Malliavin Calculus

Matheus Grasselli Tom Hurd
Department of Mathematics \& Statistics, McMaster University Hamilton, Ontario, Canada L8S 4K1

April, 2005

1 Introduction

2 Malliavin Calculus

2.1 The Derivative Operator

Consider a probability space (Ω, \mathcal{F}, P) equipped with a filtration $\left(\mathcal{F}_{t}\right)$ generated by a onedimensional Brownian motion W_{t} and let $L^{2}(\Omega)$ be the space of square integrable random variables.

Let $L^{2}[0, T]$ denote the Hilbert space of deterministic square integrable functions $h:[0, T] \rightarrow$ \mathbb{R}. For each $h \in L^{2}[0, T]$, define the random variable

$$
W(h)=\int_{0}^{T} h(t) d W_{t}
$$

using the usual Ito integral with respect to a Brownian motion. Observe that this is a Gaussian random variable with $E[W(h)]=0$ and that, due to the Ito isometry,

$$
E[W(h) W(g)]=\int_{0}^{T} h(t) g(t) d t=<h, g>_{L^{2}[0, T]}
$$

for all $h, g \in L^{2}[0, T]$.
The closed subspace $\mathcal{H}_{1} \subset L^{2}(\Omega)$ of such random variables is then isometric to $L^{2}[0, T]$ and is called the space of zero-mean Gaussian random variables.

Now let $C_{p}^{\infty}\left(\mathbb{R}^{n}\right)$ be the set of smooth functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with partial derivatives of polynomial growth. Denote by \mathcal{S} the class of random variables of the form

$$
F=f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right)
$$

where $f \in C_{p}^{\infty}$ and $h_{1}, \ldots, h_{n} \in L^{2}([0, T])$. Note that \mathcal{S} is then a dense subspace of $L^{2}(\Omega)$.

Definition 2.1 : For $F \in \mathcal{S}$, we define the stochastic process

$$
D_{t} F=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right) h_{i}(t)
$$

One can then show that $D F \in L^{2}(\Omega \times T)$.
So for we have obtained a linear operator $D: S \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega \times T)$. We can now extend the domain of D by considering the norm

$$
\|F\|_{1,2}=\|F\|_{L^{2}(\Omega)}+\left\|D_{t} F\right\|_{L^{2}(\Omega \times T)}
$$

We then define $D^{1,2}$ as the closure of \mathcal{S} in the norm $\|\cdot\|_{1,2}$. Then

$$
D: D^{1,2} \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega \times T)
$$

is a closed unbounded operator with a dense domain $D^{1,2}$.

Properties:

1. Linearity: $D_{t}(a F+G)=a D_{t} F+D_{t} G, \quad \forall F, G \in D^{1,2}$
2. Chain Rule: $D_{t}(f(F))=\sum f_{i}(F) D_{t} F, \quad \forall f \in C_{p}^{\infty}(\mathbb{R}), F_{i} \in D^{1,2}$
3. Product Rule: $D_{t}(F G)=F\left(D_{t} G\right)+G\left(D_{t} F\right), \quad \forall F, G \in D^{1,2}$ s.t. F and $\|D F\|_{L^{2}(\Omega \times T)}$ are bounded.

Simple Examples:

1. $D_{t}\left(\int_{0}^{T} h(t) d W_{t}\right)=h(t)$
2. $D_{t} W_{s}=1_{\{t \leq s\}}$
3. $D_{t} f\left(W_{s}\right)=f^{\prime}\left(W_{s}\right) 1_{\{t \leq s\}}$

Exercises: Try Oksendal (4.1) (a), (b), (c), (d).

Fréchet Derivative Interpretation
Recall that the sample space Ω can be identified with the space of continuous function $C([0, T])$. Then we can look at the subspace

$$
\mathbb{H}^{1}=\left\{\gamma \in \Omega: \gamma=\int_{0}^{t} h(s) d s, h \in L^{2}[0, T]\right\},
$$

that is, the space of continuous functions with square integrable derivatives. This space is isomorphic to $L^{2}[0, T]$ and is called the Cameron-Martin space. Then we can prove that $\int_{0}^{T}\left(D_{t}\right) F h(t) d t$ is the Fréchet derivative of F in the direction of the curve $\gamma=\int_{0}^{t} h(s) d s$, that is

$$
\int_{0}^{T} D_{t} F h(t) d t=\left.\frac{d}{d \varepsilon} F(w+\varepsilon \gamma)\right|_{\varepsilon=0}
$$

2.2 The Skorohod Integral

Riemann Sums

Recall that for elementary adapted process

$$
u_{t}=\sum_{i=0}^{n} F_{i} 1_{\left(t_{i}, t_{i+1}\right]}(t), \quad F_{i} \in \mathcal{F}_{t_{i}}
$$

the Ito integral is initially defined as

$$
\int_{0}^{T} u_{t} d W_{t}=\sum_{i=0}^{n} F_{i}\left(W_{t_{i+1}}-W_{t_{i}}\right)
$$

Since ε is dense in $L_{0}^{2}(\Omega \times T)$, we obtain the usual Ito integral in $L_{0}^{2}(\Omega \times T)$ by taking limits.
Alternatively, instead of approximating a general process $u_{t} \in L^{2}(\Omega \times T)$ by a step process of the form above, we could approximate it by the step process

$$
\hat{u}(t)=\sum_{i=0}^{n} \frac{1}{t_{i+1}-t_{i}}\left(\left(\int_{t_{i}}^{t_{i+1}} E\left[u_{s} \mid \mathcal{F}_{\left.\left[t_{i}, t_{i+1}\right]^{c}\right]}\right] d s\right) 1_{\left(t_{i}, t_{i+1}\right]}(t)\right.
$$

and consider the Riemann sum

$$
\left.\sum_{i=0}^{n} \frac{1}{t_{i+1}-t_{i}}\left(\int_{t_{i}}^{t_{i+1}} E\left[u_{s} \mid \mathcal{F}_{\left.\left[t_{i}, t_{i+1}\right]^{c}\right]}\right] d s\right)\right)\left(W_{t_{i+1}}-W_{t_{i}}\right) .
$$

If these sums converge to a limit in $L^{2}(\Omega)$ as the size of the partition goes to zero, then the limit is called the Skorohod integral of u and is denoted by $\delta(u)$. This is clearly not a friendly definition!

Skorohod Integral via Malliavin Calculus
An alternative definition for the Skorohod integral of a process $u \in L^{2}[T \times \Omega]$ is as the adjoint to the Malliavin derivate operator.

Define the operator $\delta: \operatorname{Dom}(\delta) \subset L^{2}[T \times \Omega] \rightarrow L^{2}(\Omega)$ with domain

$$
\operatorname{Dom}(\delta)=\left\{u \in L^{2}[T \times \Omega]:\left|E\left(\int_{0}^{T} D_{t} F u_{t} d t\right)\right| \leq c(u)\|F\|_{L^{2}(\Omega)}, \forall F \in D^{1,2}\right\}
$$

characterized by

$$
E[F \delta(u)]=E\left[i n t_{0}^{T} D_{t} F u_{t} d t\right]
$$

that is,

$$
<F, \delta(u)>_{L^{2}}=<D_{t} F, u>_{L^{2}[T \times \Omega]}
$$

That is, δ is a closed, unbounded operator taking square integrable process to square integrable random variables. Observe that $E[\delta(u)]=0$ for all $u \in \operatorname{Dom} \delta$.

Lemma 2.0.1 :Let $u \in \operatorname{Dom}(\delta), F \in D^{1,2}$ s.t. $F u \in L^{2}[T \times \Omega]$. Then

$$
\begin{equation*}
\delta(F u)=F \delta(u)-\int_{0}^{T} D_{t} F u_{t} d t \tag{1}
\end{equation*}
$$

in the sense that (Fu) is Skorohod integrals iff the right hand side belongs to $L^{2}(\Omega)$.

Proof:Let $G=g\left(W\left(G_{1}, \ldots, G_{n}\right)\right)$ be smooth with g of compact support. Then from the product rule

$$
\begin{aligned}
E[G F \delta(u)] & =E\left[\int_{0}^{T} D_{t}(G F) u_{t} d t\right] \\
& =E\left[G \int_{0}^{T} D_{t} F u_{t} d t\right]+E\left[F \int_{0}^{T} D_{t} G u_{t} d t\right] \\
& =E\left[G \int_{0}^{T} D_{t} F u_{t} d t\right]+E[G \delta(F u)]
\end{aligned}
$$

For the next result, let us denote by $L_{a}^{2}[T \times \Omega]$ the subset of $L^{2}[T \times \Omega]$ consisting of adapted processes.

Proposition 2.0.1 : $L_{a}^{2}[T \times \Omega] \subset \operatorname{Dom}(\delta)$ and δ restricted to L_{a}^{2} coincides with the Ito integral.

Exercises: Now do Oksendal 2.6, 2.1 (a),(b),(c),(d), 4.1 (f), as well as examples (2.3) and (2.4).

3 Wiener Chaos

Consider the Hermite polynomials

$$
H_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2}, \quad H_{0}(x)=1
$$

which are the coefficients for the power expansion of

$$
\begin{aligned}
F(x, t) & =e^{x t-\frac{t^{2}}{2}} \\
& =e^{\frac{x^{2}}{2}} e^{-\frac{1}{2}(x-t)^{2}} \\
& =\left.e^{\frac{x^{2}}{2}} \sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(\frac{d^{n}}{d t^{n}} e^{-\frac{1}{2}(x-t)^{2}}\right)\right|_{t=0} \\
& =\sum_{n=0}^{\infty} \frac{t^{n}}{n!} H_{n}(x)
\end{aligned}
$$

It then follows that we have the recurrence relation

$$
\left(x-\frac{d}{d x}\right) H_{n}(x)=H_{n+1}(x) .
$$

The first polynomials are

$$
\left\{\begin{array}{l}
H_{0}=1 \\
H_{1}=x \\
H_{2}(x)=x^{2}-1 \\
H_{3}(x)=x^{3}-3 x \\
\vdots
\end{array}\right.
$$

Lemma 3.0.2 : Let x, y be two random variables with joint Gaussian distribution s.t. $E(x)=$ $E(y)=0$ and $E\left(x^{2}\right)=E\left(y^{2}\right)=1$. Then for all $n, m \geq 0$,

$$
E\left[H_{n}(x) H_{m}(y)\right]= \begin{cases}0, & \text { if } n \neq m \\ n!E(x y)^{n} & \text { if } n=m\end{cases}
$$

Proof: From the characteristic function of a joint Gaussian random variable we obtain

$$
E\left[e^{s X+v Y}\right]=e^{\frac{s^{2}}{2}+s v E[X Y]+\frac{v^{2}}{2}} \Rightarrow E\left[e^{s X-\frac{s^{2}}{2}} e^{v Y-\frac{v^{2}}{2}}\right]=e^{s v E[X Y]}
$$

Taking the partial derivative $\frac{\partial^{n+m}}{\partial s^{n} \partial v^{m}}$ on both sides gives

$$
E\left[H_{n}(x) H_{m}(y)\right]= \begin{cases}0, & \text { if } n \neq m \\ n!E(x y)^{n} & \text { if } n=m\end{cases}
$$

Let us now define the spaces

$$
\mathcal{H}_{n}=\operatorname{span}\left\{H_{n}(W(h)), \quad h \in L^{2}[0, T]\right\}
$$

These are called the Wiener chaos of order n. We see that \mathcal{H}_{0} corresponds to constants while \mathcal{H}_{1} are the random variables in the closed linear space generated by $\left\{W(h): h \in L^{2}[0, T]\right\}$ (as before).

Theorem 3.1: $L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)=\bigoplus_{n=0}^{\infty} \mathcal{H}_{n}$

Proof: The previous lemma shows that the spaces $\mathcal{H}_{n}, \mathcal{H}_{m}$ are orthogonal for $n \neq m$.

Now suppose $X \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$ is such that $E\left[X H_{n}(W(h))\right]=0, \forall n, \forall h \in L^{2}[0, T]$. Then

$$
\begin{gathered}
E\left[X W(h)^{n}\right]=0, \quad \forall n, \forall h \\
\Rightarrow E\left[X e^{W(h)}\right]=0, \quad \forall h \\
\Rightarrow E\left[X e^{\sum_{i=1}^{m} t_{i} W\left(h_{i}\right)}\right]=0, \quad \forall t_{1}, \ldots, t_{m} \in \mathbb{R} \quad \forall h_{1}, \ldots, h_{m} \in \mathbb{R} \\
X=0
\end{gathered}
$$

Now let $\mathcal{O}_{n}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in[0, T]^{n}, 0 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{n} \leq T\right\}$. We define the iterated integral for a deterministic function $f \in L^{2}\left[\mathcal{O}_{n}\right]$ as

$$
J_{n}(f)=\int_{0}^{T} \int_{0}^{t_{n}} \cdots \int_{0}^{t_{2}} f\left(t_{1}, \ldots, t_{n}\right) d W_{t_{1}} \cdots d W_{t_{n-1}} d W_{t_{n}}
$$

Observe that, due to Ito isometry,

$$
\left\|J_{n}(f)\right\|_{L^{2}(\Omega)}=\|f\|_{L^{2}\left[O_{n}\right]}
$$

So the image of $L^{2}\left[S_{n}\right]$ under J_{n} is closed in $L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$. Moreover, in the special case where $f\left(t_{1}, \ldots, t_{n}\right)=h\left(t_{1}\right) \ldots h\left(t_{n}\right)$, for some $h \in L^{2}[0, T]$, we have

$$
n!J_{n}\left(h\left(t_{1}\right) h\left(t_{2}\right) \ldots h\left(t_{n}\right)\right)=\|h\|^{n} H\left(\frac{W(h)}{\|h\|}\right),
$$

as can be seen by induction. Therefore, $\mathcal{H}_{n} \subset J_{n}\left(L^{2}\left[\mathcal{O}_{n}\right]\right)$. Finally, a further application of Ito isometry shows that

$$
E\left[J_{m}(g) J_{n}(h)\right]=\left\{\begin{array}{ll}
0, & \text { if } n \neq m \\
<g, h>_{L^{2}\left[\mathcal{O}_{n}\right]} & \text { if } n=m
\end{array} .\right.
$$

Therefore $J_{m}\left(L^{2}\left[\mathcal{O}_{n}\right]\right)$ is orthogonal to \mathcal{H}_{n} for all $n \neq m$. But this implies that $\mathcal{H}_{n}=J_{n}\left(L^{2}\left[\mathcal{O}_{n}\right]\right)$. We have just given an abstract proof for the following theorem.

Theorem 3.2 (time-ordered Wiener Chaos): Let $F \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$. Then

$$
F=\sum_{m=0}^{\infty} J_{m}\left(f_{m}\right)
$$

for (unique) deterministic function $f_{m} \in L^{2}\left[\mathcal{O}_{m}\right]$. Moreover,

$$
\|F\|_{L^{2}[\Omega]}=\sum_{m=0}^{\infty}\left\|f_{m}\right\|_{L^{2}\left[\mathcal{O}_{m}\right]}
$$

Example: Find the Wiener chaos expansion of $F=W_{T}^{2}$. $\underline{\text { Solution: We use the fact that } H_{2}(x)=}$ $x^{2}-1$. So writing $W_{T}=\int_{0}^{T} 1_{\{t \leq T\}} d W_{t}=\int_{0}^{T} h(t) d W_{T}$ we obtain $\|h\|=\left(\int_{0}^{T} 1_{\{t \leq T\}}^{2} d t\right)^{1 / 2}=T^{1 / 2}$, so

$$
H_{2}\left(\frac{W_{T}}{\|h\|}\right)=\frac{W_{T}^{2}}{T}-1
$$

From

$$
2 \int_{0}^{T} \int_{0}^{t_{2}} 1_{\{t \leq T\}} 1_{\{t \leq T\}} d W_{t_{1}} d W_{t_{2}}=T\left(\frac{W_{T}^{2}}{T}-1\right)
$$

We find

$$
W_{T}^{2}=T+2 J_{2}(1)
$$

The connection between Wiener chaos and Malliavian calculus is best explained through the symmetric expansion, as opposed to the time- ordered expansion just presented.

We say that a function $g:[0, T]^{n} \rightarrow \mathbb{R}$ is symmetric if

$$
g\left(X_{\sigma_{1}}, \ldots, X_{\sigma_{n}}\right)=g\left(X_{1}, \ldots, X_{n}\right)
$$

for all permutations σ of the set $\{1, \ldots, n\}$. The closed subspace of square integrable symmetric functions is denoted $L_{s}^{2}\left([0, T]^{n}\right)$. Now observe that \mathcal{O}_{n} occupies only the fraction $\frac{1}{n!}$ of the box $[0, T]^{n}$. Therefore, for a symmetric function we have

$$
\begin{aligned}
\|g\|_{L^{2}[0, T]^{n}}^{2} & =\int_{0}^{T} \int_{0}^{T} \cdots \int_{0}^{T} g^{2}\left(t_{1}, \ldots, t_{n}\right) d t_{1} d t_{n} \\
& =n!\int_{0}^{T} \int_{0}^{t_{n}} \cdots \int_{0}^{t_{2}} g^{2}\left(t_{1}, \ldots, t_{n}\right) d t_{1} d t_{n} \\
& =n!\|g\|_{L^{2}\left[\mathcal{O}_{n}\right]}^{2}
\end{aligned}
$$

Try to do a two dimensional example to convince yourself of this.
We can now extend the definition of multiple stochastic integrals to function $g \in L_{s}^{2}[0, T]^{n}$ by setting

$$
\begin{aligned}
I_{n}(g) & \equiv \int_{0}^{T} \int_{0}^{T} \cdots \int_{0}^{T} g\left(t_{1}, \ldots, t_{n}\right) d W_{t_{1}} \cdots d W_{t_{n}} \\
& :=n!J_{n}(g) \\
& =n!\int_{0}^{T} \int_{0}^{t_{n}} \cdots \int_{0}^{t_{2}} g\left(t_{1}, \ldots, t_{n}\right) d W_{t_{1}} \cdots d W_{t_{n}}
\end{aligned}
$$

It then follows that

$$
E\left[I_{n}^{2}(g)\right]=E\left[n!^{2} J_{n}^{2}(g)\right]=n!^{2}\|g\|_{L^{2}\left[\mathcal{O}_{n}\right]}=n!\|g\|_{L^{2}[0, T]^{n}}
$$

so the image of $L_{s}^{2}[0, T]^{n}$ under I_{n} is closed. Also, for the particular case $g\left(t_{1}, \ldots, t_{n}\right)=$ $h\left(t_{1}\right) \ldots h\left(t_{n}\right)$, the previous result for the time-ordered integral gives

$$
I_{n}\left(h\left(t_{1}\right) \ldots h\left(t_{n}\right)\right)=\|h\|^{n} H_{n}\left(\frac{W(h)}{\|h\|}\right)
$$

Therefore we again have that $\mathcal{H}_{n} \subset I_{n}\left(L_{s}^{2}\right)$. Moreover, the orthogonality relation between integrals of different orders still holds, that is

$$
E\left[J_{n}(g) J_{m}(h)\right]= \begin{cases}0, & \text { if } n \neq m \\ n!<g, h> & \text { if } n=m\end{cases}
$$

Therefore $I_{n}\left(L_{s}^{2}\right)$ is orthogonal to all $\mathcal{H}_{m}, \quad n \neq m$, which implies $I_{n}\left(L_{s}^{2}\right)=\mathcal{H}_{n}$.

Theorem 3.3 (symmetric Wiener chaos) Let $L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$. Then

$$
F=\sum_{m=0}^{\infty} I_{m}\left(g_{m}\right)
$$

for (unique) deterministic functions $g_{m} \in L_{s}^{2}[0, T]^{n}$. Moreover, $\|F\|_{L^{2}(s)}=\sum_{m=0}^{\infty} m!\left\|g_{m}\right\|_{L^{2}[0, T]^{n}}$

To go from the two ordered expansion to the symmetric one, we have to proceed as following. Suppose we found

$$
F=\sum_{m=0}^{\infty} J_{m}\left(f_{m}\right), \quad f_{m} \in L^{2}\left[\mathcal{O}_{n}\right]
$$

First extend $f_{m}\left(t_{1}, \ldots, t_{m}\right)$ from \mathcal{O}_{m} to $[0, T]^{m}$ by setting

$$
f_{m}\left(t_{1}, \ldots, t_{m}\right)=0 \quad \text { if } \quad\left(t_{1}, \ldots, t_{m}\right) \in[0, T]^{m} \backslash \mathcal{O}_{m}
$$

Then define a symmetric function

$$
g_{m}\left(t_{1}, \ldots, t_{m}\right)=\frac{1}{m!} \sum_{\sigma} f_{m}\left(t_{\sigma_{1}}, \ldots, t_{\sigma_{m}}\right)
$$

Then

$$
I_{m}\left(g_{m}\right)=m!J_{m}\left(g_{m}\right)=J_{m}\left(f_{m}\right)
$$

Example: What is the symmetric Wiener chaos expansion of $F=W_{t}\left(W_{T}-W_{t}\right)$? $\underline{\text { Solution: }}$

Observe that

$$
\begin{aligned}
W_{t}\left(W(T)-W_{t}\right) & =W_{t} \int_{t}^{T} d W_{t_{2}} \\
& =\int_{t}^{T} \int_{0}^{t} d W_{t_{1}} d W_{t_{2}} \\
& =\int_{0}^{T} \int_{0}^{t_{2}} 1_{\left\{t_{1}<t<t_{2}\right\}} d W_{t_{1}} d W_{t_{2}}
\end{aligned}
$$

Therefore $F=J_{2}\left(1_{\left\{t_{1}<t<t_{2}\right\}}\right)$. To find the symmetric expansion, we have to find the symmetrization of $f\left(t_{1}, t_{2}\right)=1_{\left\{t_{1}<t<t_{2}\right\}}$. This is

$$
\begin{aligned}
g\left(t_{1}, t_{2}\right) & =\frac{1}{2}\left[f\left(t_{1}, t_{2}\right)+f\left(t_{2}, t_{1}\right)\right] \\
& =\frac{1}{2}\left[1_{\left\{t_{1}<t<t_{2}\right\}}+1_{\left\{t_{2}<t<t_{1}\right\}}\right]
\end{aligned}
$$

Then $F=I_{2}\left[\frac{1}{2}\left(1_{\left\{t_{1}<t<t_{2}\right\}}+1_{\left\{t_{2}<t<t_{1}\right\}}\right)\right]$
Exercises: Oksendal 1.2(a),(b),(c),(d).

3.1 Wiener Chaos and Malliavin Derivative

Suppose note that $F \in L^{2}(\Omega, \mathcal{F}, P)$ with expansion

$$
F=\sum_{m=0}^{\infty} I_{m}\left(g_{m}\right), \quad g_{m} \in L_{s}^{2}[0, T]^{m}
$$

Proposition 3.3.1 $F \in D^{1,2}$ if and only if

$$
\sum_{m=1}^{\infty} m m!\left\|g_{m}\right\|_{L^{2}\left(T^{m}\right)}^{2}<\infty
$$

and in this case

$$
\begin{equation*}
D_{t} F=\sum_{m=1}^{\infty} m I_{m-1}\left(g_{m}(\cdot, t)\right) \tag{2}
\end{equation*}
$$

Moreover $\left\|D_{t} F\right\|_{L^{2}(\Omega \times T)}^{2}=\sum_{m=1}^{\infty} m m!\left\|g_{m}\right\|_{L^{2}}^{2}$.

1. If $F \in D^{1,2}$ with $D_{t} F=0 \quad \forall t$ then the series expansion above shows that F must be constant, that is $F=E(F)$.
2. Let $A \in F$. Then

$$
D_{t}\left(1_{A}\right)=D_{t}\left(1_{A}\right)^{2}=21_{A} D_{t}\left(1_{A}\right) .
$$

Therefore

$$
D_{t}\left(1_{A}\right)=0 .
$$

But since $1_{A}=E\left(1_{A}\right)=P(A)$, the previous item implies that

$$
P(A)=0 \text { or } 1
$$

Examples:(1) (Oksendal Exercises 4.1(d)) Let

$$
\begin{aligned}
F & =\int_{0}^{T} \int_{0}^{t_{2}} \cos \left(t_{1}+t_{2}\right) d W_{t_{1}} d W_{t_{2}} \\
& =\frac{1}{2} \int_{0}^{T} \int_{0}^{T} \cos \left(t_{1}+t_{2}\right) d W_{t_{1}} d W_{t_{2}}
\end{aligned}
$$

Using the (2) we find that

$$
D_{t} F=2 \frac{1}{2} \int_{0}^{T} \cos \left(t_{1}+t\right)=\int_{0}^{T} \cos \left(t_{1}+t\right) .
$$

(2) Try doing $D_{t} W_{T}^{2}$ using Wiener chaos.

Exercise: $4.2(\mathrm{a}),(\mathrm{b})$.

3.2 Wiener Chaos and the Skorohod Integral

Now let $u \in L^{2}(\Omega \times T)$. Then it follows from the Wiener-Ito expansion that

$$
u_{t}=\sum_{m=0}^{\infty} I_{m}\left(g_{m}(\cdot, t)\right), \quad g_{m}(\cdot, t) \in L_{s}^{2}[0, T]^{m}
$$

Moreover

$$
\left\|u_{t}\right\|_{L^{2}(\Omega \times T)}^{2}=\sum_{m=0}^{\infty} m!\left\|g_{m}\right\|_{L^{2}[0, T]^{m+1}}
$$

Proposition 3.3.2 : u $\operatorname{Dom} \delta$ if and only if

$$
\sum_{m=0}^{\infty}(m+1)!\left\|\tilde{g}_{m}\right\|_{L^{2}\left(T^{m+1}\right)}^{2}<\infty
$$

in which case

$$
\delta(u)=\sum_{m=0}^{\infty} I_{m+1}\left(\tilde{g}_{m}\right)
$$

Examples: (1) Find $\delta\left(W_{T}\right)$ using Wiener Chaos. Solution:

$$
W_{T}=\int_{0}^{T} 1 d W_{t_{1}}=I_{1}(1), \quad f_{0}=0, \quad f_{1}=1, \quad f_{n}=0 \quad \forall n \geq 2
$$

Therefore

$$
\delta\left(W_{T}\right)=I_{2}(1)=2 J_{2}(1)=W_{T}^{2}-T
$$

(2) Find $\delta\left(W_{T}^{2}\right)$ using Wiener Chaos. Solution:

$$
\begin{aligned}
W_{T}^{2}=T+I_{2}(1), & f_{0}=T, \quad f_{1}=0, \quad f_{2}=1, \quad f_{n}=0 \quad \forall n \geq 3 \\
\delta\left(W_{T}^{2}\right) & =I_{1}(T)+I_{2}(0)+I_{3}(1) \\
& =T W_{T}+T^{3 / 2} H_{3}\left(\frac{W(T)}{T^{1 / 2}}\right) \\
& =T W_{T}+T^{3 / 2}\left(\frac{W(T)^{3}}{T^{3 / 2}}-\frac{3 W(T)}{T^{1 / 2}}\right) \\
& =T W_{T}+W(T)^{3}-3 W(T) T \\
& =W(T)^{3}-2 T W(T)
\end{aligned}
$$

3.3 Further Properties of the Skorohod Integral

The Wiener chaos decomposition allows us to prove two interesting properties of Skorohod integrals.

Proposition 3.3.3 : Suppose that $u \in L^{2}(\Omega \times T)$. Then $u=D F$ for some $F \in D^{1 / 2}$ if and only if the Kernels for

$$
u_{t}=\sum_{m=0}^{\infty} I_{m}\left(f_{m}(\cdot, t)\right)
$$

is symmetric functions of all variables.

Proof: Put $F=\sum_{m=0}^{\infty} \frac{1}{m+1} I_{m+1}\left(f_{m}(\cdot, t)\right)$.
Proposition 3.3.4 : Every process $u \in L^{2}(\Omega \times T)$ can be uniquely decomposed as $u \subset D F+u^{0}$, where $F \in D^{1 / 2}$ and $E\left(\int D_{t} G u_{t}^{0} d t\right)=0$ for all $G \in D^{1 / 2}$. Furthermore, $u^{0} \in \operatorname{Dom}(\delta)$ and $\delta\left(u^{0}\right)=0$.

Proof: It follows from the previous proposition that an element of the form $D F, \quad F \in D^{1 / 2}$ form a closed subspace of $L^{2}(\Omega \times T)$.

4 The Clark-Ocone formula (Optional)

Recall from Ito calculus that any $F \in L^{2}(\omega)$ can be written as

$$
F=E(F)+\int_{0}^{T} \phi_{t} d W_{t}
$$

for a unique process $\phi \in L^{2}(\Omega \times T)$. If $F \in D^{1 / 2}$, this can be made more explicit, since in this case

$$
F=E(F)+\int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{t}\right] d W_{t}
$$

We can also obtain a generalized Clark-Ocone formula by considering

$$
d \bar{W}_{t}^{Q}=d W+\lambda_{t} d t
$$

 conditions we obtain

$$
F=E_{Q}[F]+\int_{0}^{T} E_{Q}\left[\left(D_{t} F-\int_{t}^{T} D_{t} \lambda_{s} d W_{s}^{Q}\right) \mid \mathcal{F}_{t}\right] d W^{Q}
$$

Exercises: 5.2 (a),(b),(c),(d),(e),(f) 5.3 (a),(b),(c)

5 The Malliavin Derivative of a Diffusion

Let us begin with a general result concerning the commutator of the Malliavin derivative and the Skorohod integral.

Theorem 5.1 : Let $u \in L^{2}(\Omega \times T)$ be a process such that $u_{s} \in D^{1 / 2}$ for each $s \in[0, T]$. Assume further that, for each fixed t, the process $D_{t} u_{s}$ is Skorohod Integrable $\left(D_{t} u_{s} \in \operatorname{Dom}(\delta)\right)$. Furthermore, suppose that $\delta\left(D_{t} u\right) \in L^{2}(\Omega \times T)$. Then $\delta(u) \in D^{1 / 2}$ and

$$
\begin{equation*}
D_{t}(\delta(u))=u_{t}+\delta\left(D_{t} u\right) \tag{3}
\end{equation*}
$$

Proof: Let $u_{s}=\sum_{m=0}^{\infty} I_{m}\left(f_{m}(\cdot, s)\right)$. Then

$$
\delta(u)=\sum_{m=0}^{\infty} I_{m+1}\left(\tilde{f}_{m}\right)
$$

where \tilde{f}_{m} is the symmetrization of $f_{m}(\cdot, s)$. Then

$$
D_{t}(\delta(u))=\sum_{m=0}^{\infty}(m+1) I_{m}\left(\tilde{f}_{m}(\cdot, t)\right)
$$

Now note that

$$
\begin{gathered}
\tilde{f}_{m}\left(t_{1}, \ldots, t_{m}, t\right)=\frac{1}{m+1}\left[f_{m}\left(t_{1}, \ldots, t_{m}, t\right)+f_{m}\left(t, t_{2}, \ldots, t_{m}, t_{1}\right)+\ldots+f_{m}\left(t_{1}, \ldots, t_{m-1}, t, t_{m}\right)\right] \\
=\frac{1}{m+1}\left[f_{m}\left(t_{1}, \ldots, t_{m}, t\right)+f_{m}\left(t_{1}, \ldots, t_{m-1}, t, t_{m}\right)+f_{m}\left(t_{m}, t_{2}, \ldots, t_{m-1}, t, t_{1}\right)+\right. \\
\left.\ldots+f_{m}\left(t_{1}, \ldots, t_{m}, t, t_{n-1}\right)\right]
\end{gathered}
$$

Therefore

$$
D_{t}(\delta(u))=\sum_{m=0}^{\infty} I_{m}\left(f_{m}(\cdot, t)\right)+\sum_{m=0}^{\infty} m I_{m}\left(\operatorname{symm} f_{m}(\cdot, t, \cdot) .\right.
$$

On the other hand

$$
\begin{aligned}
\delta\left(D_{t} u\right) & =\delta\left[D_{t}\left(\sum_{m=0}^{\infty} I_{m}\left(f_{m}(\cdot, s)\right)\right)\right] \\
& =\delta\left[\sum_{m=0}^{\infty} m I_{m-1}\left(f_{m}(\cdot, t, s)\right)\right] \\
& =\sum_{m=0}^{\infty} m I_{m}\left(\operatorname{symm}_{m}(\cdot, t, \cdot)\right)
\end{aligned}
$$

Comparing the two expressions now gives the result.
Corollary 5.1.1 : If, in addition to the conditions of the previous theorem, u_{s} is \mathcal{F}_{s} adapted, we obtain

$$
D_{t}\left(\int_{0}^{T} u_{s} d W_{s}\right)=u_{t}+\int_{t}^{T} D_{t} u_{s} d W_{s}
$$

Now suppose that

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}
$$

for functions b and σ satisfying the usual Lipschitz and growth conditions to enssure existence and uniqueness of the solution in the form

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(u, X_{u}\right) d u+\int_{0}^{t} \sigma\left(u, X_{u}\right) d W_{u}
$$

It is then possible to prove that $X_{t} \in D^{1,2}$ for each $t \in[0, T]$. Moreover, its Malliavian derivative satisfies the linear equation

$$
\begin{aligned}
D_{t}\left(X_{t}\right) & =D_{s}\left(\int_{0}^{t} b\left(u, X_{u}\right) d u\right)+D_{s}\left(\int_{0}^{t} \sigma\left(u, X_{u}\right) d W_{u}\right) \\
& =\int_{s}^{t} b^{\prime}\left(u, X_{u}\right) D_{s} X_{u} d u+\sigma\left(s, X_{s}\right)+\int_{s}^{t} \sigma^{\prime}\left(u, X_{u}\right) D_{s} X_{u} d W_{u}
\end{aligned}
$$

That is,

$$
D_{s} X_{t}=\sigma\left(s, X_{s}\right) \exp \left[\int_{s}^{t}\left(b^{\prime}-\frac{1}{2}\left(\sigma^{\prime}\right)^{2}\right) d u+\int_{s}^{t} \sigma^{\prime} d W_{u}\right]
$$

In other words,

$$
D_{s} X_{t}=\frac{Y_{t}}{Y_{s}} \sigma\left(s, X_{s}\right) 1_{\{s \leq t\}}
$$

where Y_{t} is the solution to

$$
d Y_{t}=b^{\prime}\left(t, X_{t}\right) Y_{t} d t+\sigma^{\prime}\left(t, X_{t}\right) Y_{t} d W_{t}, \quad Y_{0}=1
$$

This is called the first variation process and plays a central role in what follows.

Examples: $(1) d X_{t}=r(t) X_{t} d t+\sigma(t) X_{t} d W_{t}, \quad X_{0}=x$

$$
\begin{gathered}
\Longrightarrow d Y_{t}=r(t) Y_{t} d t+\sigma(t) Y_{t} d W_{t} \\
\Longrightarrow Y_{t}=\frac{X_{t}}{x} \\
\Longrightarrow D_{s} X_{t}=\frac{X_{t}}{X_{s}} \sigma(s) X_{s}=\sigma(s) X_{t}
\end{gathered}
$$

(2) $d X_{t}=\left(\theta(t)-k X_{t}\right) d t+\sigma d W_{t}, \quad X_{0}=x$

$$
\Longrightarrow d Y_{t}=-k Y_{t} d t \Longrightarrow Y_{t}=e^{-k t}
$$

$$
D_{s} X_{t}=e^{-k(t-s)} \sigma
$$

(3) $d X_{t}=k\left(\theta-X_{t}\right) d t+\sigma \sqrt{X_{t}} d W_{t}, \quad X_{0}=x$

$$
\begin{gathered}
d Y_{t}=-k Y_{t} d t+\frac{1}{2} \frac{\sigma}{\sqrt{X_{t}}} Y_{t} d W_{t} \\
D_{s} X_{t}=\sigma \sqrt{X_{s}} \exp \left[-\int_{s}^{t}\left(k+\frac{1}{4} \frac{\sigma^{2}}{X_{u}}\right) d u+\frac{1}{2} \int_{s}^{t} \frac{\sigma}{\sqrt{X_{u}}} d W_{u}\right]
\end{gathered}
$$

6 Malliavin Weighted Scheme

Suppose now that we want to calculate $E\left[\phi^{\prime}(X) G\right]$ where X is an underlying asset, ϕ is a pay-off function and $\frac{X_{\lambda}-X}{\lambda} \rightarrow G$ as $\lambda \rightarrow 0$, corresponding to a perturbation of the process X. Then using the chain rule for the Malliavin derivative we have that, for an arbitrary process h_{s},

$$
G h_{s} D_{s}(\phi(X))=G h_{s} \phi^{\prime}(X) D_{s} . X
$$

Integrating both sides of the equation gives

$$
\Rightarrow \int_{0}^{T} G h_{s} D_{s}(\phi(X)) d s=G \phi^{\prime}(X) \int_{0}^{T} h_{s} D_{s} X d s
$$

That is

$$
G \phi^{\prime}(X)=\frac{\int_{0}^{T} G h_{s} D_{s}(\phi(X)) d s}{\int_{0}^{T} h_{s} D_{s} X d s}
$$

Define $u_{s}=\frac{G h_{s}}{\int_{0}^{T} h_{s} D_{s} X d s}$. Then from duality

$$
E\left[\phi^{\prime} G\right]=E\left[\int_{0}^{T} D_{s}(\phi(X)) u_{s} d s\right]=E[\phi(X) \delta(u)]
$$

Therefore $E\left[\phi^{\prime}(X) G\right]=E[\phi(X) \pi]$, where

$$
\begin{equation*}
\pi=\left(\frac{G h_{s}}{\int_{0}^{T} h_{s} D_{s} X d s}\right) \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
\Delta & =E\left[e^{-r T} \phi\left(S_{T}\right)\right] \\
& =E\left[e^{-r T} \phi^{\prime}\left(S_{T}\right) \frac{\partial S_{T}}{\partial S_{0}}\right] \\
& =\frac{e^{-r T}}{S_{0}} E\left[\phi^{\prime}\left(S_{T}\right) S_{T}\right]
\end{aligned}
$$

Using (4) with $h_{s}=1$ we get

$$
\begin{aligned}
\pi & =\delta\left(\frac{S_{T}}{\int_{0}^{T} D_{s} S_{T} d s}\right) \\
& =\delta\left(\frac{S_{T}}{\sigma \S_{T} i n t_{0}^{T} 1^{\{s \leq T\}} d s}\right) \\
& =\delta\left(\frac{1}{\sigma T}\right) \\
& =\frac{W_{T}}{\sigma T}
\end{aligned}
$$

Therefore

$$
\Delta=\frac{e^{-r T}}{S_{0}} E\left[\phi\left(S_{T}\right) \frac{W_{T}}{\sigma T}\right]
$$

For the vega we have

$$
\begin{aligned}
\mathcal{V} & =\frac{\partial}{\partial \sigma} E\left[e^{-r T} \phi\left(S_{T}\right)\right] \\
& =e^{-r T} E\left[\phi^{\prime}\left(S_{T}\right) \frac{\partial S_{T}}{\partial \sigma}\right] \\
& =e^{-r T} E\left[\phi^{\prime}\left(S_{T}\right)\left(W_{T}-\sigma T\right) S_{T}\right]
\end{aligned}
$$

Again, applying (4) with $h_{s}=1$ we obtain

$$
\begin{aligned}
\pi & =\delta\left(\frac{\left(W_{T}-\sigma T\right) S_{T}}{\int_{0}^{T} D_{s} S_{T} d s}\right) \\
& =\delta\left(\frac{\left(W_{T}-\sigma T\right)}{\sigma T}\right) \\
& =\delta\left(\frac{W_{T}}{\sigma T}-1\right) \\
& =\frac{1}{\sigma T} \delta\left(W_{T}\right)-W_{T} \\
& =\frac{W_{T}^{2}-T}{\sigma T}-W_{T} \\
& =\frac{W_{T}^{2}}{\sigma T}-W_{T}-\frac{1}{\sigma}
\end{aligned}
$$

that is

$$
\mathcal{V}=e^{-r T} E\left[\phi^{\prime}\left(S_{T}\right)\left(\frac{W_{T}^{2}}{\sigma T}-W_{T}-\frac{1}{\sigma}\right)\right]
$$

Finally, for the gamma we have to evaluate a second derivative. That is

$$
\begin{aligned}
\Gamma & =\frac{\partial^{2}}{\partial S_{0}^{2}} E\left[e^{-r T} \phi\left(S_{T}\right)\right] \\
& =\frac{e^{-r T}}{S_{0}^{2}} E\left[\phi^{\prime \prime}\left(S_{T}\right) S_{T}^{2}\right] .
\end{aligned}
$$

We begin by applying (4) to this last exapression. This gives

$$
\begin{gathered}
E\left[\phi^{\prime \prime}\left(S_{T}\right) S_{T}^{2}\right]=E\left[\phi^{\prime}\left(S_{T}\right) \pi_{1}\right] \\
\pi_{1}=\delta\left(\frac{S_{T}^{2}}{\sigma T S_{T}}\right)=\delta\left(\frac{S_{T}}{\sigma T}\right)=\frac{S_{T} W_{T}}{\sigma T}-S_{T}
\end{gathered}
$$

That is

$$
E\left[\phi^{\prime \prime}\left(S_{T}\right) S_{T}^{2}\right]=E\left[\phi^{\prime}\left(S_{T}\right)\left(\frac{S_{T} W_{T}}{\sigma T}-S_{T}\right)\right] .
$$

We now use the formula again for

$$
\begin{aligned}
\pi_{2} & =\delta\left(\frac{\frac{W_{T}}{\sigma T}-1}{\sigma T}\right) \\
& =\delta\left(\frac{W_{T}}{\sigma^{2} T^{2}}\right)-\delta\left(\frac{1}{\sigma T}\right) \\
& =\frac{W_{T}^{2}-T}{\sigma^{2} T^{2}}-\frac{W_{T}}{\sigma T} \\
\Gamma=\frac{e^{-r T}}{S_{0}^{2} \sigma T} & E\left[\phi\left(S_{T}\right)\left(\frac{W_{T}^{2}}{\sigma T}-W_{T}-\frac{1}{\sigma}\right)\right]
\end{aligned}
$$

such that $\gamma=\frac{\mathfrak{0}}{S_{0}^{2} \sigma T}$
To formalize our discussion, suppose $f \in D^{1 / 2}$ and denote by W the set of random variables π such that

$$
E\left[\phi^{\prime}(F) G\right]=E[\phi(F) \phi], \quad \forall \quad \phi \in C_{p}^{\infty}
$$

Proposition 6.0.1 : A necessary and sufficient condition for a weight to be of the form $\pi=$ $\delta(u)$ where $u \in \operatorname{Dom}(\delta)$, is that

$$
\begin{equation*}
E\left[\int_{0}^{T} D_{t} F u_{t} d t \mid \mathcal{F}(F)\right]=E[G \mid \mathcal{F}(F)] \tag{*}
\end{equation*}
$$

Moreover, $\pi_{0}=E[\pi \mid \mathcal{F}(F)]$ is the minimum over all weights of the correct functional

$$
\operatorname{Var}=E\left[\left(\phi(F) \pi-E\left[\phi^{\prime}(F) G\right]\right)^{2}\right]
$$

Proof: Suppose that $u \in \operatorname{Dom}(\delta)$ satisfies

$$
E\left[\int_{0}^{T} D_{t} F u_{t} d t \mid \sigma(F)\right]=E[G \mid \sigma(F)]
$$

Then

$$
\begin{aligned}
E\left[\phi^{\prime}(F) G\right] & =E\left[E\left[\phi^{\prime}(F) G \mid \sigma(F)\right]\right] \\
& =E\left[\phi^{\prime}(F) E[G \mid \sigma(F)]\right] \\
& =E\left[\phi^{\prime}(F) E\left[\int_{0}^{T} D_{t} F u_{t} d t \mid \sigma(F)\right]\right] \\
& =E\left[\int_{0}^{T} D_{t} \phi(F) u_{t} d t\right] \\
& =E[\phi(F) \delta(u) d t]
\end{aligned}
$$

so $\pi=\delta(u)$ is a weight.
Conversely, if $\pi=\delta(u)$ for some $u \in \operatorname{Dom}(\delta)$ is a weight, then

$$
\begin{aligned}
E\left[\phi^{\prime}(F) G\right] & =E[\phi \delta(u)] \\
& =E\left[\int_{0}^{T} D_{t} \phi(F) u_{t} d t\right] \\
& =E\left[\phi^{\prime}(F) \int_{0}^{T} D_{t} F u_{t} d t\right]
\end{aligned}
$$

Therefore,

$$
E\left[\int_{0}^{T} D_{t} F u_{t} d t \mid \sigma(F)\right]=E[G \mid \sigma(F)] .
$$

To prove the minimal variance claim, observe first that for any two weights $\pi_{1}, \quad \pi_{2}$ we must have $E\left[\pi_{1} \mid \sigma(F)\right]=E\left[\pi_{2} \mid \sigma(F)\right]$. Therefore, setting $\pi_{0}=E[\pi \mid \sigma(F)]$ for a generic weight π we obtain

$$
\begin{aligned}
\operatorname{var}^{\pi} & =E\left[\left(\phi(F) \pi-E\left[\phi^{\prime}(F) G\right]\right)^{2}\right] \\
& =E\left[\left(\phi(F)\left(\pi-\pi_{0}\right)+\phi(F) \pi_{0}-E\left[\phi^{\prime}(F) G\right]\right)^{2}\right] \\
& =E\left[\left(\phi(F)\left(\pi-\pi_{0}\right)\right)^{2}\right]+E\left[\left(\phi(F) \pi_{0}-E\left[\phi^{\prime}(F) G\right]\right)^{2}\right] \\
& +2 E\left[\phi(F)\left(\pi-\pi_{0}\right)\left(\phi(F) \pi_{0}-E\left[\phi^{\prime}(F) G\right]\right)\right]
\end{aligned}
$$

But

$$
E\left[\phi(F)\left(\pi-\pi_{0}\right)\left(\phi(F) \pi_{0}-E\left[\phi^{\prime}(F) G\right]\right)\right]=E\left[E\left[\phi(F)\left(\pi-\pi_{0}\right)\left(\phi(F) \pi_{0}-E\left[\phi^{\prime}(F) G\right]\right)\right] \mid \sigma(F)\right]=0
$$

Therefore the minimum must be achieved for $\pi=\pi_{0}$.

7 Generalized Greeks

Consider now

$$
d X_{t}=r(t) X_{t} d t+\sigma\left(t, X_{t}\right) d W_{t}, \quad X_{0}=x
$$

where $r(t)$ is a deterministic function and $\sigma(\cdot, \cdot)$ satisfies the Lipschitz, boundedness and uniform ellipticity condition. Let $\tilde{r}(t), \tilde{\sigma}(\cdot, \cdot)$ be two directions such that $(r+\epsilon \tilde{r} t)$ and ($\sigma+\epsilon \tilde{\sigma}$) satisfy the same conditions for any $\epsilon \in[-1,1]$.

Define

$$
\begin{gathered}
d X_{t}^{\epsilon_{1}}=\left(r(t)+\epsilon_{1} \tilde{r}\right) X_{t}^{\epsilon_{1}}+\sigma\left(t, X_{t}^{\epsilon_{1}}\right) d W_{t} \\
d X_{t}^{\epsilon_{2}}=r(t) X_{t}^{\epsilon_{2}}+\left[\sigma\left(t, X_{t}^{\epsilon_{2}}\right)+\epsilon_{2} \tilde{\sigma}\left(t, X_{t}^{\epsilon_{2}}\right)\right] d W_{t}
\end{gathered}
$$

Consider also the price functionals, for a square integral pay-off function of the form $\phi: \mathbb{R}^{m} \rightarrow$ \mathbb{R}.

$$
\begin{gathered}
P(x)=E_{x}^{Q}\left[e^{-\int_{0}^{T} r(t) d t} \phi\left(X_{t_{1}}, \ldots, X_{t_{m}}\right)\right] \\
P^{\epsilon_{1}}(x)=E_{x}^{Q}\left[e^{-\int_{0}^{T}\left(r(t)+\epsilon_{1} \tilde{r}(t)\right) d t} \phi\left(X_{t_{1}}^{\epsilon_{1}}, \ldots, X_{t_{m}}^{\epsilon_{1}}\right)\right] \\
P^{\epsilon_{2}}(x)=E_{x}^{Q}\left[e^{-\int_{0}^{T} r(t) d t} \phi\left(X_{t_{1}}^{\epsilon_{2}}, \ldots, X_{t_{m}}^{\epsilon_{2}}\right)\right]
\end{gathered}
$$

Then the generalized Greeks are defined as

$$
\begin{gathered}
\Delta=\frac{\partial P(x)}{\partial x}, \\
\rho=\left.\frac{\partial=\frac{\partial^{2} P}{\partial x^{2}}}{\partial \epsilon_{1}}\right|_{\epsilon_{1}=0, \tilde{r}}, \quad \mathcal{V}=\left.\frac{\partial P^{\epsilon_{2}}}{\partial \epsilon_{2}}\right|_{\epsilon_{2}=0, \tilde{\sigma}}
\end{gathered}
$$

The next proposition shows that the variations with respect to both the drift and the diffusion coefficients for the process X_{t} can be expressed in terms of the first variation process Y_{t} defined previously.

Proposition 7.0.2 : The following limits hold in L^{2}-convergence

1. $\lim _{\epsilon_{1} \rightarrow 0} \frac{X_{t}^{\epsilon_{1}}-X_{t}}{\epsilon_{1}}=\int_{0}^{t} \frac{Y_{t} \tilde{r}(s) X_{s}}{Y_{s}} d s$
2. $\lim _{\epsilon_{2} \rightarrow 0} \frac{X_{t}^{\epsilon_{2}}-X_{t}}{\epsilon_{2}}=\int_{0}^{t} Y_{t} \frac{\tilde{\sigma}\left(s, X_{s}\right)}{Y_{s}} d W_{s}-\int_{0}^{t} Y_{t} \frac{\sigma^{\prime}\left(s, X_{s}\right) \tilde{\sigma}\left(s, X_{s}\right)}{Y_{s}} d s$

8 General One-Dimensional Diffusions

Now we return to the general diffusion SDE

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}
$$

where the deterministic functions b, σ satisfy the usual conditions for existence and uniqueness. We will find several ways to specify Malliavin weights for delta: similar formulas can be found for the other greeks. An important point not addressed in these notes is to understand the computational issues when using Monte Carlo simulation. This will involve the practical problem of knowing which processes in addition to X_{t} itself need to be sampled to compute the weight: the answer in general is to compute the variation processes $Y_{t}, Y_{t}^{(2)}, Y_{t}^{(3)}, \ldots$.

Recall the conditions for $\pi=\delta\left(w_{t}\right)$ to be a weight for delta:

$$
E\left[\left.\int_{0}^{T} \frac{\sigma_{t}}{Y_{t 0}} w_{t} d t \right\rvert\, \sigma\left(X_{t_{i}}\right)\right]=E\left[Y_{T 0} \mid \sigma\left(X_{t_{i}}\right)\right]
$$

Our solutions will solve the stronger, sufficient conditions:

$$
\int_{0}^{T} \frac{\sigma_{t}}{Y_{t 0}} w_{t} d t=Y_{T 0}
$$

We investigate in more detail two special forms for w. We will see the need from this to look at higher order Malliavin derivatives: the calculus for this is given in the final section.

1. We obtain a t independent weight analogous to the construction in Ben-hamou (2001) by letting

$$
w_{t}=w_{T}=\left[\int_{0}^{T} \frac{\sigma_{t}}{Y_{t 0}} d t\right]^{-1}
$$

To compute $\delta(w)$ use (1) to give $\delta(w)=w W_{T}-\int_{0}^{T} D_{t} w d t$. From the quotient rule $D_{t}\left(A^{-1}\right)=-A^{-1} D_{t} A A^{-1}$ and the commutation relation (3) we obtain

$$
\begin{align*}
D_{t} w & =-w^{2} Y_{t 0}^{-1} \int_{t}^{T}\left[\frac{D_{t} \sigma_{s} Y_{s t}-\sigma_{s} D_{t} Y_{s t}}{Y_{s t}^{2}}\right] d s \tag{5}\\
& =-w^{2} Y_{t 0}^{-1} \int_{t}^{T}\left[\frac{D_{t} \sigma_{s} Y_{s t}-\sigma_{s} D_{t} Y_{s t}}{Y_{s t}^{2}}\right] d s \tag{6}
\end{align*}
$$

where we use the general formula for $D_{t} Y_{s t}$ derived in the next section. This yields the final formula

$$
\pi=-\int_{0}^{T} \int_{t}^{T} w^{2} Y_{t 0}^{-1}\left[\frac{\sigma_{s}^{\prime} \sigma_{t}-Y_{s t}-\sigma_{s} D_{t} Y_{s t}}{Y_{s t}^{2}}\right] d s d t
$$

Computing this weight will be computationally intensive: in addition to sampling X_{t}, one needs $Y_{t}, Y_{t}^{(2)}$.
2. We obtain a t dependent weight analogous to the construction in Ben-hamou (2001) by letting

$$
w_{t}=\frac{Y_{t 0}}{T \sigma_{t}}
$$

This yields the weight as an ordinary Ito integral:

$$
\pi=\int_{0}^{T} \frac{Y_{t 0}}{T \sigma_{t}} d W_{t}
$$

Numerical simulation of X_{t}, Y_{t} will be sufficient to compute this weight.

9 Higher Order Malliavin Derivatives

In this section, we sketch out the properties of the higher order variation processes

$$
Y_{s t}^{(k)}=\frac{\partial^{k} X_{s}}{\partial X_{t}^{k}}, \quad t<s
$$

and use them to compute multiple Malliavin derivatives $D_{t_{1}} \ldots D_{t_{k}} X_{s}$. These formulas are usually necessary for higher order greeks like γ. But as seen in the previous section it may also enter formulas for delta when certain weights are chosen.

Here are the SDEs satisfied by the first three variation processes:

$$
\begin{align*}
d Y_{t} & =b_{t}^{\prime} Y_{t} d t+\sigma_{t}^{\prime} Y_{t} d W_{t} \tag{8}\\
d Y_{t}^{(2)} & =\left[b_{t}^{\prime} Y_{t}^{(2)}+b_{t}^{\prime \prime} Y_{t}^{2}\right] d t+\left[\sigma_{t}^{\prime} Y_{t}^{(2)}+\sigma_{t}^{\prime \prime} Y_{t}^{2}\right] d W_{t} \tag{9}\\
d Y_{t}^{(3)} & =\left[b_{t}^{\prime} Y_{t}^{(3)}+3 b_{t}^{\prime \prime} Y_{t} Y_{t}^{(2)}+b_{t}^{\prime \prime \prime} Y_{t}^{3}\right] d t+\left[\sigma_{t}^{\prime} Y_{t}^{(3)}+3 \sigma_{t}^{\prime \prime} Y_{t} Y_{t}^{(2)}+\sigma_{t}^{\prime \prime \prime} Y_{t}^{3}\right] d W_{t} \tag{10}
\end{align*}
$$

One can see that the pattern is

$$
d Y_{t}^{(k)}=b_{t}^{\prime} Y_{t}^{(k)} d t+\sigma_{t}^{\prime} Y_{t}^{(k)} d W_{t}+F_{t}^{(k)} d t+G_{t}^{(k)} d W_{t}
$$

where $F^{(k)}, G_{t}^{(k)}$ are explicit functions of $t, X,\left(Y^{(j)}\right)_{j<k}$. This particular form of SDE can be integrated by use of the semigroup defined by $Y_{t s}$.

Proposition 9.0.3

$$
Y_{t}^{k)}=Y_{t 0} \int_{0}^{t} Y_{u 0}^{-1}\left[\left(F_{u}^{(k)}-G_{u}^{(k)} \sigma_{u}\right) d u+G_{u}^{(k)} d W_{u}\right]
$$

Proof: From the product rule $d X Y=d X(Y+d Y)+X d Y$ for stochastic processes

$$
\begin{aligned}
d(R H S)= & {\left[b_{t}^{\prime} Y_{t 0} d t+\sigma_{t}^{\prime} Y_{t 0} d W_{t}\right]\left[Y_{t 0}^{-1} Y_{t}^{(k)}+Y_{t 0}^{-1}\left(F_{t}^{(k)}-G_{t}^{(k)} \sigma_{t}^{\prime}\right) d t+G_{t}^{(k)} d W_{t}\right] } \\
& +Y_{t 0}\left[Y_{t 0}^{-1}\left(F_{t}^{(k)}-G_{t}^{(k)} \sigma_{t}^{\prime}\right) d t+G_{t}^{(k)} d W_{t}\right] \\
= & b_{t}^{\prime} Y_{t}^{(k)}+\sigma_{t}^{\prime} Y_{t}^{(k)} d W_{t}+G_{t}^{(k)} \sigma_{t}^{\prime} d t+\left(F_{t}^{(k)}-G_{t}^{(k)} \sigma^{\prime}\right) d t+G_{t}^{(k)} d W_{t} \\
= & d(L H S)
\end{aligned}
$$

Since the higher variation processes have the interpretation of higher derivatives of X with respect to the initial value x, we can extend the notion to derivatives with respect to X_{t}, any t. For that we define

$$
\tilde{Y}_{t 0}^{(k)}=\frac{Y_{t}^{(k)}}{Y_{t 0}}
$$

and then note

$$
\tilde{Y}_{s 0}^{(k)}-\tilde{Y}_{t 0}^{(k)}=\int_{t}^{s} Y_{u 0}^{-1}\left[\left(F_{u}^{(k)}-G_{u}^{(k)} \sigma_{u}\right) d u+G_{u}^{(k)} d W_{u}\right]
$$

If we define

$$
\tilde{Y}_{s t}^{(k)}:=Y_{t 0}\left[\tilde{Y}_{s 0}^{(k)}-\tilde{Y}_{t 0}^{(k)}\right]
$$

then $\tilde{Y}_{s t}^{(k)}$ solves (9.0.3) for $s>t$, subject to the initial condition $\tilde{Y}_{t t}^{(k)}=0$. Therefore $\tilde{Y}_{s t}^{(k)}$ has the interpretation of $\frac{\partial^{k} X_{s}}{\partial X_{t}^{k}}$.

The following rules extend the Malliavin calculus to higher order derivatives:

1. Chain rule:

$$
D_{t} F\left(X_{s}\right)=F^{\prime}\left(X_{s}\right) D_{t} X_{s}, \quad t<s
$$

2.

$$
\frac{\partial X_{s}}{\partial X_{t}}:=Y_{s t} I(t<s):=\tilde{Y}_{s t}^{(1)} I(t<s)
$$

3.

$$
\frac{\partial \tilde{Y}_{s t}^{(k)}}{\partial X_{t}}=\tilde{Y}_{s t}^{(k+1)}:=\frac{\partial^{k+1} X_{s}}{\partial X_{t}^{k+1}}, \quad t<s
$$

4.

$$
\tilde{Y}_{s t}^{(k)}=Y_{s t}^{-1} Y_{t 0}^{(k)}-Y_{s 0}^{(k)} ;
$$

5.

$$
D_{t} X_{t}=\sigma_{t}
$$

Examples:

1.

$$
\begin{aligned}
D_{t} X_{T} & =\frac{\partial X_{T}}{\partial X_{t}} D_{t} X_{t} \quad \text { by chain rule } \\
& =Y_{T t} \sigma_{t} \quad \text { by }(2),(5)
\end{aligned}
$$

2.

$$
D_{t} Y_{s 0}=\left(D_{t} Y_{s t}\right) Y_{t 0}=\tilde{Y}_{s t}^{(2)}\left(D_{t} X_{t}\right) Y_{t 0}
$$

3. For $t<s<T$:

$$
\begin{aligned}
D_{t}\left[D_{s} X_{T}\right] & =\frac{\partial}{\partial X_{s}}\left[Y_{T s} \sigma_{s} I(s<T)\right] D_{t} X_{s} \quad \text { by chain rule } \\
& =\left[\tilde{Y}_{T s}^{(2)} \sigma_{t}+Y_{T s} \sigma_{s}^{\prime}\right] Y_{s t} \sigma_{t}
\end{aligned}
$$

4. For $t<s<T$:

$$
\begin{equation*}
D_{s}\left[D_{t} X_{T}\right]=D_{s}\left[Y_{T s} Y_{s t} \sigma_{t}\right]=\tilde{Y}_{T s}^{(2)} \sigma_{s} Y_{s t} \sigma_{t} \tag{12}
\end{equation*}
$$

