2We refrain from using the nomenclature stopping time, as it is not applicable here. Indeed, these
random times are not F-adapted.
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that E is a P-null set.

Proposition 4.8. Take (ω0, λ0) ∈ R5 ∪R6. Then P [τ7(ω0, λ0) < +∞] = 1.

Proof. 1. Define the sequence of regions {Bn}n∈N through

Bn = R5 ∪R6 ∩ {Φ(λ) + β − µ(ω) < −k/n} ∩ {ρ < kn} (4.73)

where k > 0 big enough such that (ω0, λ0) ∈ B1. One can verify that the Dynkin

operator applied to the function ω/λ satisfies

L(ω/λ) = (ω/λ) [Φ(λ)− β − µ(ω)]

≤ − 1

n2
∀(ω, λ) ∈ Bn

(4.74)

while L(ω/λ) ≤ 0 in R5 ∪R6. DMCT implies that there exists the point-wise limit

lim
t

(ω/λ)t∧τ7(ξ) =: (ω/λ)∞(ξ) (4.75)

for every ξ ∈ Ω. Moreover, Theorem A.3 guarantees that every set Bn is exited

in finite time P − a.s.. As consequence, if ξ ∈ {τ7(ω0, λ0) = +∞}, we have that

either (ωt, λt)(ξ) converges to the set (R6 ∩R7)
⋃
{0} × (0,Φ−1(µ(0)− β)), while the

ratio (ωt/λt)(ξ) tends to (ω/λ)∞(ξ). In other words, the solution (ωt, λt)(ξ) converges

either to some point in R6 ∩ R7 (which contradicts Theorem 4.2), or to the segment

{0} × (0,Φ−1(µ(0)− β)), in which case ωt(ξ)→ 0.

Alternative proof. Let (vn)n≥0 be a sequence of stopping times defined by v0 = 0 and

vn := inf{t ≥ vn−1 : λt = λ̃ or (ωt, λt) ∈ R7}, n ≥ 1. (4.76)

By construction, if for some n ≥ 1,(ωvn , λvn) ∈ R7, then vk = vn for all k > n.

Following Remark 4.6, Proposition 4.5 and Proposition 4.6, vn is almost surely

finite for all n ≥ 1 and {τ7(ω0, λ0) = +∞} ⊂
⋂
n≥1{λvn = λ̃}.
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We make the following claim

lim
t→∞

ρt(ξ) = +∞, ∀ξ ∈ {τ7(ω0, λ0) = +∞} (4.77)

to be proved in step 2 below.

Assuming this holds, we directly obtain

P [τ7(ω0, λ0) = +∞] ≤ P
[
lim
n
ωvn = 0

]
= 0 (4.78)

2. Our goal is to show that for all ξ ∈ {τ7(ω0, λ0) = +∞}, ρ−1
t (ξ) converges to 0

(path-wise). From DMCT on the non-negative super martingale ρ−1
t∧τ7 , we know that

there exists the random variable ρ−1
∞ (ξ) = limt→+∞ ρ

−1
t (ξ) for ξ ∈ {τ7(ω0, λ0) = +∞}.

Assume by contradiction that ρ−1
∞ (ξ) > 0 for some ξ in a subset E ⊂ {τ7(ω0, λ0) =

+∞}.

Define the F∞-measurable random variable

lim
t

∫ t

0

1{µ(ωs(ξ))−β−Φ(λs(ξ))>ε} ds = Cε(ξ) (4.79)

which measures the amount of time the process (ωt, λt) spends further than ε away

from the boundary R6 ∩R7. Observe that we can control the growth of ρt through

d log ρ−1
t (ξ) = − (µ(ωt(ξ))− β − Φ(λt(ξ))) dt < −ε1{µ(ωt(ξ))−β−Φ(λt(ξ))>ε}dt (4.80)

from where we can derive the following

log ρ−1
t (ξ) < log(ρ−1

0 )− ε
∫ t

0

1{µ(ωs(ξ))−β−Φ(λs(ξ))>ε} ds (4.81)

In other words, for all ξ ∈ E, we have

Cε(ξ) <
log(ρ−1

0 )− log(ρ−1
∞ (ξ))

ε
< +∞ (4.82)
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Define now the following random times

ζε,n := inf

{
t ≥ 0 :

∫ t

0

1{µ(ωs(ξ))−β−Φ(λs(ξ))>ε}ds ≥ Cε(ξ)−
1

n

}
(4.83)

together with the subindices kn := inf{m : vm ≥ ζε,n} for n = 1, 2, · · · .

By definition, once ζε,n has elapsed, the process (ωt, λt) cannot be arbitrarily away

from the boundary R6 ∩ R7 for more than 1/n time units. Consequently, there must

exist yet another sequence of random times sn ∈ (vkn , vkn + 1/n) such that

0 < µ(ωsn)− β − Φ(λsn) < ε (4.84)

This immediately implies that limn(sn − vkn)(ξ) = 0 for all ξ ∈ E. Reminding

ourselves that λvkn = λ̃ in E, and invoking the continuity of the process (λt)t≥0, we

have

lim
n
λsn(ξ) = λ̃, ∀ξ ∈ E ⊂ {τ7(ω0, λ0) = +∞} (4.85)

This contradicts (4.84), if we choose ε sufficiently small, proving the desired result

that E is a P-null set.

The next proposition addresses the transition from the boundary Φ(λ) = µ(ω)−β

to the regions R4 and R8, and relies on a different proof for recurrence. The idea

in the following is to provide a lower bound for the probability to reach the desired

region R4 (or R8) given a specific locus for the starting point.

Proposition 4.9. Take (ω0, λ0) ∈ R2∩R3. Then P [τ4(ω0, λ0) < +∞] = 1. Similarly,

if (ω0, λ0) ∈ R6 ∩R7, we can conclude that P [τ8(ω0, λ0) < +∞] = 1.

Proof. 1. The proof for both statements are fairly similar. We will design the

arguments together, pointing out where the differences lie. Consider the process

Fc ◦ %(ωt, λt), as defined in (4.46), which, according to Proposition 4.1, is a super-

martingale in a set containing
⋃3
i=1Ri ∪

⋃7
i=5Ri for some appropriate c.
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Denoting τ1,4 := τ1(ω0, λ0)∧τ4(ω0, λ0) (alternatively τ5,8 := τ5(ω0, λ0)∧τ8(ω0, λ0)),

we have that Fc ◦ %(ωt∧τ1,4 , λt∧τ1,4) (Fc ◦ %(ωt∧τ5,8 , λt∧τ5,8)) is still a super-martingale

in the previous region. Also, optional sampling theorem, assisted by Proposition 4.4,

yields

Fc(%(ω0, λ0)) ≥ E
[
Fc(%(ωτ1,4 , λτ1,4))

]
= cP [τ1(ω0, λ0) < τ4(ω0, λ0)]− 1

c
P [τ4(ω0, λ0) < τ1(ω0, λ0)]

(4.86)

Alternatively,

Fc(%(ω0, λ0)) ≥ E
[
Fc(%(ωτ5,8 , λτ5,8))

]
= cP [τ5(ω0, λ0) < τ8(ω0, λ0)]− 1

c
P [τ8(ω0, λ0) < τ5(ω0, λ0)]

(4.87)

Define M := max{Fc(%(ω, λ)) : (ω, λ) ∈ (R2 ∩R3)∪ (R6 ∩R7)}, which is negative

for c small enough, to obtain a uniform bound

P [τ4(ω0, λ0) < τ1(ω0, λ0)] ≥ c(c−M)

c2 + 1
> 0, ∀(ω, λ) ∈ R2 ∩R3 (4.88)

Rather,

P [τ8(ω0, λ0) < τ5(ω0, λ0)] ≥ c(c−M)

c2 + 1
> 0, ∀(ω, λ) ∈ R6 ∩R7 (4.89)

2. According to Propositions 4.4 and 4.6, τ1,4 < +∞ P−a.s. for (ω0, λ0) ∈ R2∩R3,

as well as τ5,8 < +∞ P − a.s. for (ω0, λ0) ∈ R6 ∩ R7. Additionally, Propositions 4.7

and 4.8 state that τ3(ω, λ) and τ5(ω, λ) are finite almost surely for (ω, λ) ∈ R1 and

(ω, λ) ∈ R5, respectively. Taking (ω0, λ0) ∈ R2 ∩ R3 (or in R6 ∩ R7), we define the

sequence of stopping times 0 = u0 ≤ v0 ≤ u1 ≤ v1 ≤ u2 ≤ v2 ≤ · · · ≤ un ≤ vn · · ·
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through vn := inf{t ≥ un : (ωt, λt) ∈ R1 ∪R4 ∪R5 ∪R8}

un+1 := inf{t ≥ vn : (ωt, λt) ∈ (R2 ∩R3) ∪ (R6 ∩R7) or (ωt, λt) ∈ R4 ∪R8}
(4.90)

for n ≥ 1. By construction, we have that once ωvn = ω̃, then the process has reached

R4∪R8 and um = vm = vn for all m > n. Similarly, if ωun = ω̃, then um = vm = un for

all m ≥ n. Accordingly, {τ4(ω, λ) = +∞} = ∩n≥1{ωvn 6= ω̃} for (ω, λ) ∈ R1∪R2∪R3.

Alternatively, {τ8(ω, λ) = +∞} = ∩n≥1{ωvn 6= ω̃} for (ω, λ) ∈ R5 ∪ R6 ∪ R7. The

sequence ({ωvn 6= ω̃})n≥1 is decreasing in the sense of inclusion (up to sets of measure

zero3), so that

P [τ4(ω, λ) = +∞] = lim
n

P [ωvn 6= ω̃] ∀(ω, λ) ∈ R2 ∩R3, or

P [τ8(ω, λ) = +∞] = lim
n

P [ωvn 6= ω̃] ∀(ω, λ) ∈ R6 ∩R7

(4.91)

Using Bayes’ rule, allied with the fact that up to sets of measure zero, {ωun 6=

ω̃} ⊂ {ωvn−1 6= ω̃}, we have

P [ωvn 6= ω̃] = P [ωv0 6= ω̃]
n∏
k=1

P
[
ωvk 6= ω̃|ωvk−1

6= ω̃
]
≤

n∏
k=1

P [ωvk 6= ω̃|ωuk 6= ω̃]

(4.92)

3Strictly speaking, ω = ω̃ can also happen if the solution crosses the point (ω̃, λ̃), but that happens
with zero probability.
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Using step 1 of the present proof,

P [ωvn 6= ω̃] ≤
n∏
k=1

P [τ1(ωuk , λuk) < τ4(ωuk , λuk)]

≤
n∏
k=1

(
1− c(c−M)

c2 + 1

)
∀(ω0, λ0) ∈ R2 ∩R3, or

P [ωvn 6= ω̃] ≤
n∏
k=1

P [τ5(ωuk , λuk) < τ8(ωuk , λuk)]

≤
n∏
k=1

(
1− c(c−M)

c2 + 1

)
∀(ω0, λ0) ∈ R6 ∩R7

(4.93)

Substituting this back into (4.91), we obtain that P [τ4(ω0, λ0) = +∞] ≤ limn(1−
c(c−M)
c2+1

)n = 0 (or alternatively that P [τ8(ω0, λ0) < +∞] ≤ 0), which concludes the

proof.

The following couple of propositions finish the loop of transitions. As we un-

fortunately do not have a uniform bound on the partial transition probabilities to

work with, we develop a new technique that uses the weaker notion of convergence in

probability to achieve the desired result.

Proposition 4.10. Take ω0 = ω̃ and λ0 < λ̃. Then P [τ5(ω0, λ0) < +∞] = 1.

Proof. 1. We first claim that τ2(ω0, λ0)∧τ5(ω0, λ0) is finite almost surely for (ω0, λ0) ∈

R3 ∩R4. To show this, consider the non-negative process h(ω) =
√
ω, with dynamics

dh(ω) =
1

2
h(ω)

[(
Φ(λ)− α +

3

4
v2(λ)

)
dt+ v(λ)dWt

]
≤ 1

2
h(ω)

[
v(λ)dWt −

1

4
v2(λ̃)dt

]
∀λ < λ̃

(4.94)

DMCT implies that the stopped process h(ωt∧τ2∧τ5)(ξ) converges point-wise to

some h∞(ξ) for every ξ ∈ Ω.

Moreover, consider ξ ∈ {τ2(ω0, λ0) ∧ τ5(ω0, λ0) = +∞} and, for any small ε > 0,

define the region Rε = (ε,+∞) × (0, λ̃]. We can further bound the Dynkin operator
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applied to the function h(ω) in Rε by

Lh(ω) ≤ −1

8

√
εv2(λ̃) (4.95)

Using Theorem A.3, we obtain that the region Rε is exited in finite time P − a.s..

Since the process starting at (ω0, λ0) given by the random realization ξ cannot exit to

neither regions R2 nor R5 in finite time, we have that there must exist some t < +∞

for which ωt = ε and λt < ελ̃/ω̃.

We now claim that h∞ = 0. To understand why, suppose by contradiction that

h∞ > 0. We could then choose ε = h∞/2 and obtain that there will always exist

some future t > 0 for which ωt = ε < h∞, contradicting the fact that limt ωt =

h∞. As consequence, since h is a continuous bijection, and the solution must remain

confined to the region R3 ∪ R4, we obtain that (ωt(ξ), λt(ξ)) → (0, 0). According to

Theorem 4.2, this is a contradiction, from which we obtain that τ2(ω0, λ0)∧τ5(ω0, λ0) <

+∞ P− a.s..

2. Next, we show that if it is possible that solutions never make it to R5, then we

can successfully establish the convergence of a certain transition probability.

If we take (ω0, λ0) ∈ R2 ∩ R3, then Proposition 4.9 guarantees that the solution

reaches R4 in finite time P− a.s.. On the other hand, if (ω0, λ0) ∈ R3 ∩R4, by step 1

we obtain that the process leaves R3 ∪ R4 in finite time P− a.s.. With this in mind,

we define the following sequence of stopping times 0 = u0 ≤ v0 ≤ u1 ≤ v1 ≤ u2 ≤

v2 ≤ · · · through un+1 := inf{t ≥ vn : ωt = ω̃ or (ωt, λt) ∈ R5}

vn := inf{t ≥ un : (ωt, λt) ∈ R2 ∪R5}
, ∀n ≥ 0 (4.96)

By step 1 and Proposition 4.9, we have that P [un < +∞] = P [vn < +∞] = 1.

Moreover, we have the following chain of relations

{ωvn > ω̃} = {(ωvn , λvn) ∈ R2} ⊂ {ωun = ω̃} = {(ωvn−1 , λvn−1) ∈ R2}, ∀n ≥ 1 (4.97)
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Therefore, {τ5(ω0, ω0) = +∞} =
⋂
n≥0{ωvn ∈ R2}, while ({ωvn ∈ R2})n≥0 is a

decreasing sequence of sets in the sense of inclusion. Altogether we get

P [τ5(ω0, λ0) = +∞] = lim
n

P [ωvn > ω̃] (4.98)

Using Bayes’ formula and (4.97), we finally obtain for every n ≥ 1

P [ωvn > ω̃] = P [ωv0 > ω̃]
n∏
k=1

P
[
ωvk > ω̃|ωvk−1

> ω̃
]

= P [ωv0 > ω̃]
n∏
k=1

P [ωvk > ω̃|ωuk = ω̃]

(4.99)

Bringing (4.98) and (4.99) together, P [τ5(ω0, λ0) = +∞] > 0 implies that

lim
n

P [ωvn > ω̃|ωun = ω̃] = 1 (4.100)

3. To conclude, we apply Itô’s formula to the function xt := e
1
8
v2(λ̃)t
√
ω, obtaining

dxt = e
1
8
v2(λ̃)t
√
ω

[
1

8

(
v2(λ̃)− v2(λ)

)
dt+

1

2

(
Φ(λ)− α + v2(λ)

)
dt+

1

2
v(λ)dWt

]
≤ 1

2
ekt
√
ωv(λ)dWt ∀λ < λ̃

(4.101)

where k = 1
8
v2(λ̃), showing that xt is a non-negative super-martingale for t ∈ [un, vn].

Hence, Optional Sampling Theorem gives

E [xt∧vn|Ft∧un ] ≤ xt∧un (4.102)

As un, vn are finite almost surely, we have through Fatou’s Lemma that

E [xvn|Fun ] = E
[
lim inf

t
xt∧vn|Ft∧un

]
≤ lim inf

t
E [xt∧vn|Ft∧un ] ≤ lim inf

t
xt∧un = xun

(4.103)
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or

E
[√
ωvne

k(vn−un)|Fun
]
≤ √ωun (4.104)

Denote the sigma algebra generated by ωun by Gun ⊂ Fun , so that iterated condi-

tioning yields

E
[√
ωvne

k(vn−un)|Gun
]

= E
[
E
[√
ωvne

k(vn−un)|Fun
]
|Gun

]
≤ E

[√
ωun|Gun

]
=
√
ωun

(4.105)

and thus by picking ξ ∈ {ωun = ω̃}, we find that

E
[
ek[vn−un]√ωvn(1{ωvn≤ω̃} + 1{ωvn>ω̃})

∣∣ωun = ω̃
]
≤
√
ω̃. (4.106)

Since
√
ωvn1{ωvn≤ω̃} ≥ 0 and

√
ωvn1{ωvn>ω̃} ≥

√
ω̃1{ω(vn)>ω̃} P− a.s. for all n ≥ 1,

equation (4.106) implies

E
[
ek[vn−un]

1{ωvn>ω̃}
∣∣ωun = ω̃

]
≤ 1 (4.107)

By adding and subtracting one to ek[vn−un], we arrive at

E
[(
ek[vn−un] − 1

)
1{ωvn>ω̃}

∣∣ωun = ω̃
]
≤ 1− P [ωvn > ω̃|ωun = ω̃] (4.108)

If ωun = ω̃ then λun < λ̃ and by continuity, {vn > un} ⊃ {ωun = ω̃}, implying

ek[vn(ω)−un(ξ)] > 1, ∀ξ ∈ {ωun = ω̃} (4.109)

Assuming that P [τ5(ω0, λ0) = +∞] > 0, we have that (4.100) holds, implying

0 ≤ E
[(
ek[vn−un] − 1

)
1{ωvn>ω̃}

∣∣ωun = ω̃
]
→ 0 as n→ +∞ (4.110)

By the Markov inequality, we can obtain convergence in probability from the
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convergence in mean above, that is,

P
[(
ek[vn−un] − 1

)
1{ωvn>ω̃} > ε|ωun = ω̃

]
→ 0 ∀ε > 0 (4.111)

Bayes’ rule gives us that the LHS above is bigger than or equal to

P
[(
ek[vn−un] − 1

)
> ε|ωvn > ω̃, ωun = ω̃

]
P [ωvn > ω̃|ωun = ω̃]

= P [vn − un > ε′|ωvn > ω̃, ωun = ω̃]P [ωvn > ω̃|ωun = ω̃]
(4.112)

where ε′ = k−1 log (1 + ε). Making use once more of the result obtained in step 2, we

derive the following convergence in probability of the stopping times

P [vn − un > ε|ωvn > ω̃, ωun = ω̃]→ 0 ∀ε > 0 (4.113)

Observe now that if {τ5 = +∞} =
⋂
n≥1{ωvn > ω̃}∩ {ωun = ω̃}. For ξ ∈ {τ5 = +∞},

by the continuous mapping theorem, we must have that the solutions at consecutive

stopping times converge in probability, and that can only happen if the system overall

converges to the point (ω̃, λ̃), which is a contradiction according to Theorem 4.2. Thus,

we must have that P [τ5 = +∞] = 0.

Proposition 4.11. Take ω0 = ω̃ and λ0 > λ̃. Then P [τ1(ω0, λ0) < +∞] = 1.

Proof. 1. First, Remark 4.7 implies that τ1(ω0, λ0) ∧ τ6(ω0, λ0) < +∞ almost surely

for (ω0, λ0) ∈ R7 ∪ R8. That being said, we can define a sequence of almost surely

finite stopping times 0 = u0 ≤ v0 ≤ u1 ≤ v1 ≤ u2 ≤ v2 ≤ · · · through vn := inf{t ≥ un : (ωt, λt) ∈ R1 ∪R6}

un+1 := inf{t ≥ vn : ωt = ω̃ or (ωt, λt) ∈ R1}
,∀n ≥ 1 (4.114)
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satisfying the following

{ωvn < ω̃} = {(ωvn , λvn) ∈ R6} ⊂ {ωun = ω̃} = {(ωvn−1 , λvn−1) ∈ R6}, ∀n ≥ 1

(4.115)

Meaning that if the process belongs to R6 at time vn, then, at the previous time

un, it must have crossed the line ω = ω̃. In turn, this implies that the process must

have been in R6 previously at vn−1 as well.

Therefore, if the region R1 is never reached, is must be that at every instant vn,

we find ourselves in R6. In more specific terms, {τ1(ω0, ω0) = +∞} =
⋂
n≥0{ωvn ∈

R6}, while ({ωvn ∈ R6})n≥0 is a decreasing sequence of sets in the sense of inclusion.

Altogether we get

P [τ1(ω0, λ0) = +∞] = lim
n

P [ωvn < ω̃] (4.116)

Using Bayes’ formula and (4.115), we finally obtain for every n ≥ 1

P [ωvn < ω̃] = P [ωv0 < ω̃]
n∏
k=1

P
[
ωvk < ω̃|ωvk−1

< ω̃
]

= P [ωv0 < ω̃]
n∏
k=1

P [ωvk < ω̃|ωuk = ω̃]

(4.117)

Bringing (4.116) and (4.117) together, P [τ1(ω0, λ0) = +∞] > 0 implies that

lim
n

P [ωvn < ω̃|ωun = ω̃] = 1 (4.118)

2. To conclude, we apply Itô’s formula to ω2, finding that

L(ω2) = 2h(ω)(Φ(λ)− α + 3v2(λ)/2) (4.119)

Since Φ(λ) − α + v2(λ) ≥ 0 for λ ≥ λ̃, zero only if λ = λ̃, whereas v2(λ) = 0 only if

λ = 1, we have that L(ω2) ≥ mω2 for λ ≥ λ̃ where

m := inf
λ∈[λ̃,1)

2 (Φ(λ)− α) + 3v2(λ) (4.120)
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The optional sampling theorem on xt := e−mtω2
t gives us that

E [xt∧vn|Ft∧un ] ≥ xt∧un (4.121)

Since xt∧vn ≤ ρ̃−2, we can apply the dominated convergence theorem to obtain

E [xvn|Fun ] ≥ xun (4.122)

in other words

E
[
ω2
vne
−m(vn−un)|Fun

]
≥ ω2

un (4.123)

Denoting the sigma-algebra generated by ωun as Gun ⊂ Fun , we have by iterated

conditioning

E
[
ω2
vne
−m(vn−un)|Gun

]
= E

[
E
[
ω2
vne
−m(vn−un)|Fun

]
|Gun

]
≥ E

[
ω2
un|Gun

]
= ω2

un

(4.124)

that is, by choosing ξ ∈ {ωun = ω̃}, we have

ω̃2 ≤ E
[
ω2
vne
−m(vn−un)|ωun = ω̃

]
≤ ω̃2E

[
e−m(vn−un)

1{ωvn<ω̃}|ωun = ω̃
]

+ ρ̃−2E
[
1{ωvn≥ω̃}|ωun = ω̃

] (4.125)

Which implies that

0 ≤ E
[(

1− e−m(vn−un)
)
1{ωvn<ω̃}|ωun = ω̃

]
≤
(
λ̃−1 − 1

)
[1− P [ωvn < ω̃|ωun = ω̃]]→ 0 as n→ +∞

(4.126)

where we have used the result obtained in step 1. We can derive convergence in

probability from the convergence in mean, that is,

P
[(

1− e−m(vn−un)
)
1{ωvn<ω̃} > ε|ωun = ω̃

]
→ 0 ∀ε > 0 (4.127)
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Bayes’ rule gives us that the LHS above is bigger than or equal to

P
[(

1− e−m(vn−un)
)
> ε|ωvn < ω̃, ωun = ω̃

]
P [ωvn < ω̃|ωun = ω̃]

= P [vn − un > ε′|ωvn > ω̃, ωun = ω̃]P [ωvn < ω̃|ωun = ω̃]
(4.128)

where ε′ = −m−1 log (1− ε). Applying once more the result obtained in step 1, we

derive the following convergence in probability of the stopping times

P [vn − un > ε|ωvn < ω̃, ωun = ω̃]→ 0 ∀ε > 0 (4.129)

Observe now that if {τ1 = +∞} =
⋂
n≥1{ωvn < ω̃} ∩ {ωun = ω̃}. For ξ ∈

{τ1 = +∞}, by the continuous mapping theorem, we must have that the solutions

at consecutive stopping times converge in probability, and that can only happen if

the system overall converges to the point (ω̃, λ̃), which is a contradiction according to

Theorem 4.2. Thus, we must have that P [τ1 = +∞] = 0.

4.3 Small volatility approximation

This section is dedicated to an in-depth investigation of the stochastic Goodwin model

when the volatility term is small. Through perturbation theory techniques, we propose

an approximation to the solution of (4.2), which can be fully solved analytically. Our

hope is that this will shed some light on the model first, before embarking in numerical

simulations.

We start by assuming that the volatility function takes small values and can be

expressed as v(λ) := ες(λ) for ε > 0 a small constant. We then look for solutions of

system (4.2) of the form

ωt = ω0(t) + εωε(t) +O(ε2)

λt = λ0(t) + ελε(t) +O(ε2)
(4.130)
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Observe that we can approximate the non-linear functions Φ and ς(λ) as

Φ(λ) = Φ(λ0 + λε +O(ε2)

= Φ(λ0) + ελεΦ
′(λ0) +O(ε2)

(4.131)

ς(λ) = ς
(
λ0 + λε +O(ε2)

)
= ς(λ0) + ελες

′(λ0) +O(ε2)
(4.132)

while the function µ is affine, so that

µ(ω) = µ(ω0) + εωεµ
′(ω0) +O(ε2)

= µ(ω0)− εωε/ν +O(ε2)
(4.133)

Using Itô’s formula in (4.130), we obtain the following equation for dω

d(ω0 + εωε) = (ω0 + εωε) [(Φ(λ0) + ελεΦ
′(λ0)− α) dt+ ες(λ0)dWt] +O(ε2)

= ω0 [Φ(λ0)− α] dt+ ε {[ωε (Φ(λ0)− α) + λεω0Φ′(λ0)] dt+ ω0ς(λ0)dWt}+O(ε2)

(4.134)

and dλ

d(λ0 + ελε) = (λ0 + ελε) [(µ(ω0)− α− β + εωεµ
′(ω0)) dt+ ες(λ0)dWt] +O(ε2)

= λ0 [µ(ω0)− α− β] dt+ ε {[λε (µ(ω0)− α− β) + ωελ0µ
′(ω0)] dt

+λ0ς(λ0)dWt}+O(ε2)

(4.135)

The fundamental theorem of perturbation theory [SMJ98] allows us to group the

terms accompanying each power of ε from both sides and match them. Accordingly,

one finds that ω0 and λ0 solve the deterministic Goodwin model (3.12), while ωε, λε
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solve the following system dωε = [ωε (Φ(λ0)− α) + ω0λεΦ
′(λ0)] dt+ ω0ς(λ0)dWt

dλε = [λε (µ(ω0)− α− β) + ωελ0µ
′(ω0)] dt+ λ0ς(λ0)dWt

(4.136)

which is a linear stochastic dynamical system with periodic coefficients, through the

function ω0(t), λ0(t). Define ~vε := [ωε, λε]
ᵀ, we can rewrite (4.136) in vector form as

d~vε(t) = A(t)~vε(t)dt+ b(t)dW (t) (4.137)

where

A(t) :=

 p(t) ω0(t)Φ′(λ0(t))

λ0(t)µ′(ω0(t)) µ(ω0(t))− α− β

 and b(t) :=

 ω0(t)ς(λ0(t))

λ0(t)ς(λ0(t))

 .

(4.138)

In a later section, we compute the period of a generalized version of the Lotka-

Volterra model. Such result, stated as Theorem 6.1, can be used to obtain, in par-

ticular, the period of the functions ω0(t) and λ0(t), which we shall denote by T .

Consequently, we have that A(t) and b(t) are T -periodic as well. The initial condi-

tions are given by (ω0(0), λ0(0)) = (ω0, λ0), while (ωε(0), λε(0)) = (0, 0). We will also

assume that (ω0, λ0) 6= (ω̃, λ̃) for the rest of this section.

The next result provides a closed-form solution to (4.136).

Proposition 4.12. Let

p(t) := Φ(λ0(t))− α (4.139)

q(t) := µ(ω0(t))− α− β (4.140)

G(t) :=

 ω0(t) 0

0 λ0(t)

 (4.141)

where the pair (ω0(t), λ0(t)) solves the system (3.12) with initial condition (ω0(0), λ0(0)) 6=
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(ω, λ). The solution (~vε(t))t≥0 of the system (4.137) is then

~vε(t) = G(t)Ψ(t)

[
G−1(0)~vε(0) +

∫ t

0

Ψ−1(s)1ς(λ0(s)) dWs

]
= G(t)Ψ(t)

∫ t

0

Ψ−1(s)1ς(λ0(s)) dWs for ~vε(0) = [0, 0]ᵀ
(4.142)

with 1 = [1, 1]ᵀ and I2 the identity matrix of M2×2(R), and

Ψ(t) :=

 p(t)
p(0)
− q(0)Γx(t) p(0)Γx(t)

q(0)Γy(t)
q(t)
q(0)
− p(0)Γy(t)

 (4.143)

Γx(t) := p(t)

∫ t

0

λ0(s)Φ′(λ0(s))

p(s)2
ds

Γy(t)) := q(t)

∫ t

0

ω0(s)µ′(ω0(s))

q(s)2
ds

(4.144)

Proof. For (ω0(0), λ0(0)) 6= (ω, λ) in the domain D, we can define the process ~z(t) :=

[x(t), y(t)]ᵀ := [ωε(t)/ω0(t), λε(t)/λ0(t)]ᵀ. Through Itô’s formula, we obtain that

d~z(t) = Az(t)~z(t)dt+ bz(t)dW (t) (4.145)

with

Az(t) :=

 0 λ0(t)Φ′(λ0(t))

ω0(t)µ′(ω0(t)) 0

 and bz(t) := ς(λ0(t))1 (4.146)

As the above elements are all functions of ω0 and λ0, we have that Az and bz are

both T -periodic. First we claim that we can solve the homogeneous deterministic

problem

d~zH(t) = Az(t)~zH(t)dt (4.147)

using the state-density matrix Ψ(t)

~zH(t) = Ψ(t)~zH(0) (4.148)
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To show this, we will build the state-density matrix and show that it can be

written as (4.143) . One can easily verify that ~z1(t) := [p(t), q(t)]ᵀ is a solution of

(4.147). Denote by ~z2 := [x2(t), y2(t)]ᵀ another solution, linearly independent from

~z1. A fundamental matrix can be constructed with these two linearly independent

solutions. Abel’s formula, together with the fact that tr(A′) = 0, implies that for any

t ≥ 0

c := y2(0)p(0)− x2(0)q(0) = y2(t)p(t)− x2(t)q(t) (4.149)

From which we see that if λ0(t) 6= λ then x2(t) = −c [µ(ω0(t)− α− β]−1, which is

well defined4. Conversely, if ω 6= ω, then y2(t) = c [Φ(λ0(0)− α]−1, also well defined.

Otherwise, if neither λ0(t) = λ nor ω0(t) = ω, we can isolate either x2(t) or y2(t) and

substitute in (4.147) to obtain uncoupled one-dimensional ODEs

dx2(t)

dt
=
λ0(t)Φ′(λ0(t))

p(t)
(c+ x2(t)q(q))

dy2(t)

dt
=
ω0(t)κ′(ω0(t))

q(t)
(c+ y2(t)p(t))

(4.150)

A bit of calculus simplifies it to

d

dt

x2(t)

p(t)
= c

λ0(t)Φ′(λ0(t))

p(t)2

d

dt

y2(t)

q(t)
= c

ω0(t)µ′(ω0(t))

q(t)2

(4.151)

Solving these ODEs is trivial, and one immediately finds the solution to (4.147)

as

x2(t) =
p(t)

p(0)
x2(0) + cΓx(t)

y2(t) =
q(t)

q(0)
y2(0) + cΓy(t)

(4.152)

4From Chapter 3, we know that if (ω0(0), λ0(0)) 6= (ω, λ), then (ω0(t), λ0(t)) will belong to closed
orbit that does not contain (ω, λ)
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Replacing c by its value in terms of x2(0) and y2(0) provides x2(t) and y2(t) in

terms of x2(0) and y2(0), which leads to the state-density matrix (4.143). Since Ψ(t)

is also a solution to (4.147), we have

d

dt
(Ψ(t))−1 = −Ψ−1(t)

d

dt
(Ψ(t)) Ψ−1(t) = −Ψ−1(t)Az(t) (4.153)

We can then use Itô’s formula on Ψ−1~z and find

d
(
Ψ−1~z

)
= −Ψ−1Az~zdt+ Ψ−1 [Az~zdt+ bzdWt]

= Ψ−1bzdWt

(4.154)

Taking into account that Ψ(0) = I2, the identity matrix, we have the following

solution for ~z(t)

~z(t) = Ψ(t)

[
~z(0) +

∫ t

0

Ψ−1(s)bz(s) dWs

]
(4.155)

which leads us to the desired result below

~vε(t) = G(t)~z(t)

= G(t)Ψ(t)

[
G−1(0)~vε(0) +

∫ t

0

Ψ−1(s)bz(s) dWs

]
= G(t)Ψ(t)

∫ t

0

Ψ−1(s)bz(s) dWs for ~vε(0) = [0, 0]ᵀ

(4.156)

Remark 4.8. Notice that integration by parts on Γx and Γy yields

q(t)Γx(t) + p(t)Γy(t) =
q(t)p(t)

q(0)p(0)
− 1 (4.157)

which holds true whenever p(t) 6= 0 or q(t) 6= 0. As well, by the periodicity of the

integrands we see in (6.34), we find

Γx(nT + t) = Γx(t) + n
p(t)

p(0)
Γx(T ) and Γy(nT + t) = Γy(t) + n

q(t)

q(0)
Γy(T ) . (4.158)
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It is then easy to see that det Ψ(t) = 1, and thus Ψ−1(t) can be determined to be

Ψ−1(t) =

 q(t)
q(0)
− p(0)Γy(t) −p(0)Γx(t)

−q(0)Γy(t)
p(t)
p(0)
− q(0)Γx(t)

 . (4.159)

Moreover, for t = T , the period of the zero-order model, we find that

q(0)Γx(T ) = −p(0)Γy(T ) =: Γ̄ (4.160)

which leads to the following monodromy matrix

Ψ(T ) =

 1− Γ̄ p(0)
q(0)

Γ̄

− q(0)
p(0)

Γ̄ 1 + Γ̄

 . (4.161)

with inverse

Ψ−1(T ) =

 1 + Γ̄ −p(0)
q(0)

Γ̄

q(0)
p(0)

Γ̄ 1− Γ̄

 (4.162)

This monodromy matrix contains only one linearly independent eigenvector,

~v1 =

 p(0)

q(0)

 (4.163)

which means that 1 is an eigenvalue with algebraic multiplicity equal to 2, but geomet-

ric multiplicity equal to 1. We should then be able to find a generalized eigenvector

of grade 2 associated to this eigenvalue. For that, we need to find a vector ~v2 such

that (Ψ(T )− I2)2 ~v2 = 0, but (Ψ(T )− I2)~v2 6= 0. Since (Ψ(T )− I2)2 = 0I2, our task

reduces to finding any vector that is not a multiple of ~v1. For simplicity, we can use

~v2 =

 −p(0)

0

 (4.164)

it is easy to see that (Ψ(T )− I2)~v2 = Γ̄~v1. We have then obtained the Jordan
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canonical form of the monodromy matrix

Ψ(T ) = QJQ−1 (4.165)

where

Q :=
[
Γ̄~v1|~v2

]
(4.166)

J :=

 1 1

0 1

 (4.167)

To conclude this remark, we resort to Floquet theory to say that there exists a

T -periodic matrix P (t) and a constant matrix R such that

Ψ(t) = P (t)eRt (4.168)

which implies that

Ψ(nT + t) = P (nT + t)eR(nT+t) = P (t)eRtenRT

= Ψ(t)Ψ(T )n
(4.169)

The next result provides the variance of the first-order solution at multiples of the

period.

Corollary 4.1. Define

Υ = Q−1

(∫ T

0

e−RuP−1(u)11ᵀP−ᵀ(u)e−R
ᵀuς2(λ0(u)) du

)
Q−ᵀ (4.170)

We then have that the variance of the solution (~vε(t))t≥0 of the system (4.137)
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satisfies

V ar [~vε(nT )] = G(0)Q
n∑

m=1


 1 m

0 1

Υ

 1 0

m 1

 QᵀG(0) (4.171)

Proof. As mentioned in Proposition 4.12, once we apply the appropriate initial con-

dition to the solution (4.142), ~vε(0) = [0, 0]ᵀ, we find the martingale

~vε(t) = G(t)Ψ(t)

∫ t

0

Ψ−1(s)1ς(λ0(s)) dWs (4.172)

with covariance matrix given by Itô Isometry

V ar [~vε(t)] = E [~vε(t)~vε(t)
ᵀ]

= G(t)P (t)

∫ t

0

eR(t−s)P−1(s)M(s)P−ᵀ(s)eR
ᵀ(t−s) dsP ᵀ(t)G(t)

(4.173)

where

M(t) =

 1 1

1 1

 ς2(λ0(t)) (4.174)

is a T -periodic matrix. We can then study how the variance behaves after multiples

of the period have elapsed using the results obtained in Remark 4.8

V ar [~vε(nT )] = G(0)

∫ nT

0

eR(nT−s)P−1(s)M(s)P−ᵀ(s)eR
ᵀ(nT−s) dsG(0)

= G(0)
n−1∑
k=0

[∫ (k+1)T

kT

eR(nT−s)P−1(s)M(s)P−ᵀ(s)eR
ᵀ(nT−s) ds

]
G(0)

= G(0)
n∑

m=1

[
emRT

(∫ T

0

e−RuP−1(u)M(u)P−ᵀ(u)e−R
ᵀu du

)
emR

ᵀT

]
G(0)

= G(0)Q
n∑

m=1


 1 m

0 1

Υ

 1 0

m 1

 QᵀG(0)

(4.175)
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Corollary 4.1 shows that the variance of the first-order solution grows cubically

with respect to the cycles of the Goodwin model, suggesting that the first-order

approximation can only be accurate for short time horizons.

4.4 Example

To illustrate the results obtained in this chapter, we choose the functions µ, Φ and v

as in (3.9), (3.25) and (4.5), with constants according to (3.24) and

Φ(0) = −0.04 Φ−1(α) = 0.80 (4.176)

Unlike the numerical example provided in the Chapter 3, we decided to use a

smaller value for λ = Φ−1(α) for didactic reasons. The qualitative results would be

the same if we had calibrated Φ with the previous value of λ = 0.96, yet the figures

would seem rather confusing and messy.

The bound on σ given by (4.6) turns out to be 0 ≤ σ < 0.2550. We have simulated

several sample paths and integrated the solutions using XPPAUT with 4th order

Runge-Kutta scheme for the deterministic part, and Euler scheme for the stochastic

part. As an illustration on the general behaviour of the model (4.2) under different

values of σ ranging from 0.05 to 0.25, we refer to Figure 4.2.

The stochastic orbits, which were analytically studied in the previous section, are

well exemplified in Figure 4.2. There is room for improvement, however. A question

one might have is how these solutions behave, on average, at the time they cross the

line λ = ρ̃ω. We already know that solutions which start too close to the point (ω̃, λ̃)

must inevitable drift away from it. As well, we have that solutions cannot converge to

the boundary of the domain D, and that they must loop around (ω̃, λ̃) indefinitely ad

infinitum. Resorting to numerical methods, we have simulated the system 2000 times
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Figure 4.2: Examples of solutions of (4.2) for different values of volatility. On the
left column, we have a phase diagram ω × λ, where the green star denotes the initial
point, while the red start represents the last point. On the right column, we have the
evolution of output Y over time t.

for 100 different starting points lying on the line (ω̃, λ̃) and recorded the position at

the time when this line is crossed the second time, that is, the positions after a full

loop. Figure 4.3 contains such examination for an array of values of σ. The expected

time it takes to complete a full-loop is also illustrated. As observed, there seems to

be a stable fixed point in terms of the expected value of the solution after a full loop.

If the starting point is picked too close to (ω̃, λ̃), the expected crossing value after

one loop is further away from it. On the other hand, if the one starts extremely far

away from (ω̃, λ̃), say with λ(0) below 0.25, then the expected value after one loop

is higher. In expected terms, this indicates that the solution after one loop should
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Figure 4.3: Expected values of employment after one full loop λT (left), and time
elapsed T (right). Computation performed in MATLAB, with 2000 simulations for
every value single one of the 100 initial values taken along the line λ = ρ̃ω.

converge to some value.

For smaller values of the volatility parameter, we can approximate the solution by

(4.130) using (4.12). The quality of such approximation has been analyzed through

numerical integration. For values of σ ranging from 0.001 to 0.025, we point to

Figure 4.4.

4.5 Conclusion

This Chapter accomplishes two goals. First, it extends the Goodwin model (3.12)

with a random productivity function. Secondly, and perhaps, more importantly, it
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Figure 4.4: Examples of solutions of both (4.2) and (4.130) for different values of
volatility. On the left column, we have the evolution of ω versus t, while on the right
column we have λ× t. The exact solution is drawn in a solid black line, whereas the
approximate solution is represented by the dashed blue line.

contains a variety of tools that, we believe, will ultimately be employed when dealing

with stochasticity in Minsky models. That being said, we do not exempt ourselves

from responsibly proposing the macroeconomical insights that will define the extended

model, hence the careful introduction of stochasticity in an intuitive, and plausible

manner.

The stochastic extension proposed proves to be a valid one: not only it conserves

the desired cyclical behaviour of its predecessor, it enriches it. By allowing the pro-

ductivity to fluctuate randomly, where the noise decreases with employment, we have

created a stochastic model that continuously extends the Goodwin model, yet also in-

troduces some stability in expectation, as verified numerically. More importantly, we
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have produced several analytical properties, including: a probabilistic bound for the

time it takes before the stochastic solution deviates away from the Goodwin model’s

solution, the almost surely finiteness of the period of stochastic orbits, and a closed-

form solution to an approximation valid when the parameter σ is small.

Granted, the macroeconomical knowledge developed in this chapter might not be

revolutionary, yet the tools and ideas utilized should be easily extendable to a family

of more intriguing models. One immediate extension is to include the banking sector,

and study a stochastic version of the Keen model [Kee95], where the stochasticity

might arise from, for example, stochastic leverage ratio, credit worthiness, or risk

appetite.
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Chapter 5

Keen Model

Minsky’s Financial Instability Hypothesis, described in numerous essays [Min82], links

the expansion of credit with the inherent fragility of the financial system. Minsky pro-

vided a verbal prognosis of such hypothesis that follow a sequence of events. At a time

when firms and banks are acting conservatively, perhaps due to the fresh memory of a

recent crisis, defaults are rare, and moderate levels of debt are perfectly sustainable.

Profit thirsty agents realize that they can, and ought to, borrow more to increase their

revenue. Lenders and borrowers all around start feeling compelled to expand their

balance sheet through credit to meet higher market expectations – euphoria ensues.

Eventually, leverage reaches such a high level that any small downturn of the econ-

omy will be magnified beyond repair. To deleverage, some investors must sell assets,

adding negative pressure to the prices. Suddenly, liquidity has dried out, assets are

oversupplied, and euphoria becomes panic.

Despite his use of a persuasive verbal style aided by convincing diagrams and

incisive exploration of data, Minsky refrained from presenting his ideas in a formal

mathematical setting. This task was taken up by, among others, Keen [Kee95], where

a system of differential equations is proposed as a simplified model incorporating the

basic features of Minsky’s hypothesis.

Being itself an extension of the Goodwin model [Goo67], discussed in Chapter 3,
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it benefits from the simplicity, while at the same time avoiding the much criticized

structural instability. Instead of centers, we verify the existence of two key fixed

points, which are locally stable under usual conditions. Notably, Keen’s ideas have

produced a much richer model, capable of exhibiting complex phenomena, resembling,

for instance, what happened in the Great Moderation, followed by the destructive

downward spiral initiated in 2008.

In this chapter, we introduce the Keen model, study its equilibria, determining

their local stability, and then investigate global stability through numerical represen-

tation of the basin of attraction.

5.1 Mathematical formulation

The extension of the basic Goodwin model proposed by Keen [Kee95] consists of

introducing a banking sector to finance new investments. By relaxing the assumption

that capitalists invest the totality of their profits, and thus by introducing the variable

D, the amount of debt in real terms, the net profit after paying wages and interest

on debt is

(1− ω − rd)Y (5.1)

where r is a constant real interest rate and d = D/Y is the debt ratio in the economy.

If capitalists reinvested all this net profit and nothing more, debt levels would remain

constant over time. The key insight provided by Minsky [Min82] is that current cash-

flows validate past liabilities and form the basis for future ones. In other words, high

net profits lead to more borrowing whereas low net profits (possibly negative) lead

to a deleveraging of the economy. Keen [Kee95] formalizes this insight by taking the

change in capital stock to be

K̇ = κ(1− ω − rd)Y − δK (5.2)
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where the rate of new investment is a nonlinear increasing function κ of the net profit

share π = (1− ω − rd) and δ is a constant depreciation rate as before. Accordingly,

total output evolves as

Ẏ

Y
=
κ(1− ω − rd)

ν
− δ := µ(1− ω − rd) (5.3)

and the employment rate dynamics becomes

λ̇

λ
=
κ(1− ω − rd)

ν
− α− β − δ, (5.4)

whereas the time evolution for the wage share remains (3.8).

The new dynamic variable in this model is the amount of debt, which changes

based on the difference between new investment and net profits. In other words, we

have that

Ḋ = κ(1− ω − rd)Y − (1− ω − rd)Y (5.5)

whence it follows that

ḋ

d
=
Ḋ

D
− Ẏ

Y
=
κ(1− ω − rd)− (1− ω − rd)

d
− κ(1− ω − rd)

ν
+ δ. (5.6)

Combining (3.8), (5.4), (5.6) we arrive at the following three–dimensional system

of autonomous differential equations:

ω̇ = ω [Φ(λ)− α]

λ̇ = λ

[
κ(1− ω − rd)

ν
− α− β − δ

]
ḋ = d

[
r − κ(1− ω − rd)

ν
+ δ

]
+ κ(1− ω − rd)− (1− ω)

(5.7)

For the analysis that follows, we assume henceforth that the rate of new investment
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in (5.2) is a continuously differentiable function κ satisfying

κ′(π) > 0 on (−∞,∞) (5.8)

0 ≤ lim
π→−∞

κ(π) < ν(α + β + δ) < lim
π→+∞

κ(π) < 1 (5.9)

lim
π→−∞

π2κ′(π) <∞ (5.10)

Recalling from Section 2.2.1 that consumption in the Keen model is given by

C = Y [1− κ(π)], condition (5.9) ensures that the consumption ratio will belong to

the [0, 1] interval.

5.2 Equilibria in the Keen model

We see that

(ω0, λ0, d0) = (0, 0, d0), (5.11)

where d0 is any solution of the equation

d

[
r − κ(1− rd)

ν
+ δ

]
+ κ(1− rd)− 1 = 0, (5.12)

is an equilibrium point for (5.7). Equilibria of the form (5.11) are economically mean-

ingless, and we expect them to be unstable in the same way that (ω0, λ0) = (0, 0) is

saddle point in the original Goodwin model.

For a more meaningful equilibrium, observe that it follows from (5.9) that ν(α +

β + δ) is in the image of κ so that we can define

π1 = κ−1(ν(α + β + δ)) (5.13)
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and verify by direct substitution that the point

ω1 = 1− π1 − r
ν(α + β + δ)− π1

α + β

λ1 = Φ−1(α)

d1 =
ν(α + β + δ)− π1

α + β

(5.14)

satisfies the relation

1− ω1 − rd1 = π1 (5.15)

and is an equilibrium for (5.7). This equilibrium corresponds to a finite level of debt

and strictly positive employment rate and is therefore economically desirable, so in

the next section we shall investigate conditions guaranteeing that it is locally stable.

As with the Goodwin model, it is interesting to note that the growth rate of the

economy at this equilibrium point is given by

µ(π1) =
κ(1− ω1 − rd1)

ν
− δ = α + β. (5.16)

We can obtain yet another set of equilibrium points by setting ω = 0 and

1− rd = π1 = κ−1(ν(α + β + δ)) (5.17)

so that ω̇ = λ̇ = 0 in (5.7) regardless of the value of λ. However, to have ḋ = 0 as well

we must have d = d1 as before. But this can only be satisfied simultaneously with

(5.17) if the model parameters satisfy the following very specific condition

1− rν(α + β + δ)− κ−1(ν(α + β + δ))

α + β
= κ−1(ν(α + β + δ)). (5.18)

Provided (5.18) holds, we have that points on the line (0, λ, d1) are equilibria for (5.7)

for any value 0 < λ < 1. We see that equilibria of this form are not only economically

meaningless, but are also structurally unstable, since a small change in the model
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parameters leading to a violation of (5.18) makes them disappear.

Finally, if we rewrite the system with the change of variables u = 1/d, we obtain

ω̇ = ω [Φ(λ)− α]

λ̇ = λ

[
κ(1− ω − r/u)

ν
− α− β − δ

]
u̇ = u

[
κ(1− ω − r/u)

ν
− r − δ

]
− u2 [κ(1− ω − r/u)− (1− ω)] .

(5.19)

We now see that (0, 0, 0) is an equilibrium of (5.19) corresponding to the point

(ω2, λ2, d2) = (0, 0,+∞) (5.20)

for the original system. This equilibrium for (5.19) corresponds to the economically

undesirable but nevertheless important situation of a collapse in wages and employ-

ment when the economy as a whole becomes overwhelmed by debt, rendering of

paramount importance to investigate its local stability. Observe that condition (5.9)

guarantees that

κ(1− ω − r/u)→ κ(−∞) (5.21)

as ω → 0 and u → 0+, so the vector field for (5.19) remains finite on trajectories

approaching (0, 0, 0) along positive values of u.
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5.3 Local stability in the Keen model

Denoting π = 1− ω − rd, the Jacobian for (5.7) is

J(ω, λ, d) =



Φ(λ)− α ωΦ′(λ) 0

−λκ′(π)
ν

κ(π)−ν(α+β+δ)
ν

− rλκ′(π)
ν

(d−ν)κ′(π)+ν
ν

0 ν(r+δ)−κ(π)+r(d−ν)κ′(π)
ν


(5.22)

At the equilibrium point (0, 0, d0) this reduces to the lower triangular matrix

J(0, 0, d0) =



Φ(0)− α 0 0

0 κ(π0)−ν(α+β+δ)
ν

0

(d0−ν)κ′(π0)+ν
ν

0 ν(r+δ)−κ(π0)+r(d0−ν)κ′(π0)
ν


(5.23)

where π0 = 1 − rd0. Its real eigenvalues are given by the diagonal entries, and it

is hard to determine their sign a priori since d0 is given as the solution of equation

(5.12). Although they can be readily determined once specific parameters are chosen,

we observe that these equilibrium points are likely to be unstable, since a sufficiently

large value of π0 makes the second diagonal term above positive, whereas a sufficiently

small value of π0 (and correspondingly large value of d0) makes the third diagonal

term above positive.

At the equilibrium (ω1, λ1, d1) the Jacobian takes the interesting form

J(ω1, λ1, d1) =


0 K0 0

−K1 0 −rK1

K2 0 rK2 − (α + β)

 (5.24)
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where

K0 = ω1Φ′(λ1) > 0

K1 =
λ1κ

′(π1)

ν
> 0

K2 =
(d1 − ν)κ′(π1) + ν

ν

(5.25)

Therefore, the characteristic polynomial for the matrix in (5.24) is

p3(y) = y3 + [(α + β)− rK2]y2 +K0K1y +K0K1(α + β). (5.26)

According to the Routh-Hurwitz criterion, a necessary and sufficient condition for all

the roots of a cubic polynomial of the form

p(y) = a3y
3 + a2y

2 + a1y + a0 (5.27)

to have negative real parts is

an > 0, ∀n and a2a1 > a3a0. (5.28)

Our characteristic polynomial already has three of its coefficients positive; there-

fore all we need is

(α + β) > rK2 (5.29)

and

((α + β)− rK2)K0K1 > K0K1(α + β) (5.30)

Since we are already assuming that α > 0 and β > 0, we see that the equilibrium

(ω1, λ1, d1) is stable if and only if rK2 < 0, which is equivalent to

r

[
κ′(π1)

ν

(
π1 − νδ

)
− (α + β)

]
> 0. (5.31)
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Because the real interest rate r can have any sign, condition (5.31) needs to be checked

in each implementation of the model. Observe, however, that once the sign of r is

chosen, the remaining terms are all independent of the magnitude of the interest

rate. For the most common situation of r > 0, condition (5.31) imposes interesting

constraints on the investment function κ. Condition (5.31) states that for π1 to

correspond to a stable equilibrium we must have π1 > νδ, suggesting a lower bound

for equilibrium capitalists profits, while at the same time κ′(π1) needs to be sufficiently

large, leading to a rapid ramp-up of investment for net profits beyond π1.

As we mentioned in the previous section, equilibria of the form (0, λ, d1) depend

on a very specific choice of parameters satisfying (5.18), making them structurally

unstable. Therefore we are not going to discuss them any further, except by verifying

that they do not arise for the parameters used in the numerical example implemented

later.

Finally, regarding the point (ω2, λ2, d2) = (0, 0,+∞), observe that the Jacobian

for the modified system (5.19) is

J(ω, λ, u) =



Φ(λ)− α ωΦ′(λ) 0

−λκ′(π)
ν

κ(π)−ν(α+β+δ)
ν

− rλκ′(π)
u2ν

(νu2−u)κ′(π)−νu2
ν

0 κ(π)(1−2u)+rκ′(π)(1/u−1)+2uν(1−ω)−ν(r+δ)
ν


where π = 1 − ω − r/u. At the equilibrium (ω2, λ2, u2) = (0, 0, 0), conditions (5.9)

and (5.10) ensure that this reduces to the diagonal matrix

J(0, 0, 0) =


Φ(0)− α 0 0

0 κ(−∞)−ν(α+β+δ)
ν

0

0 0 κ(−∞)−ν(r+δ)
ν

 , (5.32)

from which all real eigenvalues can be readily obtained. Observe that the first two
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eigenvalues are negative by virtue of conditions (3.16) and (5.8) on the functions Φ

and κ, so this equilibrium is stable if and only if

µ(−∞) =
κ(−∞)

ν
− δ < r. (5.33)

Recalling expression (5.3), we see that this equilibrium is stable if and only if the real

interest rate exceeds the growth rate of the economy at infinite levels of debt and zero

wages.

It is interesting to note that assumptions (3.16) and (5.8) were made in order

to guarantee the existence of the economically desirable equilibrium (ω1, λ1, d1), but

perversely contribute to the stability of the undesirable point (ω2, λ2, d2) = (0, 0,+∞).

Moreover, in view of (5.8), we see that a sufficient condition for (5.33) to hold is

α + β < r. (5.34)

Recalling (5.16) we conclude that a sufficient condition for (ω2, λ2, u2) = (0, 0, 0) to

be a locally stable equilibrium for (5.19) is that the real interest rate r exceeds the

growth rate of the economy at the equilibrium (ω1, λ1, d1), which resembles the con-

dition derived by Tirole [Tir85] for the absence of rational bubbles in an overlapping

generation model, corresponding to an “efficient” economy.

5.4 Example

Choosing the fundamental economic constants to be the same as in (3.24) with the

addition of

r = 0.03, (5.35)

taking the Phillips curve as in (3.25) and (3.26), and defining the investment function

κ as

κ(x) = κ0 + κ1 tan−1 (κ2x+ κ3) (5.36)
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where the constants κ0, κ1, κ2 and κ3 are chosen according to

κ(−∞) = 0, κ(+∞) = 1,

π1 = 0.16, κ′(π1) = 5
(5.37)

it follows that conditions (5.8)–(5.10) are satisfied.

Observe first that the real solutions for equation (5.12) in this case are

d0 =

−0.021

32.503

. (5.38)

The eigenvalues for J(0, 0, d0) for these two points are

(−0.2915,−0.0650, 0.2763)

(0.0849,−0.0650,−0.0448),

confirming that the equilibrium (0, 0, d0) is unstable in either case, as expected.

Moving to the economically meaningful equilibrium, we obtain the equilibrium

values

(ω1, λ1, d1) = (0.8367, 0.9600, 0.1111). (5.39)

with corresponding eigenvalues

(−0.0451,−0.0572 + 2.0855i,−0.0572− 2.0855i) (5.40)

all of which have negative real part. Alternatively, we find that

κ′(π1)

ν

(
π1 − νδ

)
− (α + β) = 0.1717 > 0, (5.41)

so that (5.31) is satisfied and this equilibrium is locally stable. When the initial condi-

tions are chosen sufficiently close to the equilibrium values, we observe the convergent
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behaviour shown in the phase portrait for employment and wages in Figure 5.1. The

oscillatory behaviour of all variables can be seen in Figure 5.2, where we also show

the growing output Y as a function of time.
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 = 0.1, Y

0
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Figure 5.1: Phase portrait of employment and wages converging to a stable equilibrium
with finite debt in the Keen model.

We notice that condition (5.18) is violated by our model parameters, so we do not

need to consider the structurally unstable equilibria of the form (0, λ, d1). Moving on

to the equilibrium with infinite debt, we observe that

κ(−∞)

ν
− δ − r = −0.04 < 0, (5.42)

so that (5.33) is satisfied and (ω2, λ2, d2) = (0, 0,+∞) corresponds to a stable equilib-

rium of (5.19). Therefore we expect to observe ever increasing debt levels when the

initial conditions are sufficiently far from the equilibrium values (ω1, λ1, d1). This is
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Figure 5.2: Employment, wages, debt and output as functions of time converging to
a stable equilibrium with finite debt in the Keen model.

depicted in Figure 5.3, where we can see both wages and employment collapsing to

zero while debt explodes to infinity. We also show the output Y which increases to

very high levels propelled by the increasing debt before starting an inexorable descent.

While it is difficult to determine the basin of convergence for the equilibrium

(ω1, λ1, d1) analytically, we plot in Figure 5.4 the set of initial conditions for which

we observed convergence to this equilibrium numerically. As expected, the set of

initial values for wages and employment leading to convergence becomes smaller as

the initial value for debt increases.
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Figure 5.3: Employment, wages, debt and output as functions of time converging to
a stable equilibrium with infinite debt in the Keen model.

5.5 Conclusion

Introducing debt to finance new investment leads to the three–dimensional Keen

model exhibiting two distinct equilibria, a good one with finite debt and strictly

positive employment and wage share, and a bad one with infinite debt and zero em-

ployment and wage share. We have determined that for typical model parameters,

both can be locally stable.

As we have seen, this simple model is able to generate remarkably rich dynamics,

but can still be generalized in a variety of ways. Staying in the realm of deterministic

models, one possible extension already considered by Keen [Kee95, Kee09], and fully

explored in Chapter 8, consists of introducing a government sector with corresponding

spending and taxation, increasing the dimensionality of model and the complexity of

its outcomes. Alternatively, in Chapter 7 we propose a second extension, where capital
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Figure 5.4: Basin of convergence for the Keen model for wages, employment and
private debt.

investment projects are not immediately developed.
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Chapter 6

Low Interest Rate Regimes

The purpose of this chapter is to further develop to analytical analysis of the Keen

model when the real interest rate is assumed to be close to zero. To begin with,

observe that if r = 0, the first two equations in (5.7) decouple, and we have the

following system for the variables, which we will write in terms of (ω0, λ0) for wage

share and employment, respectively

ω̇0 = ω0 [Φ(λ0)− α]

λ̇0 = λ0

[
κ(1− ω0)

ν
− (α + β + δ)

] (6.1)

with the capitalists’ debt, d0, solving its own (non-autonomous, but one-dimensional)

ODE

ḋ0 = κ(1− ω0)− (1− ω0)− d0

[
κ(1− ω0)

ν
− δ
]

(6.2)

This system has only one fixed point,

ω0 = 1− κ−1(ν(α + β + δ)), λ0 = Φ−1(α), d0 =
ω0 − (1− ν(α + β + δ))

α + β
(6.3)
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In result, ω0(t), λ0(t) must follow cycles given by the energy function

V (ω0(t), λ0(t)) =

∫ ω0(t)

ω0

κ(1− ω0)− κ(1− x)

νx
dx+

∫ λ0(t)

λ0

Φ(y)− Φ(λ0)

y
dy

= V (ω0(0), λ0(0)),

(6.4)

which can be verified from the fact that V̇ = 0 everywhere. Theorem 6.1 gives the

period of such cycles, which depends only on the initial energy V (ω0(0), λ0(0)).

The assumption of low interest rates will be translated into assuming that r equals

some ε arbitrarily small. Suppose next that we can expand the solution to the Keen

model (5.7) linearly as follows

ω(t) = ω0(t) + εωε(t) +O(ε2)

λ(t) = λ0(t) + ελε(t) +O(ε2)

d(t) = d0(t) + εdε(t) +O(ε2)

(6.5)

The continuously differentiable functions κ and Φ can be expanded as

Φ(λ) = Φ(λ0 + ελε) = Φ(λ0) + ελεΦ
′(λ0) +O(ε2)

κ(1− ω − rd) = κ(1− ω0 − ε(ωε + d0) +O(ε2))

= κ(1− ω0)− ε(ωε + d0)κ′(1− ω0) +O(ε2)

(6.6)

Differentiating (6.5) with respect to time, we have

ω̇0 + εω̇ε +O(ε2) =
(
ω0 + εωε +O(ε2)

) [
Φ(λ0) + ελεΦ

′(λ0) +O(ε2)− α
]

= ω0 [Φ(λ0)− α] + ε [ωε [Φ(λ0)− α] + ω0λεΦ
′(λ0)] +O(ε2)

(6.7)
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λ̇0 + ελ̇ε +O(ε2) =
(
λ0 + ελε +O(ε2)

) [κ(1− ω0)

ν
− α− β − δ

− ε(ωε + d0)
κ′(1− ω0)

ν
+O(ε2)

]

= λ0

[
κ(1− ω0)

ν
− (α + β + δ)

]
+O(ε2)

+ ε

{
λε

[
κ(1− ω0)

ν
− (α + β + δ)

]
− λ0(ωε + d0)

κ′(1− ω0)

ν

}
(6.8)

ḋ0 + εḋε +O(ε2) = κ(1− ω0)− ε(ωε + d0)κ′(1− ω0) +O(ε2)− (1− ω0 − ε(ωε + d0))

− (d0 + εdε +O(ε2))

[
κ(1− ω0)

ν
− δ − ε(ωε + d0)

κ′(1− ω0)

ν
+O(ε2)

]

= κ(1− ω0)− (1− ω0)− d0

[
κ(1− ω0)

ν
− δ
]

+O(ε2)

+ ε

{
(ωε + d0)κ′(1− ω0)

(
d0

ν
− 1

)
+ ωε + d0 − dε

[
κ(1− ω0)

ν
− δ
]}

(6.9)

The fundamental theorem of perturbation theory [SMJ98] allows us to say that

the terms accompanying the powers of ε must be the same on both sides of the above

equations. Accordingly, one finds that ω0 and λ0 do indeed solve (6.4), while the

remaining variables solve

ḋ0 = κ(1− ω0)− (1− ω0)− d0

[
κ(1− ω0)

ν
− δ
]

(6.10)

ω̇ε = ωε [Φ(λ0)− α] + ω0λεΦ
′(λ0) (6.11)

λ̇ε = λε

[
κ(1− ω0)

ν
− (α + β + δ)

]
− λ0

κ′(1− ω0)

ν
(ωε + d0) (6.12)

ḋε = (ωε + d0)κ′(1− ω0)

(
d0

ν
− 1

)
+ ωε + d0 − dε

(
κ(1− ω0)

ν
− δ
)

(6.13)

(6.14)
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6.1 Zero-order solution

So far, we know that wage share ω0 and employment λ0 must oscillate in a cycle,

while d0 is given by

d0(t) = fd(t)

[
d0(0) +

∫ t

0

fd(u)−1hd(u) du

]
(6.15)

where

fd(u) = exp

[
−
∫ t

0

(
κ(1− ω0(s))

ν
− δ
)
ds

]
=
λ0(0)

λ0(t)
e−(α+β)t (6.16)

and

hd(u) = κ(1− ω0(u)) + ω0(u)− 1 (6.17)

The following analysis follows closely the procedure developed in [ST11a]. The

homogeneous term is

dH(t) = fd(t)d0(0) =
d0(0)λ0(0)

λ0(t)
e−(α+β)t −−−−→

t→+∞
0 (6.18)

Denoting the period of the oscillations of ω0 and λ0 as T , one can easily see that

fd(T ) reduces to

fd(T ) = exp

(
−
∫ T

0

(
κ(1− ω0(s))

ν
− δ
)
ds

)
= e−(α+β)T < 1 (6.19)

while fd(nT ) factors into

fd(nT ) =
λ0(0)

λ0(nT )
e−(α+β)nT =

(
e−(α+β)T

)n
= fd(T )n (6.20)

Hence, we can calculate

dH(nT ) = d0(0)fd(T )n (6.21)

It can also be shown that the full solution for d0 at multiples of the period T
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satisfies

d0(nT ) = fd(T )nd0(0) + fd(T )
1− fd(T )n

1− fd(T )

∫ T

0

fd(u)−1hd(u) du (6.22)

from which we readily obtain that

lim
n→∞

d0(nT ) =
fd(T )

1− fd(T )

∫ T

0

fd(u)−1hd(u) du (6.23)

since fd(T ) < 1. In fact, we can show that d0 converges to a steady state solution.

For that purpose, let t ∈ (0, T ), n = 1, 2, · · · , and observe that the particular solution

dp can be expressed as

dp(t+ nT ) = fd(t+ nT )

∫ t+nT

0

fd(u)−1hd(u) du

= fd(t)fd(T )n
[(∫ T

0

+

∫ 2T

T

+ · · ·+
∫ nT

(n−1)T

+

∫ nT+t

nT

)
fd(u)−1hd(u) du

]
= fd(t)fd(T )n

{[(
1 + fd(T )−1 + · · ·+ fd(T )−(n−1)

) ∫ T

0

+ fd(T )−n
∫ t

0

]
fd(u)−1hd(u) du

}

= fd(t)

[ (
fd(T ) + fd(T )2 + · · · fd(T )n

) ∫ T

0

fd(u)−1hd(u) du

+

∫ t

0

fd(u)−1hd(u) du

]

= fd(t)

[
fd(T )

1− fd(T )n

1− fd(T )

∫ T

0

fd(u)−1h(u) du+

∫ t

0

fd(u)−1hd(u) du

]
(6.24)

which converges, as n→ +∞, to the steady state solution dss as follows

dss(t+ nT ) = fd(t)

[
fd(T )

1− fd(T )

∫ T

0

fd(u)−1hd(u) du+

∫ t

0

fd(u)−1hd(u) du

]
= RHS(t)

(6.25)
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Notice that RHS(t) is periodic with period T , since

RHS(t+ T ) = fd(t+ T )

[
fd(T )

1− fd(T )

∫ T

0

fd(u)−1hd(u) du+

∫ T+t

0

fd(u)−1hd(u) du

]
= fd(t)

[(
fd(T ) +

fd(T )2

1− fd(T )

)∫ T

0

fd(u)−1hd(u) du

+ fd(T )

∫ T+t

T

fd(u)−1hd(u) du

]

= fd(t)

[
fd(T )

1− fd(T )

∫ T

0

fd(u)−1hd(u) du+ fd(T )

∫ t

0

fd(u)−1fd(T )−1hd(u) du

]
= X(t)

[
fd(T )

1− fd(T )

∫ T

0

fd(u)−1hd(u) du+

∫ t

0

fd(u)−1hd(u) du

]
= RHS(t)

(6.26)

Recalling the fact that the homogeneous term decays to 0 as t → +∞ (exponen-

tially fast, with rate −(α + β)), we can conclude that d0(t) converges to dss(t) as

t→ +∞.

6.2 First-order solution

The first order variables solve the following linear system


ω̇ε

λ̇ε

ḋε

 =


Φ(λ0)− α ω0Φ′(λ0) 0

−λ0
κ′(1−ω0)

ν
κ(1−ω0)

ν
− (α + β + δ) 0

1 + κ′(1−ω0)
ν

(d0 − ν) 0 −
(
κ(1−ω0)

ν
− δ
)


ωε

λε

dε



+


0

−d0λ0
κ′(1−ω0)

ν

d0
κ′(1−ω0)

ν
(d0 − ν) + d0


(6.27)
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Likewise the perturbation model proposed for the stochastic Goodwin model in

Section 4.3, we can express the solution to (6.2) in closed-form. This is the objective

of the next proposition.

Proposition 6.1. Let

p(t) := Φ(λ0(t))− α (6.28)

q(t) := κ(1− ω0(t))/ν − α− β − δ (6.29)

G(t) :=

 ω0(t) 0

0 λ0(t)

 (6.30)

~hε(t) := [0,−d0(t)κ′(1− ω0(t))/ν]
ᵀ

(6.31)

where the pair (ω0(t), λ0(t)) solve the system (6.1) with initial condition (ω0(0), λ0(0)) 6=

(ω, λ), while d0(t) is given by (6.15). Denote ~vε(t) = [ωε(t), λε(t)]
ᵀ. The solution of

the system (6.27) is then

~vε(t) = G(t)Ψ(t)

[
G−1(0)~vε(0) +

∫ t

0

Ψ−1(s)~hε(s) ds

]
= G(t)Ψ(t)

∫ t

0

Ψ−1(s)~hε(s) ds for ~vε(0) = [0, 0]ᵀ
(6.32)

where

Ψ(t) :=

 p(t)
p(0)
− q(0)Γx(t) p(0)Γx(t)

q(0)Γy(t)
q(t)
q(0)
− p(0)Γy(t)

 (6.33)

with

Γx(t) := p(t)

∫ t

0

λ0(s)Φ′(λ0(s))

p(s)2
ds

Γy(t)) := q(t)

∫ t

0

ω0(s)µ′(ω0(s))

q(s)2
ds

(6.34)
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Finally, dε(t) is given by

dε(t) =

∫ t

0

λ0(s)

λ0(t)
e−(α+β)(t−s) [ωε(s) + d0(s)]

[
1 +

κ′(1− ω0(s))

ν
(d0(s)− ν)

]
ds (6.35)

Proof. Making the change of variables x = ωε/ω0 and y = λε/λ0, we obtain the

following model for x and y

 ẋ

ẏ

 =

A(t)︷ ︸︸ ︷ 0 λ0Φ′(λ0)

−ω0
κ′(1−ω0)

ν
0

 x

y

+

~hε(t)︷ ︸︸ ︷ 0

−d0
κ′(1−ω0)

ν

 (6.36)

First, we will solve the homogeneous version ẋH

ẏH

 =

 0 λ0Φ′(λ0)

−ω0
κ′(1−ω0)

ν
0

 xH

yH

 (6.37)

With the exact same procedure developed in Proposition 4.12, we find that Ψ(t)

from (6.33) is the state-density matrix that solves (6.37), and thus ~z(t) = [x(t), y(t)]ᵀ

satisfies

~z(t) = Ψ−1(t)

[
~z(0) +

∫ t

0

Ψ(s)~hε(s) ds

]
(6.38)

In other words,

~vε(t) = G(t)~z(t)

= G(t)Ψ(t)

[
G−1(0)~vε(0) +

∫ t

0

Ψ−1(s)~hε(s) ds

] (6.39)

Taking into consideration that ~vε(0) = [0, 0]ᵀ, we obtain (6.32). The solution for

dε(t) follows immediately from the observation that

d

dt

[
λ0(t)e(α+β)tdε(t)

]
= (ωε(t) + d0(t))

κ′(1− ω0(t))

ν
(d0(t)− ν) (6.40)
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which can be solved a priori.

Remark 6.1. Borrowing the results from Remark 4.8, we can express the solution

at multiples of the period as ωε(nT )/ω0(nT )

λε(nT )/λ0(nT )

 = Ψ(T )n
n∑
k=1

[∫ kT

(k−1)T

Ψ−1(s)~hε(s) ds

]

= Ψn(T )
n∑
k=1

[
Ψ−1 ((k − 1)T )

∫ T

0

Ψ−1(u)~hε(u+ (k − 1)T ) du

]
=

n∑
k=1

[
Ψn−k+1(T )

∫ T

0

Ψ−1(u)~hε(u+ (k − 1)T ) du

]
(6.41)

Observe that since

∫ T

0

Ψ−1(u)~hε(u+ (k − 1)T ) du→
∫ T

0

Ψ−1(u)~hss(u) du as k → +∞ (6.42)

where we have defined

~hss(t) :=

 0

−dss(t)κ
′(1−ω0(t))

ν

 , (6.43)

together with the fact that

Ψn−k+1(T ) = V Jn−k+1V −1 = V

 1 n− k + 1

0 1

V −1, (6.44)

we can conclude that both ωε(nT ) and λε(nT ) diverge as n→∞, indicating that the

approximate solution is only valid for finite time horizons.
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6.3 Period of a generalization of the Lotka-Volterra

model

The work presented here was motivated by [Hsu83]. In this section, we make the

contribution of deriving the period of a general non-linear Lotka-Volterra model1

([Lot25] and [Vol27]). Here, we consider general cross-dependence between x and y

through the functions f and g which are only assumed to be increasing, with a and b

in the interior of their respective images

ẋ = x [a− f(y)]

ẏ = y [g(x)− b]
(6.45)

The next Theorem provides a closed-form expression for the period of (6.45).

Theorem 6.1. If f(x) satisfies

∫ f−1(a)

0

a− f(y)

y
dy =

∫ +∞

f−1(a)

f(y)− a
y

dy = +∞ (6.46)

then the period of the non-linear Lotka-Volterra model (6.45) is given by

T =

∫ log(xmax)

log(xmin)

1

F−1
1 (G(z))

dz +

∫ log(xmin)

log(xmax)

1

F−1
2 (G(z))

dz (6.47)

where xmin and xmax are the two roots of

∫ x

g−1(b)

g(η)− b
η

dη = V0 =

∫ x(0)

g−1(b)

g(η)− b
η

dη +

∫ y(0)

f−1(a)

f(ξ)− a
ξ

dξ (6.48)

also

G(z) = V0 +

∫ ez

g−1(b)

b− g(x)

x
dx (6.49)

1As opposed to the original Lotka-Volterra model, which is quadratic in x and y.
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and F1(w), F2(w) are the restrictions of

F (w) =

∫ f−1(a−w)

f−1(a)

f(y)− a
y

dy (6.50)

to
[
0, a− f(0)

)
and (−∞, 0], respectively.

Proof. Solutions of the dynamical system (6.45) are cycles centered at

x = g−1(b) (6.51)

y = f−1(a) (6.52)

We can separate variables and find an energy potential

V (x, y) =

∫ x

x

g(η)− b
η

dη +

∫ y

y

f(ξ)− a
ξ

dξ (6.53)

that must remain constant on the trajectories, that is, for a given starting point

(x(0), y(0)), the solution (x(t), y(t)) must solve

V (x(t), y(t)) = V (x(0), y(0)) =: V0 (6.54)

The variable x(t) oscillates between xmin and xmax, where xmin < xmax are the

roots of ∫ x

x

g(η)− b
η

dη = V0 (6.55)

Likewise, y(t) fluctuates between ymin < ymax, roots of

∫ y

y

f(ξ)− α
ξ

dξ = V0 (6.56)

Observe that we can write

y = f−1

(
a− ẋ

x

)
(6.57)
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and thus

ẍ = ẋ

ẋ
x︷ ︸︸ ︷

[a− f(y)]−xf ′(y)y [g(x)− b]

=
(ẋ)2

x
− f ′of−1

(
a− ẋ

x

)
f−1

(
a− ẋ

x

)
[g(x)− b]

=
(ẋ)2

x
− h

(
a− ẋ

x

)
[g(x)− b]

(6.58)

where h(ζ) = f ′of−1(ζ)f−1(ζ). Performing the change of variable x = ez give us

ẋ = ez ż, ẍ = ez [(ż)2 + z̈], along with

z̈ + h(a− ż) [g (ez)− b] = 0 (6.59)

We can write this second-order ODE as a system of first order differential equations

ż = w (6.60)

ẇ = [b− g (ez)]h(a− w) (6.61)

where we introduced the new variable w = ż = ẋ
x

= a− f(y).

By separation of variables, we have

[b− g (ez)] dz =
w

h(a− w)
dw (6.62)

Suppose that at t = 0, x = xmin and y = y. We want to find out how long it takes

for x to reach xmax (at which point, y will return to y). Suppose this happens at

t = T1. We know that for 0 ≤ t ≤ T1, xmin ≤ x ≤ xmax and 0 < y ≤ y. Furthermore,

log(xmin) ≤ z ≤ log(xmax) and 0 ≤ w < a− f(0). Hence,

F (w) :=

∫ w

0

ξ

h(a− ξ)
dξ =

∫ z

log(xmin)

b− g (eη) dη =: G(z) (6.63)
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Notice that

F (w) =

∫ w

0

ξ

f ′ (f−1 (a− ξ)) f−1(a− ξ)
dξ let y = f−1(a− ξ), then dξ = −f ′(y)dy

=

∫ f−1(a−w)

y

f(y)− a
y

dy

(6.64)

exists for w ∈ (a − Im(f)). If f is bounded from above, then a − max{f} < w <

a−f(0), otherwise, −∞ < w < a−f(0). In any case, we will say winf < w < a−f(0),

with winf equal to either a−max{f} or −∞. Given that a is in the interior of Im(f),

we obtain that

∫ y

0

a− f(y)

y
dy =

(∫ y/2

0

+

∫ y

y/2

)
a− f(y)

y
dy > lim

y→0+
(a− f(y/2)) log

y

2y
= +∞

(6.65)

and

∫ +∞

y

f(y)− a
y

dy =

(∫ y∗

y

+

∫ +∞

y∗

)
f(y)− a

y
dy > lim

y→+∞
(y − y∗) log

y

y∗
= +∞

(6.66)

for some y∗ ∈ (y,+∞). It follows that F (w) must satisfy the following properties

F (0) = 0 (6.67)

F (w) is increasing for 0 ≤ w < a− f(0) (6.68)

F (w) is decreasing for winf < w ≤ 0 (6.69)

lim
w→winf

F (w) = lim
w→a−f(0)

F (w) = +∞ (6.70)

Moreover, we can rewrite G(z) as

G(z) =

V0︷ ︸︸ ︷∫ x

xmin

b− g(x)

x
dx+

∫ ez

x

b− g(x)

x
dx (6.71)
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Since

d

dx

(∫ x

x

b− g(η)

η
dη

)
=
b− g(x)

x

> 0 if x < x

< 0 if x > x,

(6.72)

we have that G (log(x)) = V0 is the maximum, while G (log(xmin)) = G (log(xmax)) =

0 are the minima of G(z) for log(xmin) ≤ z ≤ log(xmax).

One can then define F1(w) to be the restriction of F (w) to
[
0, a − f(0)

)
, from

(6.63) we have

F−1
1 (G(z)) = w =

dz

dt
(6.73)

which implies that

T1 =

∫ log(xmax)

log(xmin)

1

F−1
1 (G(z))

dz (6.74)

For the rest of the cycle, suppose now that at t = 0, x = xmax and y = y. We

wish to find how long it takes for x to reach xmin (when also y = y). Denote this time

length T2. We have that z(0) = log(xmax), z(T2) = log(xmin), w(0) = 0, w(T2) = 0

and w(t) ≤ 0 for 0 ≤ t ≤ T2. From (6.62), we have

F (w) =

∫ w

0

ξ

h(a− ξ)
dξ =

∫ z

log(xmax)

b− g (eη) dη =

V0︷ ︸︸ ︷∫ xmax

x

g(x)− b
x

dx+

∫ ez

x

b− g(x)

x
dx

= G(z)

(6.75)

Similarly, we can define F2(w) to be the restriction of F (w) to (−∞, 0] and con-

clude that

T2 =

∫ log(xmin)

log(xmax)

1

F−1
2 (G(z))

dz (6.76)

Remark 6.2. The zero-order model for ω0 and λ0 (6.1) can be written as our
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generalization of the Lotka-Volterra model if we define its variables as follows

x = λ0

y = ω0

g(x) = Φ(x)

b = α

f(y) = −κ(1− y)

ν

a = −(α + β + δ)

(6.77)

By Theorem 6.1, λ0 cycles between λmin and λmax, roots of

V0 =

∫ x

λ0

Φ(η)− α
η

dη (6.78)

The function F is then

F (w) =

∫ 1−κ−1(ν(w+α+β+δ))

ω0

ν(α + β + δ)− κ(1− y)

νy
dy (6.79)

where ω0 = 1− κ−1(ν(α + β + δ)). As consequence, the functions F1 and F2 are the

restrictions of this function F to
[
0, κ(1)/ν − (α+ β + δ)

)
and (−∞, 0], respectively.

The function G, in turn, can be written as

G(z) = V0 −
∫ ez

λ0

Φ(x)− α
x

dx (6.80)

where λ0 = Φ−1(α).

Around the equilibrium point (ω0, λ0), linearization shows that the period con-

verges to
2π√

ω0λ0Φ′(λ0)κ′(1− ω0)/ν
(6.81)
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6.4 Example

In this section, we take the parameters as (3.24), besides using the functions Φ and κ

as defined in (3.25), and (5.36), calibrated according to (3.26) and (5.37).

First, to illustrate Remark 6.2, we refer to Figure 6.1, where the period of the

zero-order model (6.1) for different starting values of (ω0, λ0) is illustrated. There

seems to be a linear relationship between V0 and T , with vertical intercept at 3.2.

This value agrees with (6.81), which gives us a base period of 3.0039.
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Figure 6.1: Period of the zero-order system.

Moreover, the limit cycle described in (6.25) can be observed in Figure 6.2, while

the quality of the overall approximation developed in this chapter can be assessed

through Figure 6.3.

As expected, due to the fact that the monodromy matrix (4.165) cannot be di-
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Figure 6.2: Example of the zero-order solution (ω0, λ0, d0), depicting the limit cycle
in d0 as described in (6.25).

agonalized, the first-order solution grows unbounded with time, spoiling the approx-

imation when t is large. In our numerical example, with a value of the interest rate

of order 10−4, the approximation seems to be almost indistinguishable from the true

solution until at least t = 100, whereas once we raise the interest rate to 10−3, at

t = 80, we can already see the growing trend of the error taking place.

6.5 Conclusion

In this chapter, we have studied the Keen model under regimes of extremely low levels

of the real rate of interest. Through perturbation methods, we are able to derive

simpler dynamical systems that can be fully solved analytically. More specifically,

we find that the zero order variables ω0, λ0 belong to a cycle specified by an energy

functional, with period that can also be analytically determined. The zero order debt

107



Bernardo R. C. da Costa Lima – PhD Thesis – McMaster University – Dept. of Math and Stats

Figure 6.3: Examples of solutions of both (5.7), and (6.1) plus (6.32), for different
values of the real interest rate. On the left column, we have the evolution of ω versus
t, while on the right column we have λ × t. The exact solution is drawn in a solid
black line, whereas the approximate solution is represented by the dashed blue line.

d0, on the other hand, converges a steady state periodic function of time, meaning

that the zero order solution, as a whole, converges to a limit cycle.

Unfortunately, as the monodromy matrix associated to the problem (6.37) can-

not be diagonalized, the first-order solution inevitable grows quadratically with time,

compromising the accuracy of the approximation for large values of t. Still, as nu-

merical examples show, when the interest rate is of order 10−4, the error is virtually

inexistent for at least a century.
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Chapter 7

Distributed Time Delay

Behind the capital goods dynamical equation (5.2) lies the assumption that capital

goods are added to the system as soon as the cash is invested. In reality, capital goods

expansion cannot be instantly developed. Every time capitalists decide to invest in a

new enterprise, the money spent at time t will only generate revenues at a later time

t + τ . In the context of the Keen model, this means that capital should not respond

to new investment immediately. We can attempt to capture this effect by adding a

delay in the the capital dynamics, representing the amount of time between when the

profits are invested and when new capital is effectively added to the economy.

Previously, in the Keen model, capital would be driven by

K̇ = κ(π)Y − δK (7.1)

Introducing a discrete delay can be achieve by replacing the previous equation by

K̇(t) = κ
(
π(t− τ)

)
Y (t− τ)− δK(t) (7.2)

When analyzing the dynamical equation (7.2), one needs to deploy the arsenal of

delay differential equations, notably quite involving. We can alternatively emulate

the time delay through a series of exponentially distributed times, as we will see next.
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7.1 Alternative formulation

The technique described in this section is well documented in the Mathematical Bi-

ology literature (see, for example, [AD80]). Ultimately, the latent time for capital

expansion will follow the Erlang distribution. The main idea behind this trick is

that the sum of independent exponentially distributed random variables is Gamma

distributed1. If we break the project implementation stage in n sub-stages, each ex-

ponentially distributed with mean τ
n
, then the total completion time will follow an

Erlang distribution with shape parameter n and scale parameter τ
n
. In the limit case

where n→∞, this converges to the delay differential equation described by (7.2).

We will introduce a new variable, Θ, to represent the amount of money invested

in projects yet to be completed. In the simplest case, where n = 1, we have

Θ̇ = κ(π)Y − 1

τ
Θ (7.3)

Equation (7.3) contains the inflow of capital goods, κ(π) and the outflow repre-

senting projects being completed at an exponential rate. The capital dynamics, in

this case, is simply

K̇ =
1

τ
Θ− δK (7.4)

Capital assets are now completed according to the inflow represented by Θ and

depreciate at an exponential rate given by δ. The debt dynamics remain unchanged,

as it is driven by the amount of money being currently invested.

In the general case, we have n intermediate investment stages.

1If X ∼ Γ
(
n, τn

)
for n ∈ N, then X ∼ Erlang

(
n, nτ

)
. Also, E[X] = τ .
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Θ̇1 = κ(π)Y − n

τ
Θ1

Θ̇2 =
n

τ
(Θ1 −Θ2)

...

Θ̇n =
n

τ
(Θn−1 −Θn)

K̇ =
n

τ
Θn − δK

Ḋ = (κ(π)− π)Y

(7.5)

Using several sub-stages, which can be understood either as a purely mathematical

device or even as the several intermediate stages present in real capital projects, the

projects take an Erlang distributed amount of time to be completed.

Defining θk = Θk

Y
, k = 1, · · · , n, we can fully specify the model using {ω, λ, d, θ1, θ2, · · · , θn}.

A bit of algebra leads to

ω̇ = ω(Φ(λ)− α)

λ̇ = λ
( n
τν
θn − (α + β + δ)

)
ḋ = κ(π)− π − d

( n
τν
θn − δ

)
θ̇1 = κ(π)− θ1

[
n

τ

(
1 +

1

ν
θn

)
− δ
]

θ̇2 =
n

τ
(θ1 − θ2)− θ2

( n
τν
θn − δ

)
...

θ̇k =
n

τ
(θk−1 − θk)− θk

( n
τν
θn − δ

)
...

θ̇n =
n

τ
(θn−1 − θn)− θn

( n
τν
θn − δ

)

(7.6)

The added terms on the θ̇k equations are due to the evolution of Y , the economy
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output (for more details, refer to the derivation of the Keen model in Chapter 5).

This model has an equilibrium, henceforward denoted as the “good” equilibrium,

determined by

λ̂1 = Φ−1(α)

θ̂n,1 =
τν

n
(α + β + δ)

...

θ̂n−k,1 = θ̂n,1

[τ
n

(α + β + n/τ)
]k

...

θ̂1,1 = θ̂n,1

[τ
n

(α + β + n/τ)
]n−1

π̂1 = κ−1
[
θ̂1,1(α + β + n/τ)

]
d̂1 =

κ(π̂1)− π̂1

α + β

ω̂1 = 1− π̂1 − rd̂1

(7.7)

If we linearize the system (7.6) around this point, we arrive at the following Jaco-

bian matrix:
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tats



0 ω̂1Φ′(λ̂1) 0 0 0 . . . 0 0 0

0 0 0 0 0 . . . 0 0 n
τν λ̂1

1− κ′(π̂1) 0 r (1− κ′(π̂1))− (α+ β) 0 0 . . . 0 0 − n
τν d̂1

−κ′(π̂1) 0 −rκ′(π̂1) −
(
α+ β + n

τ

)
0 . . . 0 0 − n

τν θ̂1,1

0 0 0 n
τ −

(
α+ β + n

τ

)
. . . 0 0 − n

τν θ̂2,1

...
...

...
. . .

...

0 0 0 0 0 . . . n
τ −

(
α+ β + n

τ

)
− n
τν θ̂n−1,1

0 0 0 0 0 . . . 0 n
τ −

(
n
τ + 2α+ 2β + δ

)


(7.8)
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There is also a second equilibrium (from now referred to as the “bad” equilibrium),

characterized by

λ̂2 = 0

ω̂2 = 0

θ̂1,2 = 0

...

θ̂k,2 = 0

...

θ̂n,2 = 0

d̂2 → +∞

(7.9)

which, as one would expect, expresses the collapsed state of the economy.

7.2 Bifurcations

For the numerical experiments conducted in this chapter, we adopted the fundamental

constants according to (3.24). The function Φ is the same as (3.25), with parameters

given by (3.26). In addition, the function κ is the one defined in (5.36), but calibrated

according to

κ(−∞) = 0, κ(+∞) = 1,

π1 = 0.16, κ′(π1) = 500
(7.10)

Armed with the Jacobian matrix, we can investigate what pairs of τ and n produce

a locally stable “good” equilibrium (that is, for what values of τ and n, matrix (7.8)

contains only eigenvalues with negative real part). Figure 7.1 depicts the threshold
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at which stability is lost.
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Figure 7.1: Threshold values of τ where local stability of the good equilibrium dis-
appears (for the model with project development delay). For each n, the “good”
equilibrium is stable for values of τ below this curve.

We can see that as the number of intermediate investment stages increases, the

critical value for the average completion time decreases. There seems to be an asymp-

tote around t = 0.030, about ten days. This value is arbitrarily determined in terms

of the parameters chosen for this section.

Fixing the number of intermediate investment stages to n = 10, we can study

bifurcations with respect to the parameter τ . Figure 7.2 shows bifurcation diagram

containing the amplitude of ω for values of τ ranging from zero to one year(s). There

seems to be a Hopf bifurcation for τ somewhere between 0.035 and 0.040. The period

of the cycles is shown in Figure 7.3.
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Figure 7.2: Bifurcations diagram for τ when n = 10 showing amplitude of ω versus
τ . The solid (black) line denote local instability, while the solid (red) line represent
local stability. Meanwhile, solid (green) circles denote stable limit cycles, while empty
(blue) circles correspond to unstable limit cycles.
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Figure 7.3: Bifurcations diagram for τ when n = 10 showing period of oscillations
versus τ . Empty (blue) circles denote unstable limit cycles, while solid (green) circles
correspond to stable limit cycles.

As expected, the “good” equilibrium, initially locally stable when τ is smaller than

around 0.037, becomes locally unstable for large values of τ . This threshold value

agrees with the results observed in Figure 7.1. Remarkably, the fixed point unfolds

into a stable cycle at the supercritical Hopf bifurcation, indicating the existence of

periodic solutions. These stable cycles with period shown in Figure 7.3 are only

feasible for τ ∈ (0.03698, 0.04419). Moreover, unstable cycles with larger periods

occur for higher amplitudes of ω.

A natural question is how these results would be affected if the number of multi-

stages was not ten, but two, five, or thirty? As well, what would happen in the limiting
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case when the we use infinite intermediate stages of investment? To shed some light

on these concerns, we repeated the previous analysis for different values of n. Figure

7.4 shows the bifurcation diagram, together with the 10% and 90% percentiles of the

time delay for n in {2, 5, 10, 20, 50, 75}. The limiting case when n = +∞, that is,

when the time delay is discrete, was analyzed with brute force. By simulating the

model with capital dynamics given by (7.2) for a long period of time, with τ varying

from zero to one year, and recording the long-term behaviour of ω, we can observe

the stable attractors, be it a fixed point or a limit cycle (see Figure 7.5).

Figure 7.4: Bifurcation diagrams on the left. 10% and 90% percentiles of the delay
distribution on the right.
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Figure 7.5: Brute Force bifurcation diagram for the model with discrete delay.

Altogether, we can study the dual effect of varying the number of investment

stages and the average time for completion on the stability of the system in a two-

parameter bifurcation diagram, as depicted in Figure 7.6. The threshold value τmin

corresponds to the point at which the good equilibrium, previously locally stable,

becomes unstable. On the other hand, τmax denotes the maximum value of τ for

which there exists the stable limit cycle. The unstable limit cycle is not particularly

interesting as it does not attract solutions. Besides, it seems to exist for values of τ

that already generate the stable limit cycle. As shown in Figure 7.6, both threshold

values τmin and τmax drop quickly as soon as n grows from zero, settling thereafter

around 0.03534 and 0.04269, respectively.
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Figure 7.6: Two parameter (τ vs n) bifurcation diagram.

The transient behaviour of the system is studied next. First, we are interested in

the case when the good equilibrium is still locally stable. Figure 7.7 was constructed

with different values of n and τ . Apparently, higher model dimension and longer

average completion times have a similar effect on stable solutions, though in different

magnitudes: both seem to extend the transient convergence time, adding more oscil-

lations to the result. Alternatively, Figure 7.8 exhibits the convergence to the limit

cycle, as the values of n and τ were intentionally chosen inside the region where the

good equilibrium is unstable, yet the stable limit cycle is present.
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Figure 7.7: Solutions converging to the “good” equilibrium, for different values of n
and τ .
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Figure 7.8: Solutions converging to the stable limit cycle.

7.3 Conclusion

In this chapter, we studied a modified model where projects are not immediately

completed, but take an Erlang distributed time to be developed. The resulting model

exhibits the same stability properties as the Keen model, namely two stable equilibria,

when the mean time for completion, τ , is small enough.

Beyond a threshold, which depends on the number of intermediate stages one

chooses to model, the good equilibrium becomes locally unstable, giving rise to a

stable limit cycle. As this parameter increases, we verify a complete instability around

the good equilibrium, where the limit cycle vanishes, leaving the bad equilibrium as

the single stable attractor.

Put differently, when the gap between the time investment decisions are made and

when projects start generating revenue becomes too large, the economy ceases to see
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positive effects from the investments, which inevitably leads to the collapsed state.
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Chapter 8

Government Intervention

Ever since the financial crisis that brought the world’s economies to their knees in 2008,

Minsky’s take on financial fragility has been a growing trend amongst economists.

Accordingly, mathematical formulations of his Financial Instability Hypothesis have

been gaining increasing popularity in the economics literature. Surprisingly, most

of these models have not given enough substance to the government role, confining

it to the task of regulating and/or issuing bonds to be purchased by more active

players such as firms and households. For instance, as Santos [DS05] points out,

Taylor and O’Connell in their early influential article [TO85] fall short of completely

specifying the government policy, thus leaving room for “hidden” assumptions, that

is, model ingredients that were not acknowledged by the authors, let alone analyzed.

On the contrary, we model the government intervention explicitly, carefully analyzing

its impact on the overall economy.

As Minsky himself had already pointed out throughout [Min82], the debt-deflation

spiral can be interrupted with an appropriate intervention by the government, as gov-

ernment spending enter the Kalecki equation increasing firm profit. We model this

behaviour by introducing government expenditure, subsidies and taxation into the

Keen model in Section 8.1. We then perform local stability analysis of the many

equilibria available in Sections 8.1.1 and 8.1.2. As before, we identify a “good” equi-
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librium, which proves to be stable under regular conditions, as expected. On the other

hand, there are many undesirable equilibria, both with finite and infinite (negative)

levels of profit. Fortunately, the finite undesirable equilibria are all either unstable or

unachievable under usual assumptions. Moreover, we prove in Proposition 8.1 that

all the equilibria with exploding negative profit are either unstable or unachievable

provided the size of government subsidies is large enough around zero employment

rate. In other words, even when the bad equilibrium is locally stable in the model

without government, we are able to design the government intervention in a specific

way that it destabilizes these unwanted fixed points associated to economic crises.

Moreover, we present in Section 8.2 our main result. As opposed to local stability

analysis, persistence theory [ST11b] studies the behaviour of the solutions around a

specific value for a single variable alone. Instead of answering questions about the

convergence to a point in the space, we are now concerned about the convergence

to a hyper-plane. Widely used in mathematical biology, where mathematicians are

interested in the survival of a specific species over the long term, or whether a cer-

tain disease-control protocol will be able to eradicate the pathogen, we bring the

same notion to macroeconomics. In our context, we are intrigued about the long-

term “survival” of key economic variables, for instance profits, or employment. After

proving preliminary results addressing positive exploding profits in Proposition 8.2,

we show in Propositions 8.3 and 8.4 that under a collection of alternative reasonable

conditions on government policy, we obtain uniform weak persistence for both the

employment rate and the capitalists’ profit. For a precise definition of persistence,

we refer to Appendix C, though put simply, the main result proved in this chapter is

that if the government is willing to be responsive enough in times of crises, both the

employment rate and firm profit are guaranteed to not remain trapped at arbitrarily

small values. Like any persistence result, these statements are global, the initial state

of the economy is not addressed at all in the hypothesis. These represent a sharp

improvement from the model without government intervention, where employment
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and profits were guaranteed to converge to zero and negative infinity, respectively,

and stay there forever, if the initial conditions were sufficiently bad.

8.1 Introducing government

In accordance to Table 2.3, government intervention can be introduced in the model

through expenditures Ge, subsidies GS and taxation T . We reserve the specification

of government expenditure for the end of this section. For now, we define subsidies

and taxes in the form

GS(t) = Gb(t) +Gs(t), (8.1)

T (t) = Tb(t) + Ts(t), (8.2)

where

Ġb = Γb(λ)Y, Ġs = Γs(λ)Gs, (8.3)

Ṫb = Θb(π)Y, Ṫs = Θs(π)Ts. (8.4)

We interpret Gb and Tb as base–level subsidies and taxation, whose dynamics depend

primarily on the overall state of the economy as measured by the level of output Y .

On the other hand, we interpret Gs and Ts as stimulative subsidies and taxation,

supposed to react exponentially fast to changes in employment and firms profits with

rates given by functions Γs and Θs. Initially, we only make the following general

assumptions on the subsidies and taxation structural functions:
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Γ′b(λ) < 0 and Γ′s(λ) < 0 on (0, 1) (8.5)

Θ′b(π) > 0 and Θ′s(π) > 0 on (−∞,∞) (8.6)

∃θb(−∞) = lim
π→−∞

θb(π) (8.7)

∃θs(−∞) = lim
π→−∞

θs(π) < lim
π→−∞

κ(π)

ν
− δ =

κ(−∞)

ν
− δ (8.8)

lim
π→−∞

π2θ′s(π) <∞ (8.9)

Denoting capitalist and government debt respectively by Dk and Dg, and defining

gb = Gb/Y , gs = Gs/Y , ge = Ge/Y , τb = Tb/Y , τs = Ts/Y , dk = Dk/Y , dg = Dg/Y ,

it follows from Section 2.2.2 that the profit share of capitalists is now

π = 1− ω − rdk + gb + gs − τb − τs (8.10)

and government debt evolves according to

Dg = rDg +Gb +Gs +Ge − Tb − Ts (8.11)

To simplify the notation, let the rate of growth of the economy be denoted by

µ(π) :=
κ(π)

ν
− δ. (8.12)

A bit of algebra leads to the following eight–dimensional system:
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ω̇ = ω [Φ(λ)− α]

λ̇ = λ [µ(π)− α− β]

ḋk = κ(π)− π − dkµ(π)

ġb = Γb(λ)− gbµ(π)

τ̇b = Θb(π)− τbµ(π)

ġs = gs [Γs(λ)− µ(π)]

τ̇s = τs [Θs(π)− µ(π)]

ḋg = dg (r − µ(π)) + ge + gb + gs − τb − τs

(8.13)

Notice that the capitalist profit share π in (8.10) does not depend on the gov-

ernment debt ratio dg, which implies that the last equation in (8.13) can be solved

separately from the rest of the system. Observe further that we can write

π̇ = −ω̇ − rḋk + ġs + ġb − τ̇s − τ̇b

= −ω(Φ(λ)− α)− r(κ(π)− π) + Γb(λ) + gsΓs(λ)−Θs(π)− τsΘs(π)

+ (rdk − gs − gb + τs + τb)µ(π)

= −ω(Φ(λ)− α)− r(κ(π)− π) + (1− ω − π)µ(π) + Γb(λ) + gsΓs(λ)−Θs(π)− τsΘs(π),

so that the model reduces to the following five–dimensional system:

ω̇ =ω [Φ(λ)− α]

λ̇ =λ [µ(π)− α− β]

ġs =gs [Γs(λ)− µ(π)]

τ̇s =τs [Θs(π)− µ(π)]

π̇ =− ω(Φ(λ)− α)− r(κ(π)− π) + (1− ω − π)µ(π)

+ Γb(λ) + gsΓs(λ)−Θb(π)− τsΘs(π)

(8.14)
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We shall base our analytic results on the reduced system (8.14), since this will

be enough to characterize the equilibria in which the economy either prospers or

collapses. Observe that when working with the reduced system (8.14), we cannot

recover dk, gb and τ separately, but rather the combination

rdk − gb + τb = 1− ω − π + gs − τs (8.15)

For numerical simulations, however, we compute the trajectories for the full system

(8.13), so that the evolution of each individual variable can be followed separately.

For completeness, we can express the dynamics of total debt d = dk + dg as

ḋ = ḋk + ḋg = κ(π)− π − dkµ(π) + rdg − dgµ(π) + ge + gb + gs − τb − τs

= κ(π)− (1− ω − rd) + ge

(8.16)

The hyperplanes gs = 0 and τs = 0 are invariant manifolds, indicating that if the

initial value for either gs or τs is positive (or negative), the corresponding solution

is also positive (or negative). In general, τs ≥ 0, as we understand that tax cuts

will be captured by the decreasing function θs as opposed to negative taxes. As well,

we will typically have gs > 0, as we want to represent a government attempting to

stimulate the economy with subsidies, although one could also have gs ≤ 0 in the case

of austerity measures intended to reduce the government deficit (as a naive attempt

to decrease the debt) when the economy performs badly.

We now return to the specification of government expenditures Ge. Observe that,

since Ge does not affect the profit share in (8.10), its dynamics can be freely chosen

without altering the solution of either the reduced system (8.14) or the full system

(8.13). In fact, the only other variable affected by Ge is government debt, which is

driven by (8.11).
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For example, if we postulate the dynamics for expenditures in the form

Ġe = Γ(t, ω, λ, π, gs, τs, Ge, Y ), (8.17)

we obtain

ġe =
Γ(ω, λ, π, gs, τs, Ge, Y )

Y
− geµ(π) (8.18)

In other words, as long as the dynamics for government expenditures does not

depend explicitly on the level of government debt, equation (8.18) can be solved

separately first and then used to solve the dynamics of dg. Equivalently, we can model

the government expenditure ratio directly as a function ge = ge(t, ω, λ, π, gs, τs).

8.1.1 Finite-valued equilibria

It is straightforward to see that the only possible finite-valued equilibria for the system

(8.14) are given by the following six cases:

1. Define

λ1 = Φ−1(α)

π1 = µ−1(α + β)
(8.19)

so that ω̇ = λ̇ = 0. Discarding the structural coincidences Γs(λ1) = α + β or

Θs(π1) = α+β, the only way to obtain ġs = τ̇s = 0 is to set gs1 = τ s1 = 0. This

leads us to

ω1 = 1− π1 −
r(ν(α + β + δ)− π1)

α + β
+

Γb(λ1)−Θb(π1)

α + β
(8.20)

as the only way to obtain π̇ = 0. This defines what we call the “good equi-

librium” for (8.14), that is, an equilibrium characterized by finite values for all

variables and non-zero wage share. As we will see next, all remaining cases have

the equilibrium wage share equal to zero.
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2. Take ω2 = 0 and π2 = π1 so that ω̇ = λ̇ = 0. In this case, discarding the

structural coincidence Θs(π1) = α + β, the only way to obtain τ̇s = 0 is to set

τ s2 = 0. For the remaining variables we define

λ2 = Γ−1
s (α + β) (8.21)

so that ġs = 0 and

gs2 =
Θb(π1)− Γb(λ2)

α + β
+
r(νµ(π1) + νδ − π1)

α + β
− (1− π1) (8.22)

so that π̇ = 0.

3. Take ω3 = τ s3 = 0 and π3 = π1 and so that ω̇ = λ̇ = τ̇s = 0 as before. In

addition take gs3 = 0 so that ġs = 0. To obtain π̇ = 0 define

λ3 = Γ−1
b (r (νµ(π1) + νδ − π1)− (1− π1) (α + β) + Θb (π1)) . (8.23)

4. Take ω4 = λ4 = gs4 = τ s4 = 0 so that ω̇ = λ̇ = ġs = τ̇s = 0. To obtain π̇ = 0

define π4 as the solution of

− r(νµ(π) + νδ − π) + (1− π)µ(π) + Γb(0)−Θb(π) = 0 (8.24)

5. Take ω5 = λ5 = gs5 = 0 so that ω̇ = λ̇ = ġs = 0. To obtain τ̇s = 0 define π5 as

the solution of

Θs(π)− µ(π) = 0. (8.25)

Finally, to obtain π̇ = 0 set

τ s5 =
−r(νµ(π5) + νδ − π5) + (1− π5)Θs(π5) + Γb(0)−Θb(π5)

Θs(π5)
(8.26)
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6. Take ω6 = λ6 = 0 so that ω̇ = λ̇ = 0. To obtain ġs = 0, define

π6 = µ−1 (Γs(0)) . (8.27)

Provided we discard again the structural coincidence Θs(π6) = Γs(0), this means

that to obtain τ̇s = 0 we must set τ s6 = 0. For the remaining variable we take

gs6 =
r(νµ(π6) + νδ − π6)− (1− π6)Γs(0)− Γb(0) + Θb(π6)

Γs(0)
(8.28)

so that π̇ = 0.

To summarize, discarding equilibria whose existence depend on structurally un-

stable coincidences in the choice of parameter values, the finite-valued equilibria for

system (8.14) are given by

(ω, λ, gs, τs , π) =



(ω1, λ1, 0, 0, π1)

(0, λ2, gs2, 0, π1)

(0, λ3, 0, 0, π1)

(0, 0, 0, 0, π4)

(0, 0, 0, τ s5, π5)

(0, 0, gs6, 0, π6)

(8.29)

Once the system (8.14) converges to an equilibrium (ω, λ, gs, τ s , π), the dependent

variables gb, τb, dg must solve

ġb = Γb(λ)− gbµ(π) (8.30)

τ̇b = Θb(π)− gT1µ(π) (8.31)

ḋg = dg[r − µ(π)] + gs + gb + ge − τs − τb (8.32)
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As a result, base government subsidies and taxation will converge exponentially

fast to their corresponding equilibrium values

gb =
Γb(λ)

µ(π)

τ b =
Θb(π)

µ(π)

(8.33)

Similarly, if the government expenditure ratio reaches an equilibrium value ge com-

patible with the equilibrium values for the remaining variables, then the government

debt ratio converges to

dg =



gs + ge + gb − τ s − τ b
µ(π)− r

if r < µ(π)

+∞ if r > µ(π), or r = µ(π) and gs + ge + gb − τ s − τ b > 0

0 if r = µ(π) and gs + ge + gb − τS − τ b < 0

(8.34)

Local Stability

We begin our local stability analysis by determining the Jacobian matrix for the

system (8.14):



Φ(λ)− α ωΦ′(λ) 0 0 0

0 µ(π)− α− β 0 0 λµ′(π)

0 gsΓ
′
s(λ) Γs(λ)− µ(π) 0 −gsµ′(π)

0 0 0 Θs(π)− µ(π) −τsµ′(π)

α− Φ(λ)− µ(π)
−ωΦ′(λ) + Γ′b(λ)

+gsΓ
′
s(λ)

Γs(λ) −Θs(π)

r − µ(π)

+µ′(π)(1− ω − π − rν)

− (Θ′b(π) + τsΘ′s(π))


(8.35)
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Returning to the equilibria defined in (8.29), we have the following six cases:

1. Defining the constant

K = r + µ′(π1) (1− π1 − rν)− (α + β)−Θ′b(π1) (8.36)

the characteristic polynomial for the Jacobian matrix (8.35) at the good equi-

librium (ω1, λ1, 0, 0, π1) can be written as

p1(y) =

[
− y3 + y2(K − ω1µ

′(π1)) + yλ1µ
′(π1)

(
Γ′b(λ1)− ω1Φ′(λ1)

)
− (α + β)λ1µ

′(π1)ω1Φ′(λ1)

]
×
(

Γs(λ1)− (α + β)− y
)(

Θs(π1)− (α + β)− y
) (8.37)

This equilibrium will be locally stable if and only if the polynomial (8.37) has

only roots with negative real part. We can identify two of the real roots to be

Γs(λ1) − (α + β) and Θs(π1) − (α + β). The Routh-Hurwitz criterion gives us

the remaining necessary and sufficient conditions for stability:

Γs(λ1) < α + β (8.38)

Θs(π1) < α + β (8.39)

ω1 > 0 (8.40)

ω1µ
′(π1)−K
α + β

>
ω1Φ′(λ1)

ω1Φ′(λ1)− Γ′b(λ1)
(8.41)

2. The characteristic polynomial at the equilibrium (0, λ2, gs2, 0, π1) is

p2(y) =
(
Φ(λ2)− α− y

) (
Θs (π1)− (α + β)− y

){
− y3 +Ky2

+ µ′(π1)
[
λ2

(
Γ′b(λ2) + gs2Γ′s(λ2)

)
− gs2 (α + β)

]
y + (α + β)λ2gs2µ

′(π1)Γ′s(λ2)

}
(8.42)
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It follows that this equilibrium is locally stable if and only if the following

conditions are satisfied:

Φ(λ2) < α (8.43)

Θs(π1) < α + β (8.44)

K < 0 (8.45)

gs2
[
(α + β)− λ2Γ′s(λ2)

]
− λ2Γ′b(λ2) > (α + β)λ2gs2Γ′s(λ2)/K (8.46)

It is noteworthy that this equilibrium will only be attainable if 0 < λ2 = Γ−1
s (α+

β) < 1, for which it is necessary and sufficient to have Γs(0) > α + β > Γs(1).

On a different note, if we assume that the good equilibrium is stable, then not

only we have Θs(π1) < α+ β but also Γs(λ1) < α+ β = Γs(λ2), which shows us

that λ1 > λ2 since Γs is a decreasing function. Since Φ is an increasing function,

we have that α = Φ(λ1) > Φ(λ2), so the first two conditions (8.43) and (8.44)

for stability of this equilibrium are satisfied.

3. The characteristic polynomial at the equilibrium (0, λ3, 0, 0, π1) is

p3(y) =
(

Φ(λ3)− α− y
)(

Θs(π1)− (α + β)− y
)(

Γs(λ3)− (α + β)− y
)

×
(
y2 −Ky − λ3µ

′(π1)Γ′b(λ3)
)

(8.47)

Accordingly, local stability is guaranteed if and only if the following conditions
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are satisfied:

Φ(λ3) < α (8.48)

Θs(π1) < α + β (8.49)

Γs(λ3) < α + β (8.50)

K < 0 (8.51)

Recalling that the employment level for this equilibrium is

λ3 = Γ−1
b

(
Γb(λ1)− (α + β)ω1

)
> λ1,

we have that

Φ(λ3) > Φ(λ1) = α,

which shows that this equilibrium is locally unstable whenever the good equi-

librium is stable.

4. The Jacobian matrix at the equilibrium (0, 0, 0, 0, π4) is diagonal, hence we

can identify the eigenvalues at the diagonal and conclude that local stability is

equivalent to the following conditions:

µ(π4) < α + β (8.52)

Γs(0) < µ(π4) (8.53)

Θs(π4) < µ(π4) (8.54)

r + µ′(π4)(1− π4 − rν) < µ(π4) + Θ′b(π4) (8.55)

These inequalities can only be satisfied simultaneously if Γs(0) < α + β.
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5. The characteristic polynomial at the equilibrium (0, 0, 0, τ s5, π5) is

p5(y) =
[
y2 − y

(
r + µ′(π5)(1− π5 − rν)−Θs(π5)−Θ′b(π5)− gT5Θ

′
s(π5)

)
− gT5Θs(π5)µ′(π5)

]
×
(

Φ(0)− α− y
)(

Θs(π5)− (α + β)− y
)(

Γs(0)−Θs(π5)− y
)
,

(8.56)

from which we can derive the necessary and sufficient conditions for local sta-

bility:

Θs(π5) < α + β (8.57)

Γs(0) < Θs(π5) (8.58)

r + µ′(π5)(1− π5 − rν) < Θs(π5) + Θ′b(π5) + τ s5Θ′s(π5) (8.59)

τ s5Θs(π5) < 0 (8.60)

Since τs(0) ≥ 0, this equilibrium can only be attained if τ s5 > 0. In that case,

we need Θs(π5) < 0, for it to be locally stable, which would then force Γs(0) to

be negative. Since this is not economically meaningful, we can conclude that

this equilibrium will always be locally unstable to all effects and purposes.

6. The characteristic polynomial at the equilibrium (0, 0, gs6, 0, π6) is

p6(y) =
[
y2 − y (r + µ′(π6)(1− π6 − rν)− Γs(0)−Θ′b(π6)) y + Γs(0)gS6

µ′(π6)
]

×
(

Φ(0)− α− y
)(

Γs(0)− (α + β)− y
)(

Θs(π6)− Γs(0)− y
)

(8.61)

Therefore, this equilibrium is locally stable if and only if the following conditions
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are satisfied:

Γs(0) < α + β (8.62)

Θs(π6) < Γs(0) (8.63)

r + µ′(π6)(1− π6 − rν) < Γs(0) + Θ′b(π6) (8.64)

gs6Γs(0) > 0 (8.65)

8.1.2 Infinite-valued equilibria

Our original motivation to introduce a government sector was to prevent the econ-

omy from reaching the bad equilibrium (5.20) in the Keen model without government.

Because this equilibrium is characterized by infinitely negative profits caused by ex-

plosive private debt, we focus on the cases where π → −∞.

Making the change of variable u = eπ, we obtain the system

ω̇ =ω[Φ(λ)− α]

λ̇ =λ[µ(log u)− α− β]

ġs =gs[Γs(λ)− µ(log u)]

τ̇s =τs [Θs(log u)− µ(log u)]

u̇ =u

[
− ω

(
Φ(λ)− α

)
− r
(
νµ(log u) + νδ − log u

)
+ (1− ω − log u)µ(log u)

+ Γb(λ)−Θb(log u) + gsΓs(λ)− τsΘs(log u)

]
(8.66)
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The Jacobian matrix for this system is



Φ(λ)− α ωΦ′(α) 0 0 0

0 µ(log u)− α− β 0 0 λµ′(log u)/u

0 gsΓ
′
s(λ) Γs(λ)− µ(log u) 0 −gsµ′(log u)/u

0 0 0 Θs(log u)− µ(log u) τ
s
[Θ′s(log u)− µ′(log u)]/u

J5,1(λ, u) J5,2(λ, gs, u) uΓs(λ) −uΘs(log u) J5,5(ω, λ, gs, τs , u)



,

where

J5,1(u, λ) =− u(Φ(λ)− α + µ(log u))

J5,2(u, λ, gs) = u(gsΓ
′
s(λ) + Γ′b(λ)− ωΦ′(λ))

J5,5(ω, λ, gs, τs , u) =− log u[µ(log u)− r + µ′(log u)] + Γb(λ)−Θb(log u)

+ r [1− νµ(log u)− νδ − νµ′(log u)] + gsΓs(λ)− τsΘs(log u)

− ω [Φ(λ)− α + µ(log u) + µ′(log u)] + µ′(log u)

−Θ′b(log u)− τsΘ′s(log u)

We can see that (ω, λ, gS2 , gT2 , u) = (0, 0, 0, 0, 0) is an equilibrium point for (8.66),

since all terms inside square brackets in the right-hand side of (8.66) approach con-

stants as u → 0+, with the exception of log u, for which we have that u log u → 0.

Assuming further that

Γb,Γs ∈ C1[0, 1] (8.67)

139



Bernardo R. C. da Costa Lima – PhD Thesis – McMaster University – Dept. of Math and Stats

we then have that the Jacobian at this equilibrium becomes

Φ(0)− α 0 0 0 0

0 µ(−∞)− α− β 0 0 ∗

0 0 Γs(0)− µ(−∞) 0 ∗

0 0 0 Θs(−∞)− µ(−∞) ∗

0 0 0 0 ∞ · (µ(−∞)− r)


.

where ∗ denotes any value, and we have replaced limu→0+ [− log(u)] by∞. Recall that

we assumed in (5.9), (8.7), and (8.8) that the functions κ, θb and θs have horizontal

asymptotes satisfying θs(−∞) < µ(−∞). Local stability is then guaranteed if, in

addition to the standard requirements (3.17), (5.9), (5.33), and the new condition

(8.8), we impose that

Γs(0) < µ(−∞) (8.68)

That is, the bad equilibrium (ω, λ, gs, τs, u) = (0, 0, 0, 0, 0) fails to be locally stable

whenever condition (8.68) is violated, which is easy to achieve in practice, since µ(−∞)

is in general very small. This constitutes our first positive result regarding government

intervention.

Unfortunately, this is not the only plausible equilibrium for the extended system

(8.14) corresponding to the bad equilibrium (5.20) in the Keen model without gov-

ernment. Namely, allowing Γs(0) ≥ µ(−∞) in (8.66) gives rise to the possibility that

gs → ±∞, depending on the initial condition gs(0). To investigate these other possi-

bilities we make a second change of variables v = 1/gs and x = gs/π, which leads to
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the modified system

ω̇ =ω [Φ(λ)− α]

λ̇ =λ

[
µ

(
1

vx

)
− α− β

]
v̇ =v

[
µ

(
1

vx

)
− Γs(λ)

]
τ̇s =τs

[
Θs

(
1

vx

)
− µ

(
1

vx

)]
ẋ =x

[
Γs(λ)(1− x)− r + vx

(
ω(Φ(λ)− α) + rνµ

(
1

vx

)
+ rνδ

−(1− ω)µ

(
1

vx

)
+ Θb

(
1

vx

)
+ τsΘs

(
1

vx

)
− Γb(λ)

)]
.

(8.69)

We then see that (ω, λ, v, τs , x) = (0, 0, 0±, 0, 0∓) are equilibria for (8.69) since all

terms in the square brackets on the right-hand side of (8.69) approach constant values

as v → 0± and x → 0∓. Recalling (5.10) and (8.9), the associated Jacobian matrix

for these fixed points is

J =



Φ(0)− α 0 0 0 0

0 µ(−∞)− α− β 0 0 0

0 0 µ(−∞)− Γs(0) 0 0

0 0 0 Θs(−∞)− µ(−∞) 0

0 ∗ ∗ 0 Γs(0)− r


(8.70)

Therefore, local stability for these equilibria is guaranteed by (3.17), (5.9), (8.8)

and the new condition

µ(−∞) < Γs(0) < r. (8.71)

If we assume that Γs(0) 6= 0, two other possible equilibria for (8.69) are given by

(ω, λ, v, τs , x) =

(
0, 0, 0±, 0,

Γs(0)− r
Γs(0)

)
,
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which are achievable provided either (i) gs(0) > 0 and Γs(0) < r (so that v → 0+ and

π → −∞), or (ii) gs(0) < 0 and Γs(0) > r (so that v → 0− and π → −∞). The

associated Jacobian matrix for these fixed points is

J =



Φ(0)− α 0 0 0 0

0 µ(−∞)− α− β 0 0 0

0 0 µ(−∞)− Γs(0) 0 0

0 0 0 Θs(−∞)− µ(−∞) 0

0 ∗ ∗ 0 r − Γs(0)


(8.72)

Therefore, local stability for these equilibria is guaranteed by (3.17), (5.9), (5.33),

(8.8) and Γs(0) > r.

The case Γs(0) = 0 allows for the possible equilibrium (ω, λ, v, τs , x) = (0, 0, 0±, 0, 0),

depending on the sign of initial condition gs(0), with associated Jacobian matrix

J =



Φ(0)− α 0 0 0 0

0 µ(−∞)− α− β 0 0 0

0 0 µ(−∞)− Γs(0) 0 0

0 0 0 Θs(−∞)− µ(−∞) 0

0 ∗ ∗ 0 0


,

(8.73)

so that its local stability can never be guaranteed.

We summarize the different results for infinite–valued equilibria in the next propo-

sition.

Proposition 8.1. If, in addition to the standing assumptions (3.16)–(3.18), (5.8)–

(5.10), (8.5)–(8.9), we have that (8.67) holds, then the following are the infinite-valued

equilibria of (8.14) corresponding to the bad equilibrium (5.20) for a Keen model
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without government:

(ω, λ, gs, τs , π) = (0, 0, 0, 0,−∞) (8.74)

(ω, λ, gs, τs , π) = (0, 0,+∞, 0,−∞) (8.75)

(ω, λ, gs, τs , π) = (0, 0,−∞, 0,−∞) (8.76)

Assuming additionally that (5.33) is satisfied, the stability of these equilibria depend

on stimulus government subsidies gs as follows:

(a) When gs(0) > 0 (stimulus):

(i) if Γs(0) < µ(−∞), then equilibrium (8.74) is locally stable, equilibrium

(8.75) is achievable but unstable, and equilibrium (8.76) is unachievable.

(ii) if µ(−∞) < Γs(0) < r, then equilibrium (8.74) is unstable, equilibrium

(8.75) is achievable and locally stable, and equilibrium (8.76) is unachievable.

(iii) if r < Γs(0), then equilibrium (8.74) is unstable, equilibrium (8.75) is achiev-

able and unstable, and equilibrium (8.76) is unachievable.

(b) When gs(0) < 0 (austerity):

(i) if Γs(0) < µ(−∞), then equilibrium (8.74) is locally stable, equilibrium

(8.75) is unachievable, and equilibrium (8.76) is achievable but unstable.

(ii) if µ(−∞) < Γs(0), then equilibrium (8.74) is unstable, equilibrium (8.75) is

unachievable, and equilibrium (8.76) is achievable and locally stable.

In other words, under a stimulus regime (gs(0) > 0), any achievable equilibria

with π → −∞ becomes unstable provided Γs(0) > r. On the other hand, under an

austerity regime (gs(0) < 0), there is no value of Γs(0) that eliminates the possibility

of local stability from all achievable equilibria with π → −∞.
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8.2 Persistence results

As it is typical in persistence analysis, although we are primarily interest in preventing

the crisis situation characterized by the bad equilibrium, our first result will clear the

concern of exploding positive profits.

Proposition 8.2. If τs(0) ≥ 0, and conditions (5.8),(5.9) are satisfied, then the

system described by (8.14) is e−π-UWP.

Proof. Showing this consists of demonstrating that

lim sup e−π > ε

for some ε > 0, which is equivalent to saying that

lim inf π < m

for some m ∈ R. We are going to show this by contradiction, so assume that

lim inf π > m for any m, as large (and positive) as we want. We can then find a

t0 such that π(t) > m for all t ≥ t0.

First, we can then bound employment from below since for t ≥ t0 we have

λ̇/λ = µ(π)− α− β ≥ µ(m)− α− β

which is positive for m large enough. That means that λ(t) > λ(t0)e(µ(m)−α−β)(t−t0)

for all t > t0.

Consequently, there exists t1 > t0 for which Φ(λ(t1)) > α and thus

ω̇/ω = Φ(λ)− α
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will be positive. We then have that

ω(t) ≥ ω(t1) exp [Φ(λ(t1))− α]

Next, for t ≥ t1, the government subsidies dynamics satisfy

ġs/gs = Γs(λ)− µ(π) ≤ Γs(λ(t1))− µ(m)

which can be made negative for m large enough. Consequently,

|gs(t)| ≤ |gs(t1)| exp [(Γs(λ(t1))− µ(m))(t− t1)]

for all t > t0.

Finally, one can choose m big enough such that κ(m) ≥ 0, θb(m) ≥ 0, θs(m) ≥ 0,

and µ(m) > r – possible because of (5.9) – allowing us to find the following bound

for π̇, valid for all t > t1:

π̇ = −ω[Φ(λ)− α]− r(κ(π)− π) + (1− ω − π)µ(π) + Γb(λ)−Θb(π) + gsΓs(λ)− τsΘs(π)

≤ π [r − µ(m)]− ω(t1)e[Φ(λ(t1))−α](t−t1) [Φ(λ(t1))− α] + Cm,

(8.77)

where Cm = Γb(λ(t0)) + (gs(t0))+ Γs(λ(t0)) is a positive constant. Consequently,

Gronwall’s inequality gives the following bound, valid for any t > t1

π(t) ≤ π(t1)e−(µ(m)−r)(t−t1) +
Cm

µ(m)− r
(
1− e−[µ(m)−r](t−t1)

)
− ω(t1) [Φ(λ(t1))− α]

[Φ(λ(t1))− α] + [µ(m)− r]
(
e[Φ(λ(t1))−α](t−t1) − e−[µ(m)−r](t−t1)

) (8.78)

From (3.18), we can choose t1 appropriately such that Φ(λ(t1))− α ≥ µ(+∞)− r

and thus the RHS of (8.78) converges to −∞ as t increases, which provides us with

a contradiction.
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Our core results are presented in the next two propositions. We first show that

government intervention can achieve uniformly weak persistence of the functional eπ

even when the bad equilibrium for the model without government is locally stable.

Proposition 8.3. Suppose that the structural conditions (3.16)–(3.18), (5.8)–(5.10)

and (8.5)–(8.9) are satisfied, along with the local stability condition (5.33) for the

bad equilibrium of the Keen model (5.7) without government. Assume further that

gs(0) > 0. Then the model with government (8.14) is eπ-UWP if either of the following

conditions is satisfied:

(1) Γs(0) > r, or

(2) λΓb(λ) is bounded below as λ→ 0.

Proof. We prove it by contradiction. If lim supt→∞ π(t) ≤ −m for any given large

m > 0, there exists t0 ≥ 0 such that π(t) ≤ −m for t > t0. From the equation for λ̇,

it follows that

λ(t) ≤ λ(t0)e(t−t0)(µ(−m)−α−β),

for t > t0. Choosing m > 0 large enough so that µ(−m) < α + β (recall condition

(5.9)), we get that for any small ε > 0, there exists t1 > t0 such that λ(t) < ε for

t > t1. From the equation for ω̇, this readily implies that

ω(t) < ω(t1)e(t−t1)(Φ(ε)−α),

for t > t1. Again, we may choose ε > 0 sufficiently small that Φ(ε) < α (recall

conditions (3.16) and (3.17)). Hence, there exists t2 > t1 > t0 such that ω(t) < ε for

t > t2. Finally, condition (8.8) guarantees that we can choose m large enough such

that

Θs(π)− µ(π) < 0, ∀π ≤ −m.
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It then follows from the equation for τ̇s that there exists t3 > t2 > t1 > t0 such that

τs(t) < ε for t > t3. In other words, we can bound ω, λ and τs by ε for t large enough.

At this point, we need to consider the hypothesis Γs(0) > r and λΓb(λ) bounded

separately. Assume first that Γs(0) > r. Since Γ is a decreasing function, we can

immediately see from the equation for ġs that

ġs
gs

= Γs(λ)− µ(π) > Γs(ε)− µ(π),

for t > t1. Moreover, since Γs(0) > r > µ(−∞) (see condition (5.33)), we can choose

ε small enough and/or m big enough such that Γs(ε) > µ(−m). Accordingly, for any

t > s > t1, we have that

gs(t) > gs(s)e
(t−s)[Γs(ε)−µ(−m)].

Using the equation for π̇ we have:

π̇ =− ω[Φ(λ)− α]− r[νµ(π) + νδ − π] + (1− ω − π)µ(π) + Γb(λ) + gsΓs(λ)−Θb(π)− τsΘs(π)

=− ω[Φ(λ)− α]− rκ(π) + π(r − µ(π)) + (1− ω)µ(π) + Γb(λ) + gsΓs(λ)−Θb(π)− τsΘs(π)

>− rmax{|κ(−∞)|, |κ(−m)|}+ π(r − µ(−∞))−max{|µ(−∞)|, |µ(−m)|}+ Γb(ε)

+ Γs(ε)gs(t3)e(t−t3)[Γs(ε)−µ(−m)] −Θb(−m)− εmax{|Θs(−∞)|, |Θs(−m)|}

=C + Aπ +DeEt

(8.79)

where C is finite and does not depend on t, D = Γs(ε)gs(t3)e−t3(Γs(ε)−µ(−m)) > 0 ,

A = r − µ(−∞) > 0, and E = Γs(ε)− µ(−m) > 0. Consequently, for t > t3, we have

that π(t) > y(t), where y(t) is the solution of

ẏ = C + Ay +DeEt, y(t3) = π(t3) (8.80)
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that is,

y(t) = π(t3)eA(t−t3) +
C

A

(
eA(t−t3) − 1

)
+

D

E − A
eEt3

(
eE(t−t3) − eA(t−t3)

)
. (8.81)

At last, since Γs(0) > r, we can choose ε sufficiently small and m sufficiently large

such that

E − A = Γs(ε)− r + µ(−∞)− µ(−m) > 0,

which leads us to conclude that eEt dominates the solution y(t) when t→∞, that is,

lim
t→∞

y(t) =
D

E − A
eEt = +∞.

Yet, since π(t) > y(t) for t > t3, we must have also π(t)
t→∞−−−→ +∞, which contradicts

the fact that π(t) ≤ −m for t > t0.

Alternatively, assume now that λΓb(λ) is bounded from below as λ→ 0. We can

still bound ω, λ and τs by ε for t large enough as before. Moreover, since λΓb(λ) > L

for some positive L as λ → 0, we now have that Γb(λ) > Γb(λ)λ/ε > L/ε. From the

equation for π̇ we then have

π̇ =− ω[Φ(λ)− α]− r[νµ(π) + νδ − π] + (1− ω − π)µ(π) + Γb(λ) + gsΓs(λ)−Θb(π)− τsΘs(π)

=− ω[Φ(λ)− α]− rκ(π) + π(r − µ(π)) + (1− ω)µ(π) + Γb(λ) + gsΓs(λ)−Θb(π)− τsΘs(π)

>− rmax{|κ(−∞)|, |κ(−m)|}+ π(r − µ(−∞))−max{|µ(−∞)|, |µ(−m)|}+ L/ε

−Θb(−m)− εmax{|Θs(−∞)|, |Θs(−m)|}

=C̃(ε) + Ãy

(8.82)

where C̃ can be made arbitrarily large by choosing ε sufficiently small, while Ã =

r − µ(−∞) > 0. Therefore, for t > t3, we have that π(t) ≥ y(t), where y(t) is now
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the solution of

ẏ(t) = C̃ + Ãy, y(t3) = π(t3)

that is,

y(t) =

(
C̃(ε) + Ãy(t3)

)
eÃ(t−t3) − C̃

Ã
.

We can then choose ε small enough such that C̃(ε)+Ãy(0) > 0 and hence limt→∞ y(t) =

+∞. But this implies that π(t)
t→∞−−−→ +∞, which again contradicts the fact that

π(t) ≤ −m for t > t0.

Although profits play a key role in the model, from the point of view of economic

policy, arguably the most important variable in (8.14) is the rate of employment. Our

next and final result shows that under slightly stronger conditions we can still obtain

uniformly weak persistence with respect to the functional λ itself. Before stating it,

define the function

h(x) = −r[νµ(x) + νδ − x] + (1− x)µ(x) + Γb(0)−Θb(x), (8.83)

and observe that it has the the properties:

(i) h(π1) = ω1(α + β) + Γb(0)− Γb(λ1) > 0,

(ii) lim
x→±∞

h(x) = −∞, and

(iii) max[h(π)] < +∞.

Proposition 8.4. Suppose that the structural conditions (3.16)–(3.18), (5.8)–(5.10)

and (8.5)–(8.9) are satisfied, along with the local stability condition (5.33) for the

bad equilibrium of the Keen model (5.7) without government. Assume further that

gs(0) > 0. Then the system (8.14) is λ-UWP if either of the following four conditions

is satisfied:

(1) τs(0) = 0 and Γs(0) > max{r, α + β}, or
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(2) τs(0) = 0 and λΓb(λ) is bounded below as λ→ 0, or

(3) τs(0) = 0, r < Γs(0) ≤ α + β, and h(x) > 0 whenever µ(x) ∈ [Γs(0), α + β], or

(4) Γs(0) > max{r, α + β}, Θs(−∞) < 0, Θs(π1) < α + β, and Θs is convex.

Proof. We prove the result by contradiction again. If lim supt→∞ λ(t) ≤ ε for any

ε > 0, then there exists t0 > 0 such that λ(t) ≤ ε for t > t0. Since we can always

choose ε small enough so that Φ(ε) − α < 0, it follows from the equation for ω̇ as

before that there exists t1 > t0 such that ω(t) < ε for all t > t1.

For items (1) and (2), observe that it follows from UWP of eπ obtained in Propo-

sition 8.3 that we can find a large m1 > 0 such that lim supt→∞ π(t) > −m1. In

addition, we have that lim inft→∞ π < µ−1(α + β) = m2, since otherwise λ cannot

converge to zero and there is nothing left to prove. Let m = max{m1,m2}.

If Γs(0) > max{r, α + β}, we see from the equation for λ̇ that

exp

[∫ t

t1

µ(πs)ds

]
<

ε

λ(t1)
e(α+β)(t−t0) ∀t > t1,

which implies that

gs(t) >
λ(t1)gs(t1)

ε
exp [(Γs(ε)− (α + β)) (t− t1)] ∀t > t1

In other words, given any large L > 0, provided we choose ε sufficiently small so that

Γs(ε) > α + β, there exists t2 > t1 such that gs(t) > L for t > t2. Alternatively, if

λΓb(λ) is bounded below as λ→ 0, given any large L > 0, we can choose ε sufficiently

small so that Γb(λ) > L for λ < ε (since Γb(λ) > L0/λ > L0/ε1 for some L0 > 0).

In either case, we can find ε > 0 small enough and/or t2 > t1 such that

−ω[Φ(λ)−α]−r[νµ(π)+νδ−π]+(1−ω−π)µ(π)+Γb(λ)+gsΓs(λ)−Θb(π) > ε (8.84)

for all ω ∈ [0, ε], λ ∈ [0, ε], π ∈ [−m,m] and t > t2. Since lim supπ > −m and
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lim inf π < m, we can find t3 > t2 such that π(t3) ∈ (−m,m), from which it follows

from (8.84) and the equation for π̇ that π̇(t3) > 0. Furthermore, π̇(t) > 0 for all t > t3

with π(t) ≤ m. Hence, there exists t4 > t3 such that π(t4) = m and π(t) > m for all

t > t4. But this contradicts the fact lim inf π < m, and UWP of λ follows.

For item (3), we can again find a sufficiently small ε and a sufficiently large t0 > 0

such that ω(t) < ε and λ(t) < ε for all t > t0, and

−ω[Φ(λ)− α]− r[νµ(π) + νδ − π] + (1− ω − π)µ(π) + Γb(ε) + gsΓs(ε)−Θb(π) > ε

for all ω ∈ [0, ε], λ ∈ [0, ε] and π in the interval such that Γs(0) ≤ µ(π) ≤ α + β. We

use the fact that Γs(0) > r, which implies eπ − UWP , to obtain that π does enter

the interval [−m,m], for some large m ≥ µ−1(α + β)), at some instant t1 > t0. But

since π̇(t) > ε whenever π(t) lies in the interval such that Γs(0) ≤ µ(π) ≤ α + β),

this in turn implies that −m < π < µ−1(Γs(0)) for all t > t1, because otherwise

π > µ−1(α + β) for all large t and λ(t) could not go to zero. However, µ(π) < Γs(0)

for all large t implies that gs(t) can be made arbitrarily large and we have that (8.84)

holds, which again leads to a contradiction.

For item (4), let τs(0) > 0, since otherwise this reduces to item (1) and there is

nothing to prove. We start by defining v = τs
gs

and observing that

v̇

v
= Θs(π)− Γs(λ).

We can write π̇ in terms of v and h (defined in (8.83)) as

π̇ = −ω[Φ(λ)− α]− ωµ(π) + h(π) + Γb(λ)− Γb(0) + gs [Γs(λ)− vΘs(π)] (8.85)

Let us now choose ε small enough such that Φ(ε) < α, Γs(ε) > α + β and

Γs(ε)
Γs(ε)− 2ε

Γs(0) + 2ε
> Θs(π1), (8.86)
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which is possible because by hypothesis Θs(π1) < α + β < Γs(0).

There must then exists some t0 > 0 such that λ(t) ≤ ε and ω(t) ≤ ε for all t > t0.

From UWP of eπ, we can find m > 0 large enough such that lim sup π > −m and

lim inf π < m. Let us choose m large enough such that −m < Θ−1
s (0) and

Γs(ε)− 2ε

Γs(0) + 2ε
Θs(m) > Γs(0).

Using the equations for λ̇ and ġs, it is straightforward to see that

εgs(t) > gs(t0)λ(t0)e[Γs(ε)−(α+β)](t−t0) ∀t > t0, (8.87)

which grows exponentially since Γs(ε) > α+ β. Accordingly, we can find t1 > t0 such

that:

(i) εgs(t) > ε [α− Φ(0)− µ(−∞)] + maxπ∈R[h(π)] and

(ii) εgs(t) > εµ(m) + maxπ∈[−m,m] |h(π)|+ Γb(0)− Γb(ε) and

(iii) εgs(t) >
Γs(0)2

4Θ′s(−m)
and

(iv) εgs(t) >
Θs(m)[Θs(m)−Γs(ε)]

Θ′s(−m)

for all t > t1. As a result, π̇ can be globally bounded from above by

π̇ < ε [α− Φ(0)− µ(−∞)] + max[h(π)] + gs[Γs(0)− vΘs(π)] (8.88)

< gs [ε+ Γs(0)− vΘs(π)] (8.89)
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for all t > t1. In addition, we have that π̇ can be locally bounded from below by

π̇ > −εµ(m)− max
π∈[−m,m]

|h(π)|+ Γb(ε)− Γb(0) + gs[Γs(ε)− vΘs(π)] (8.90)

> gs [−ε+ Γs(ε)− vΘs(π)] (8.91)

for all t > t1 such that π(t) ∈ [−m,m]. We can therefore conclude that, for t > t1 and

π(t) ∈ [−m,m], if vΘs(π) ≥ Γs(0) + 2ε, then π̇ ≤ −εgs and if vΘs(π) ≤ Γs(ε) − 2ε,

then π̇ ≥ εgs.

Moreover, we can globally bound v̇ from both sides as

Θs(π)− Γs(0) <
v̇

v
< Θs(π)− Γs(ε), (8.92)

so that π < Θ−1 (Γs(ε)) implies v̇ < 0, whereas π > Θ−1 (Γs(0)) implies v̇ > 0.

Observe further that lim inf π ≥ Θ−1
s (0), because when π ∈ [−m,Θ−1

s (0)] the lower

bound for π̇ becomes strictly positive for t > t1, forcing π to grow higher than Θ−1
s (0).

We can therefore assume, without loss of generality, that 0 ≤ Θs(π1) ≤ Θs(m), since

otherwise we would be done (π1 = µ−1(α+β) would be smaller than the lower bound

of the lim inf π and λ could not go to zero).

We shall now define the following regions, contained in [−m,m]× R+

• V :=
{

(π, v) ∈ [Θ−1
s (0),m]×

[
Γs(0)+2ε

Θs(m)
,+∞

)
: Γs(ε)− 2ε ≤ vΘs(π) ≤ Γs(0) + 2ε

}
;

• S :=
{

(π, v) ∈ [Θ−1
s (0),m]×

[
Γs(ε)−2ε

Γs(0)
, Γs(0)+2ε

Γ2(ε)

]
: Γ2(ε)− 2ε ≤ vΘs(π) ≤ Γs(0) + 2ε

}
;

• P := (Θ−1
s (Γs(0)) ,m]×

(
0, Γ2(0)+2ε

Θs(m)

)
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Figure 8.1: The part of the plane (Θs(π)× v) where one can see the invariant regions
V and S. Every solution that enters V eventually makes it to S and never leaves it.
The region P is not invariant. Yet, solutions that enter it must eventually leave it
and enter the basin of attraction of S, either directly, or after spending some time on
(π, v) ∈ [m,∞)× R+.

With the bounds on π̇ and v̇ obtained above, one can observe the following (valid

for t > t1):

(i) The flow through v = Γs(0)+2ε
Θs(π)

goes inwards the region V . To see this, define the

outward normal vector

~nu :=

 [Γs(0) + 2ε] Θ′s(π)

Θ2
s(π)


and notice that the flow going through the curve obeys
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~nu ·

 π̇

v̇

 = [Γs(0) + 2ε] Θ′s(π)π̇ + Θ2
s(π)v [Θs(π)− Γs(λ)]

= [Γs(0) + 2ε] Θ′s(π)π̇ + Θ2
s(π)

Γs(0) + 2ε

Θs(π)
[Θs(π)− Γs(λ)]

= [Γs(0) + 2ε] {Θ′s(π)π̇ + Θs(π) [Θs(π)− Γs(λ)]}

≤ [Γs(0) + 2ε] {−εΘ′s(π)gs + Θs(π) [Θs(π)− Γs(ε)]}

< [Γs(0) + 2ε]

{
−Θ′s(π)

Θs(m) [Θs(m)− Γs(ε)]

Θ′s(−m)
+ Θs(m) [Θs(m)− Γs(ε)]

}
< 0

(8.93)

(ii) the flow through v = Γs(ε)−2ε
Θs(π)

also goes inwards the region V . To see this, define

the outward normal vector

~nl := −

 [Γs(ε)− 2ε] Θ′s(π)

Θ2
s(π)


which yields

~nl ·

 π̇

v̇

 = − [Γs(ε)− 2ε] {Θ′s(π)π̇ + Θs(π) [Θs(π)− Γs(λ)]}

≤ − [Γs(ε)− 2ε] {εΘ′s(π)gs + Θs(π) [Θs(π)− Γs(0)]}

< − [Γs(ε)− 2ε]

{
Θ′s(π)

Γ2
s(0)

4Θ′s(−m)
− Γ2

s(0)

4

}
< 0

(8.94)

where we have bounded Θs(π) [Θs(π)− Γs(0)] by realizing that it is a quadratic

polynomial like y = x[x−Γs(0)] on x ∈ [0,Θs(m)], with minimum y = −Γ2
s(0)/4.
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(iii) the flow through the top side of P goes up. This is simply due to the fact that

if (π, v) ∈ P , then π > Θ−1
s (Γs(0)), which implies that v̇ > 0.

(iv) the flow through the left side of P goes inside P . To see this, notice that for π =

Θ−1
s (Γs(0)) and v < Γs(0)+2ε

Θs(m)
, we have that vΘs(π) < Γs(0)+2ε

Θs(m)
Γs(0) < Γs(ε)− 2ε,

hence π̇ > 0.

(v) once (π, v) ∈ V , there exists some t2 > t1 for which (π, v) ∈ S. One can be

convinced of this from the fact that if (π, v) ∈ V \S, then it must be either that

π < Θ−1
s (Γs(ε)), in which case v̇ < 0, or that π > Θ−1

s (Γs(0)), and hence v̇ > 0.

Either case, v̇ drives the solution towards S.

Finally, the last argument goes as follows. Once π enters [−m,m] (at time, say,

t̂), there exists some t2 > t1 for which π(t) > π̄1 for all t > t2. To see this, observe

that if (π(t̂), v(t̂)) is above the curve v = Θs(0)+2ε
Θs(π)

, then it must eventually enter the

region V , which then drives it to S at some future moment. If, however, (π(t̂), v(t̂))

starts below the curve v = Γs(ε)−2ε
Θs(π)

, then it might move to V , or P . If (π, v) enters V ,

we are done, as we know that it will eventually enter S and stay away from π̄1. If,

however, it enters either P , we are done as well, since from that region the solution

can either:

(i) leave P through its top side, entering the region of attraction of S, or

(ii) leave P through its right side, so π becomes bigger than m, while v continues

growing. From there, the solution must return to [−m,m] at some later time,
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at which it might return to P , or enter the region of attraction of V , eventually

leading it to S.

In other words, every solution must eventually converge to the region S, where

π > π̄1, which contradicts the facts that λ→ 0. Notice that it is crucial to this proof

to have an unbounded region V , so we can guarantee that solutions entering [−m,m]

from the right, with v bigger than Γs(0)+2ε
Θs(π)

will eventually enter the band and find

their way to the region S. Hence, the importance of having Θs(−∞) < 0. If this

was not the case, we would not be able to eliminate cyclic solutions starting from the

region P , exiting to (m,+∞)×R+, returning to [−m,m] above the band, completely

avoiding (v > Γs(0)+2ε
Θs(π)

for π ∈ [−m,m]), escaping to (−∞,m) × R+, returning to

[−m,m] under the band and then return to P , which would not contradict the fact

that λ→ 0.

8.3 Examples

In this section, we compare the behaviour of the solutions to the Keen model without

government (5.7) to the model with government (8.14) studied in this chapter. We

fixed the basic parameters according to (3.24), and chose the functions Φ and κ as in

(3.25) and (5.36), with parameters according to the following constraints

λ1 = 0.96, Φ(0) = −0.04, (8.95)

π1 = 0.16, κ′(π̄1) = 5, (8.96)

κ(−∞) = 0, κ(+∞) = 1 (8.97)

It is easily verified that the structural conditions (3.16)–(3.18), (5.8)–(5.10), (5.31),

(5.33) are satisfied for these functions, meaning that, in the absence of government

intervention, both the good and the bad equilibria are locally stable. The economy

must converge to either of them depending on how close to the good equilibrium the
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solution starts.

For the model with government (8.13), we use the functions

Γb(λ) = γ0(1− λ) (8.98)

Γs(λ) = γ1 − γ2λ
γ3 (8.99)

Θb(π) = θ0 + θ1e
θ2π (8.100)

Θs(π) = θ3 + θ4e
θ5π (8.101)

ge(π, λ) = (1− κ(π))(1− λ)γ4 (8.102)

calibrated to satisfy the following

ge(π1, λ1) = 0.20 (8.103)

gb1 = 0.004 (8.104)

τ b1 = 0.08 (8.105)

Γs(0) =

0.02 for a timid government,

0.20 for a responsive government

(8.106)

Γs(λ1) =
1

2
min {α + β,Γs(0)} (8.107)

Γ′s(λ1) = −0.5 (8.108)

lim
π→−∞

Θb(π) = −0.20 (8.109)

Θb(0) = 0 (8.110)

Θs(π̄1) =
1

2
(α + β) (8.111)

lim
π→−∞

Θs(x) = −0.20 (8.112)

Θs(0) = 0 (8.113)

The values of gb1 and ge(π1, λ1) were chosen according to the historical average of

government subsidies and expenditure in the United States, as seen on Figures 8.2–
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8.4. We chose the value of τ b1 slightly higher than the historical average of government

taxation as we believe that the dataset available illustrates a period of extremely low

taxation.

Figure 8.2: US Government subsidies over GDP.
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Figure 8.3: US Government taxes over GDP.

Figure 8.4: US Government expenditure over GDP.

We can again easily verify that the structural conditions (8.5)–(8.9) are satisfied.
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On top of that, conditions (8.38)–(8.41) hold as well, so that the good equilibrium

(ω, λ, gs, τs , π) = (ω1, λ1, 0, 0, π1) = (0.76067, 0.96, 0, 0, 0.16)

is locally stable. Moreover, we can verify that the conditions for stability of the other

finite-valued equilibria in (8.29) are easily violated for our choice of parameters, so

that none of them are locally stable.

As we have seen in Proposition 8.1, the stability of the infinite-valued equilibria in

the presence of government intervention depends crucially on the parameter Γs(0) =

γ1 corresponding to the maximum value of the stimulus subsidy function above.

It then follows from item (a) of Proposition 8.1 that in a stimulus regime, namely

for initial conditions with gs(0) > 0, equilibrium (8.74) is unstable in either case,

whereas equilibrium (8.75) is stable in the case of a timid government but unstable

in the case of a responsive government. On the other hand, it follows from item (b)

that in an austerity regime, that is for initial conditions with gs(0) < 0, equilibrium

(8.76) is locally stable in either case.

Moving to the persistence results in Section 8.2, observe that condition (1) of

Proposition 8.3 is satisfied in the case of a responsive government, but that neither

conditions in this proposition are satisfied in the case of a timid government. As a

result, provided gs(0) > 0, the responsive government above ensures uniformly weakly

persistence with respect to eπ, but the timid government does not.

Similarly, we can verify that condition (4) of Proposition 8.4 is satisfied by our

responsive government even when τs(0) > 0, but none of the conditions in this propo-

sition are satisfied by the timid government. Consequently, provided gs(0) > 0, the

responsive government above ensures uniformly weakly persistence with respect to λ,

whereas the timid government does not.

We illustrate these results in the next six figures. Choosing benign initial condi-

tions, that is to say, high wage share (90% of GDP), high employment rate (90%),

and low private debt (10% of GDP), we see in Figure 8.5 that the economy even-

161



Bernardo R. C. da Costa Lima – PhD Thesis – McMaster University – Dept. of Math and Stats

tually converges to the corresponding good equilibrium with or without government

intervention, even in the case of a timid government.
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Figure 8.5: Solution to the Keen model with and without a timid government for
good initial conditions.

As we move to worse initial conditions, that is lower wage share (75% of GDP),

lower employment rate (80%), and higher private debt (50% of GDP), we see in

Figure 8.6 that the “free economy” represented by the model without government

eventually collapses to the bad equilibrium of zero wage share, zero employment and

infinite private debt, whereas the model with a timid government is more robust and

eventually converges to the good equilibrium.

A timid government, however, is not capable of saving the economy from a crash

if the initial conditions are too extreme, for example a low wage share (75% of GDP),

low employment rate (75%) and extremely high level of private debt (500% of GDP),
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Figure 8.6: Solution to the Keen model with and without a timid government with
bad initial conditions.
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Figure 8.7: Solution to the Keen model with and without a timid government with
extremely bad initial conditions.
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Figure 8.8: Solution to the Keen model with and without a responsive government
with extremely bad initial conditions.
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Figure 8.9: Solution to the Keen model, starting close the good equilibrium point,
with positive (stimulus) and negative (austerity) government subsidies.
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Figure 8.10: Solution to the Keen model, starting far from the good equilibrium point,
with positive (stimulus) and negative (austerity) government subsidies.

as shown in Figure 8.7. On the other hand, a responsive government effectively brings

the economy from the severe crisis induced by these extremely bad initial conditions,

as shown in Figure 8.8.

Additionally, the effects of austerity measures are exemplified in Figures 8.9 and

8.10. For a healthy initial state, we see that the transient period suffers from the neg-

ative spending, compared to a positive stimulus, without any long term consequences.

Once we push the initial state further away from the good equilibrium, we can im-

mediately verify the disastrous consequences of austerity: the government focuses so

much on reducing public debt that it throws the economy into a path of eventual

collapse.
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8.4 Concluding remarks

We proposed a macroeconomic model in which government intervention is a powerful

tool to prevent economic meltdowns where unemployment soars and profits plunge.

The model without government is essentially the one proposed by Keen in [Kee95],

further analyzed in [GCL12]. There, firms make investment decisions based on their

profit level: hight profits lead to heavier investments which accelerate the economy

at the cost of increased private debt levels.

The extended model is not entirely novel, as Keen had already proposed an exten-

sion where government was present in [Kee95]. Unfortunately, there was no distinction

between direct subsidies to firms and government expenditure in goods and services.

This contrast is crucial, while the former affects the profit share in (8.10), the latter

adds only to the output. This was eventually rectified in [Kee98], where Keen re-

stricted government spending to subsidies alone, which meant that government debt

no longer represented all government transactions. Rather, we explicitly model both

government subsidies in (8.3) and expenditures in (8.17).

We successfully show that any of the undesirable equilibria characterized by zero

employment, and zero wage share, on top of infinitely negative profit share, can

be made either unstable or unachievable with sufficiently high government subsidies

whenever close to full unemployment. More importantly, we prove that a government

willing to promptly intervene with enough subsidies and taxation policies prevents

the economy from remaining permanently trapped at arbitrarily low levels of employ-

ment and profits, no matter how extreme the initial conditions are. It may be that

stabilizing an unstable economy is too tall an order for the government sector, but

destabilizing a stable crises is perfectly possible.
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Chapter 9

Conclusion

In this thesis, we have explored several corners of macroeconomical modeling us-

ing dynamical systems. After reviewing the notion of stock flow consistency among

Minsky models in Chapter 2, we familiarized the reader with the double entry book

keeping framework that is necessary to guide any serious attempt of macroeconomical

modeling.

In Chapter 3 we carefully discuss the influential Goodwin model, where we make

our first contribution by proposing a non-linear Phillips curve which bounds the em-

ployment variable to the (0, 1) domain, providing the solution in terms of a Lyapunov

function. Chapter 4 discusses a novel extension with stochastic flavor. By introducing

random fluctuations in the dynamics of productivity, we obtain a continuous exten-

sion of the Goodwin model for which we examine several interesting properties. After

proving existence and almost surely uniqueness of solutions, we derive probabilistic

estimates based on the Lyapunov function derived for the Goodwin model. More

importantly, we show that every trajectory must indefinitely loop around a center

without ever converging to any point in the closure of the domain. We end the chap-

ter showing that when the volatility of the random noise is negligible, the solution is

approximately that of the Goodwin system plus a martingale term.

The mathematical formalization of Minsky’s Financial Instability Hypothesis is
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introduced in Chapter 5. To begin with, we perform local analysis, showing the

existence of two very distinct fixed points, which we intuitively call “good” and “bad”

(while also discarding some “ugly” ones). Their stability is shown to be guaranteed

under usual assumptions, meaning that a solution can converge to either of them

depending on how close to the both of them it starts. The basin of attraction of

the good equilibrium is obtained numerically, clearly showing that for large debt

levels, solutions seldom converge to the good equilibrium. We also specifically analyze

regimes of low interest rate in Chapter 6. Perturbation techniques similar to the

ones employed in Section 4.3, are used to suggest an approximate solution which is

then fully solved analytically. Its accuracy is verified through numerical examples,

confirming the expected restriction to finite time intervals. On a different direction,

we propose an extension of the Keen model where we relax the assumption that capital

projects are immediately developed. Once more, we perform local analysis verifying

the existence of the key equilibrium points. This time, however, we find that when

the average completion time of such projects rises beyond a first threshold value, the

good equilibrium loses is stability giving place to a stable limit cycle. As the average

time grows, so does the period of these cycles, until a second threshold is crossed and

these limit cycles cease to exist. This behavior is completely novel, as so far we had

only observed cycles in the zero-order solution of the approximate model in Chapter

6.

Perhaps our main contribution to macroeconomical theory lies in Chapter 8. Af-

ter proposing an extension to the Keen model with government intervention in a very

general setting, we proceed to study its many equilibria and their respective local

stability. The many equilibria labeled as “bad” for being represented by negative

exploding profits, with zero employment and wage share, are easily destabilized if the

government stimulus subsidies are designed to be responsive enough under adverse

conditions. Most significantly, we prove that under several mild conditions character-

izing a responsive government, the model is uniformly weakly persistent with respect
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to both profits and employment. In other words, when the government is willing

to act responsively, capitalists’ profits and employment are guaranteed to never be

trapped under arbitrarily low levels, regardless of the initial state of the system.

We believe that this thesis paves the road for a variety of extensions. Among the

many future projects one could be interested in, we suggest a few. For instance, one

can model prices through a dynamical equation designed to converge to an equilib-

rium price, which itself could be obtained through supply-demand arguments. Such

a model should be able to answer questions regarding the effect of inflation in an

economy, reproducing stylized scenarios such as stagflation, or even hyperinflation.

Alternatively, stock prices could be introduced by allowing firms and/or banks to

capitalize themselves by issuing stocks. These should then take part in the portfo-

lio choice of households, who should take into consideration the risk/return profile

of all the instruments available to them. Further down the road, one could enlarge

the model by adding securitization, issued by special purpose vehicles, and study the

effect of structured products, such as the stigmatized mortgage-backed securities, in

the whole economy. This thesis provides a useful toolbox for a thorough analysis of

any of the extensions suggested above. Even though one could argue that none of

the ideas just proposed are intrinsically novel, the depth and precision that one could

reach with the apparatus presented here would certainly be so.
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Appendix A

Stochastic Dynamical Systems

Toolbox

Consider the n-dimensional stochastic process ~xt, with dynamics

d~xt = ~b(t, ~xt)dt+
k∑
r=1

σr(t, ~xt) d ~Wr(t) (A.1)

where W1(t),W2(t), · · · ,Wr(t) are mutually independent Brownian motions. The next

couple of results are Theorem 3.5, and Corollary 3.1 from [Kha12].

Theorem A.1. Assume that

||b(s, ~x)− b(s, ~y)||+
k∑
r=1

||σr(s, ~x)− σr(s, ~y|| ≤ B ||~x− ~y||

||b(s, ~x)||+
k∑
r=1

||σr(s, ~x)|| ≤ B(1 + ||~x||)

(A.2)

hold in every cylinder R+×{||~x|| < R}, for any R > 0. Moreover, suppose that there

exists a nonnegative function V ∈ C2 on the domain D such that for some constant
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c > 0

LV ≤ cV, (A.3)

VR = inf
||~x||>R

V (t, ~x)→∞ as R→∞ (A.4)

Then:

1. For every random variable ~x(t0) independent of the process Wr(t)−Wt(t0) there

exists a solution ~x(t) of (A.1) which is an almost surely continuous stochastic

process and is unique up to equivalence;

2. This solution is a Markov process whose Feller transition probability function

P (s, ~xs, t, A) is defined for t > s by the relation P (s, x, t, A) = P
[
~xs,~xs(t) ∈ A

]
,

where ~xs,~xs(t) is a solution of the equation

~xs,~xs(t) = ~xs +

∫ t

s

~b(u, ~xs,~xs(u) du+
k∑
r=1

∫ t

s

σr(u, ~x
s,~xs(u)) dWr(u) (A.5)

3. If the functions ~b(t, ~x) and ~σr(t, ~x) are independent of t, then the transition

probability function of the corresponding Markov process is time-homogeneous;

and if the coefficients are T -periodic in t, then the transition probability is T -

periodic.

Corollary A.1. Consider an increasing sequence of open sets (Dn) whose closure are

contained in D and such that
⋃
nDn = D. Suppose that in every cylinder R+×Dn the

coefficients ~b and ~σr satisfy conditions (A.2) and there exists a function V (t, ~x), twice

continuously differentiable in ~x and continuously differentiable in t in the domain

R+ ×D, which satisfies condition (A.3) and the condition

inf
t>0,~x∈D\Dn

V (t, ~x)→∞ as n→∞ (A.6)
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then the conclusion of Theorem A.1 holds provided that also P [~x(t0) ∈ D] = 1. More-

over, the solution satisfies the relation

P [~x(t) ∈ D] = 1 for all t ≥ t0 (A.7)

The next Theorem is a slightly more general version of the Corollary above, though

applied to the stochastic dynamical system 4.2.

Theorem A.2. Consider an increasing sequence of open sets (Dn) whose closure are

contained in D and such that
⋃
nDn = D. Assume that in each set Dn, the drift and

volatility coefficients of system (4.2) are Lipschitz and sub-linear functions. Assume

that there exists a function V(ω, λ, t) ∈ C2,1(D × R+) such that

LV(ω, λ, t) ≤ k1V(ω, λ, t) + k2 on D × R+ (A.8)

for some k1, k2 ∈ R+, and

inf
D\Dn

V(ω, λ, t)→∞ as n→∞ (A.9)

then the system (4.2) possesses a unique almost surely continuous regular solution for

(ω0, λ0) ∈ L0(D,F0) satisfying P [(ωt, λt) ∈ D] = 1 for all t ≥ 0.

Proof. The proof follows from applying Corollary A.1 with the function V = V+k2/k1,

for which we have

LV = L (V + k2/k1) = LV ≤ k1V + k2 ≤ k1 (V + k2/k1)

= k1V
(A.10)

Observe that condition (A.2) holds from the local Lipschitz and sub-linearity as-

sumptions on the drift and the volatility, while V (ω, λ, t) satisfies conditions (A.3)

and (A.6), immediately giving us the desired result.
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The next result is Theorem 3.9 from [Kha12], simply adapted to the notation of

Chapter 4.

Theorem A.3. Let (ωt, λt)t≥0 be a regular process in D, with (ω0, λ0) ∈ U , for some

U ⊂ D. Assume that there exists a function V (t, ω, λ) ∈ C1,2,2(R+ × U) verifying

LV (s, ω, λ) ≤ −f(s) (A.11)

where f(s) ≥ 0 and limt

∫ t
0
f(s) ds = +∞. Then (ωt, λt) exits the region U in finite

time P− a.s..
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XPPAUT Instructions

B.1 AUTO instructions for Figures 7.2 – 7.4

We used the following .ode file

#####################################

## keen_erlang.ode

#####################################

## EQUATIONS:

omega’=omega*(Phi(lambda)-alpha)

tan_lambda’=(1+tan_lambda^2)*PI*lambda*(g_Y-alpha-beta)

d’=Kappa(pi_n)-pi_n-d*g_Y

theta_[75..2]’=(n/tau)*(theta_[j-1]-theta_[j])-theta_[j]*g_Y

theta_1’=Kappa(pi_n)-theta_1*(n/tau+g_Y)

## ALIAS

lambda=atan(tan_lambda)/PI+0.5

pi_n=1-omega-r*d

theta_n=theta_75
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g_Y=n/tau/nu*theta_n-delta

phi0=(alpha*(1-lambda_eq)^2-Phi_min)/(1-(1-lambda_eq)^2)

phi1=phi0+Phi_min

kappa_eq=nu*(alpha+beta+delta)

kappa1=(kappa_U-kappa_L)/pi

kappa0=kappa_U-kappa1*pi/2

kappa2=kappa_pri*(1+tan((kappa_eq-kappa0)/kappa1)^2)/kappa1

kappa3=tan((kappa_eq-kappa0)/kappa1)-kappa2*pi_eq

aux auxLambda=atan(tan_lambda)/PI+0.5

aux auxTau=tau

## FUNCTIONS

Phi(u)=phi1/(1-u)^2-phi0

Kappa(u)=kappa0+kappa1*atan(kappa2*u+kappa3)

## PARAMETERS:

par tau=0.01,r=0.03,nu=3,alpha=0.025,beta=0.02,delta=0.01

par lambda_eq=0.96,Phi_min=-0.04

par pi_eq=0.16,kappa_pri=500,kappa_L=0,kappa_U=1

par n=75

## INITIAL CONDITIONS:

init omega=0.8366

init tan_lambda=7.916

init d=0.1137

init theta_[1..75]=0
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## XPP SETUP

@ meth=gear

@ total=200,dt=0.01,bounds=1e10

@ maxstor=2000000,back=white

done

The sequence of commands below produce the bifurcation diagram shown in Fig-

ures 7.2 – 7.4:

1. open the file keen erlang.ode;

2. integrate it once, through, (I)nitialconds, (G)o;

3. integrate it a couple more times, to make sure it converges and stabilizes at the

equilibrium: (I)nitialconds, (L)ast, twice;

4. open AUTO: (F)ile, (A)uto;

5. change the axis to properly accommodate the diagram that will follow: (A)xes,

h(I)-lo: Xmin=0.03, Ymin=0.83, Xmax=0.06, Ymax=0.845;

6. change the (N)umerics to Nmax=2000, Ds=0.0001, Dsmin=0.00005, Dsmax=0.0005,

Par Min=0, Par Max=0.1;

7. (R)un, (S)teady State;
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8. change the (N)umerics to Nmax=200, Ds=0.01, Dsmin=0.005, Dsmax=0.05;

9. (G)rab the (HB) point;

10. (R)un, (P)eriodic. (A)BORT if AUTO stops responding;

11. (F)ile, (P)ostscript to save the diagram;

12. (A)xes, (P)eriod: : Xmin=0.03, Ymin=0, Xmax=0.06, Ymax=1.3;

13. (F)ile, (P)ostscript to save the diagram;

B.2 Brute-force diagram for Figure 7.5

The following code was used

#####################################

## keen_delay.ode

#####################################

## EQUATIONS:

omega’=omega*(Phi(lambda)-alpha)

tan_lambda’=(1+tan_lambda^2)*PI*lambda*(g_Y-alpha-beta)

d’=kappa(pi_n)-pi_n-d*g_Y

z’=z*(g_Y_d-g_Y)

## ALIAS
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lambda=atan(tan_lambda)/PI+0.5

pi_n=1-omega-r*d

pi_n_d=1-delay(omega,tau)-r*delay(d,tau)

pi_n_2d=1-delay(omega,2*tau)-r*delay(d,2*tau)

g_Y=kappa(pi_n_d)/nu*z-delta

g_Y_d=kappa(pi_n_2d)/nu*delay(z,tau)-delta

phi0 = (alpha*(1-lambda_eq)^2-Phi_min)/(1-(1-lambda_eq)^2)

phi1 = phi0+Phi_min

kappa_eq=nu*(alpha+beta+delta)

kappa1 = (kappa_U-kappa_L)/PI

kappa0 = kappa_U-kappa1*PI/2

kappa2 = kappa_pri*(1+tan((kappa_eq-kappa0)/kappa1)^2)/kappa1

kappa3 = tan((kappa_eq-kappa0)/kappa1)-kappa2*pi_eq

aux auxLambda=atan(tan_lambda)/PI+0.5

aux auxTau=tau

#aux auxG_Y=g_Y

#aux auxPi=pi_n

#aux auxPi_d=pi_n_d

#aux omega_d=delay(omega,tau)

#aux rd_d=r*delay(d,tau)

## FUNCTIONS

Phi(u)=phi1/(1-u)^2-phi0

Kappa(u)=kappa0+kappa1*atan(kappa2*u+kappa3)

## PARAMETERS:

par tau=0.04,r=0.03,,nu=3,alpha=0.025,beta=0.02,delta=0.01
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par lambda_eq=0.96,Phi_min=-0.04

par pi_eq=0.16,kappa_pri=500,kappa_L=0,kappa_U=1

## INITIAL CONDITIONS:

omega(0)=0.8366171

tan_lambda(0)=7.915815

d(0)=0.1127582

z(0)=0.9995501

init omega=0.836171

init tan_lambda=7.915815

init d=0.1127582

init z=0.9995501

## XPP SETUP

@ meth=qualrk4

@ total=150,delay=1,dt=1e-3,bounds=1e10,tol=1e-10

@ trans=100

@ maxstor=2000000,back=white

## POINCARE MAP SET UP:

@ poimap=section,poivar=t,poipln=1

## range set up

@ range=1, rangeover=tau, rangestep=2000

@ rangelow=0.03, rangehigh=0.06, rangereset=no

## STORAGE

@ output=bruteforce_KeenDelay_tau.dat

done

The above code was executed in silent mode, that is, through the command
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xppaut -silent keen_delay.ode

The output was then treated handle through the following R code

##########################

## bruteforce_keen_delay.R

## Author: Bernardo R. C. da Costa Lima

## Created: 13 Jun 2013

## Read data file created by xppaut and

## create pdf picture of brute force bifurcation diagram wrt tau

## for the Keen model with construction delay.

##########################

## read data

rawdata <- read.table("bruteforce_KeenDelay_tau.dat")

## define variables

time <- rawdata[,1]

omega <- rawdata[,2]

tau <-rawdata[,7]

## plot set up

pdf("keen_delay_bruteforce_tau_n_inf.pdf",width=10, height=10/1.62)

par(mar=c(4,4,2,0.5))

plot(tau,omega, type="p",

xlab=expression(paste(tau)),

ylab=expression(paste(omega)),

col="blue", pch=".", cex=1, ylim=c(0.83,0.845))

dev.off()

with the following console command
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R CMD BATCH --vanilla bruteforce_keen_delay.R

producing the desired pdf figure.
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Appendix C

Persistence Definitions

Let Φ(t, x) : R+ × X → X be the semiflow generated by a differential system with

initial values x ∈ X. For a nonnegative functional ρ from X to R+, we say

• Φ is ρ – uniformly strongly persistent (USP) if there exists an ε > 0 such that

lim inft→∞ ρ(Φ(t, x)) > ε for any x ∈ X with ρ(x) > 0.

• Φ is ρ – uniformly weakly persistent (UWP) if there exists an ε > 0 such that

lim supt→∞ ρ(Φ(t, x)) > ε for any x ∈ X with ρ(x) > 0.

• Φ is ρ – strongly persistent (SP) if lim inft→∞ ρ(Φ(t, x)) > 0 for any x ∈ X with

ρ(x) > 0.

• Φ is ρ – weakly persistent (WP) if lim supt→∞ ρ(Φ(t, x)) > 0 for any x ∈ X with

ρ(x) > 0.

As an example, consider the Goodwin model (3.12). From Chapter 3, we know

that the solution passing through the initial condition (ω0, λ0) satisfies the equation

(3.20).

The closed periodic orbits implied by this equation are shown in Figure 3.1. Re-

calling that π = 1− ω for this model, observe that ω remains bounded on each orbit,

so that lim inft→∞ exp(1−ω) > 0 and the system is eπ – strongly persistent. However,
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since the bound on ω can be made arbitrarily large by changing the initial conditions,

we see that the system is not eπ – uniformly strongly persistent. Finally, we see in

Figure 3.1 that ω becomes smaller than the equilibrium value ω infinitely often, re-

gardless of the initial conditions. Therefore, taking ε < exp(1 − ω) shows that the

system is eπ – uniformly weakly persistent. The exact same arguments show that the

Goodwin model (3.12) is λ–SP, λ–UWP, but not λ–USP.

For the Keen model without government intervention defined in (5.7) the situation

is less satisfactory. Whenever the conditions for local stability of the bad equilibrium

(5.20) are satisfied, we cannot have either λ or eπ persistence of any form, since initial

conditions sufficiently close to the bad equilibrium will necessarily lead to λ = eπ = 0

asymptotically.
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