Putnam Problems: Pigeonhole Principle, Wednesday February 28

1. What is the largest cardinality of a set S of natural numbers between 2 and 120 such that each pair of numbers in S are coprime, but no element of S is coprime?
2. For any set of twenty distinct numbers from the arithmetic progression $1,4,7, \ldots, 100$, prove that two of them add up to 104.
3. Given a set of $n+1$ integers between 1 and $2 n$, prove that one number must divide another. Prove this is not necessarily true for a set of n integers between 1 and $2 n$.
4. Given five lattice points $\left\{P_{1}, P_{2}, \ldots, P_{5}\right\}$ in the plane, prove that there exists two distinct points P_{i}, P_{j} in this set such that the midpoint of $\overline{P_{i} P_{j}}$ is also a lattice point. Give an example to show that this fails with only four lattice points.
5. Given five points inside an equilateral triangle of side-length 1 , prove that two of the points whose distance apart is at most $\frac{1}{2}$.
6. Show that given any 9 natural numbers it is possible to choose 5 whose sum is divisible by 5 .
