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In [11], two of us constructed a closed oriented 4-dimensional manifold with fundamen-

tal group Z that does not split off S1 × S3. In this note we show that this 4-manifold, and

various others derived from it, do not admit smooth structures. Moreover, we find an in-

finite family of 4-manifolds with exactly the same properties. As a corollary, we obtain

topologically slice knots that are not smoothly slice in any rational homology ball.

1 Introduction

The symmetric matrix

L :=





1 + t + t2 t + t2 1 + t t

t + t2 1 + t + t2 t 1 + t

1 + t t 2 0

t 1 + t 0 2
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has determinant 1 and therefore describes a nonsingular form over Z[t], see [14, p.474].

Setting t = x + x−1 and

Λ := Z[x, x−1] (= the group ring Z[Z]),

L extends to a form on Λ4 which is hermitian with respect to the involution x̄ = x−1. In

[11], the second and fourth authors showed the following:

Theorem 1.1. L is not extended from the integers. !

Freedman and Quinn [8] proved that any nonsingular hermitian form on a finitely

generated free Λ-module can be realized as the intersection form on π2 of a closed

oriented 4-manifold with fundamental group Z. Moreover, in the odd case (as for the

form L above) there are exactly two such 4-manifolds realizing a given form, one with

nontrivial Kirby-Siebenmann invariant and hence not smoothable. It follows that there is

a unique closed orientable 4-manifold ML with π1ML = Z, intersection form L on π2ML and

trivial Kirby-Siebenmann invariant (so ML is smoothable after adding copies of S2 × S2).

See also Remark 4.1 for a more concrete construction.

Note that ML was (before this paper was written) the only known closed ori-

entable topological 4-manifold with fundamental group Z and trivial Kirby-Siebenmann

invariant that is not the connected sum of S1×S3 with a simply connected 4-manifold. We

shall give more examples in Section 5 below. Fintushel and Stern constructed a smooth

example in [7] that is nonsplit in the smooth category but does split off S1 × S3 topologi-

cally.

It remained an open problem during the last ten years as to whether ML could be

given a smooth structure. In this paper we will prove that ML is not smoothable. Note

that Donaldson’s Theorem A, [4], does not apply directly, since the intersection form on

H2ML is standard. However, we shall show that it does apply to most cyclic covers, and

hence indirectly to ML.

Theorem 1.2. Let Mn be the n-fold (cyclic) cover of ML. For any n ≥ 1, the intersection

form Ln on H2Mn is positive definite, odd and of rank 4n. If n = 1, 2 this form represents

the standard lattice in R4n but for n ≥ 3 it is not standard. In particular, none of the Mn

admits a smooth structure. !

For n ≥ 3, the last statement follows directly from [4] since smooth definite

4-manifolds can only have standard intersection forms. But if M1(= ML) or M2 were

smooth, then M4 would be smooth as a common covering space.
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Theorem 1.2 implies Theorem 1.1: if L was extended from the integers then it

would be extended from its augmentation ε(L) = L1, which is the standard form of rank 4.

It is easy to see that this implies that all Ln would be standard as well.

Looking closely at the original proof of Theorem 1.1, namely that Lemma 4 in [11]

holds for forms over the group ring Λn := Z[Z/n] for all n > 1, one sees that the form Ln

is not standard as a form with Z/n action for n > 1. This means that the Z/n-equivariant

intersection form on H2Mn is not extended from the integers. Together with Theorem 1.2,

this gives an interesting algebraic example for n = 2.

Theorem 1.2 suggests the following conjecture, which would reduce the realiza-

tion problem for smooth 4-manifolds with fundamental group Z to the simply-connected

case. As already conjectured in [11], the indefinite case should be purely algebraic and

not require smoothness, whereas the definite case, just as for ML, must use the smooth

structure on the manifold.

Conjecture 1.3. If M is a closed smooth 4-manifold with fundamental group Z, then its

intersection form on π2M is extended from the integers. !

The proof of Theorem 1.2 will be given in Section 2. In Section 3, we further

analyze the structure of the forms Ln, obtaining some partial results on how they

decompose. Section 4 contains an application of Theorem 1.2 to the study of topologically

slice knots that are not smoothly slice:

Corollary 1.4. There exists a knot K in S3 such that 0-surgery on K bounds a smooth

4-manifold W with fundamental group Z and such that the intersection form on π2W is

represented by L. Moreover, any knot with this property has trivial Alexander polynomial

(and is thus topologically slice) but cannot bound a smooth disk in a rational homology

ball. !

We will prove Corollary 1.4 in Section 4 and we will provide an explicit example

of such a knot K

The remaining sections of the paper contain generalizations of our main results.

In particular, in Section 5 we prove the following theorem. Our Corollary 1.4 continues to

hold for all these hermitian forms L(k).

Theorem 1.5. There are pairwise non-isomorphic unimodular, odd, hermitian forms

L(k), k ∈ N, on Λ4, with L(1) = L and ε(L(k)) standard. None of these forms is extended

from the integers, and none of the associated closed 4-manifolds (with infinite cyclic

fundamental group and trivial Kirby–Siebenmann invariant) is smoothable. !
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In the final Section 6 we show that the phenomenon described in Theorem 1.2 can

be generalized to other fundamental groups. In particular, consider a finite aspherical

2-complex with fundamental group Γ , so this 2-complex represents a K(Γ , 1). Given

1 %= g ∈ Γ , there is an embedding ig : Z ↪→ Γ induced by 1 &→ g because g has infinite

order (otherwise a nontrivial finite cyclic group would have no higher homology). We

will prove:

Theorem 1.6. There is a closed oriented 4-manifold M with π1(M) = Γ such that

(1) The intersection form λ on π2M (modulo its radical) is given by extending

the form L from Z[Z] to Z[Γ ] via ig, but λ is not extended from the integers.

(2) If there exists an epimorphism ϕ : Γ → G to a finite group G such that

ϕ(g) has order ≥ 3 and H2(Ker ϕ) = 0, then M does not admit a smooth

structure. In fact the cover Mϕ of M corresponding to ϕ has a non-

standard odd, positive definite intersection form. !

Taking Γ = Z we see that Theorem 1.2 can be logically seen as a special case

of Theorem 1.6. Other classes of groups that satisfy all assumptions of Theorem 1.6

include knot groups, fundamental groups of non-orientable surfaces (except for the

projective plane but including free groups) as well as almost all solvable Baumslag-

Solitar groups, see Lemma 6.1. We leave it to the reader to formulate (and prove) the

appropriate amalgamation of Theorems 1.5 and 1.6.

Remark 1.7. The assumption on the vanishing of H2(Ker ϕ) in Theorem 1.6 is necessary

for the last conclusion to hold. In fact, the intersection form on H2(Mϕ) contains a

metabolic form on H2(Ker ϕ) ⊕ H2(Ker ϕ)∗ and hence can only be positive definite under

our assumption.

2 Proof of Theorem 1.2

First observe that the signature σ and the Euler characteristic χ are multiplicative in

finite covers and that they are both equal to 4 for M1 = ML. But since any finite cover

satisfies π1Mn = Z, it actually follows that

σ(Mn) = 4n = χ(Mn) = rank H2Mn
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and hence the intersection form Ln on H2Mn is positive definite. The intersection form

L1 =





7 6 3 2

6 7 2 3

3 2 2 0

2 3 0 2





on H2ML (obtained from L via the augmentation ε : Z[x, x−1] → Z, x &→ 1) is odd and hence

w2(ML) %= 0 because H2(ML; Z/2) ∼= Hom(H2ML,Z/2) by the universal coefficient theorem.

Since H2(Z; Z/2) = 0 it follows that the second Stiefel–Whitney class is nontrivial on the

universal covering of M1. Therefore, it must also be nontrivial on Mn and hence Ln is odd.

As a consequence L1 and L2 are odd definite unimodular forms of ranks 4 and 8,

respectively, and hence are standard. It remains to show that Ln is nonstandard for n ≥ 3.

We shall use the following easy criterion. The converse of this criterion was proven to

hold by Elkies [5]. His criterion was used to give a geometrically easier argument for

Donaldson’s Theorem A via the Seiberg–Witten equations.

Lemma 2.1. Let w ∈ V be a characteristic vector for a unimodular form on V, i.e.

(w, v) ≡ (v, v) mod 2 ∀ v ∈ V.

If the form is standard, then |w|2 := (w,w) ≥ rank V. !

Proof. Let ei be an orthonormal basis of V, i.e. (ei, ej) = δij. Then w =
∑

ei is a character-

istic vector with |w|2 = rank V and it suffices to show that any other characteristic vector

has larger norm. But this follows from the inequality

|w + 2v|2 = |w|2 + 4(v,w) + 4|v|2 ≥ |w|2

which is a consequence of (v,w) =
∑

vi and |v|2 =
∑

v2
i when v =

∑
vi · ei. "

It therefore suffices to show that there is a characteristic vector w for Ln whose

Ln-norm satisfies

|w|2 < 4n = rank Ln.

We first explain an easy way to think about the forms Ln. As in Section 1, set

Λ := Z[x, x−1] = Z[Z] and Λn := Λ/(xn − 1) = Z[Z/n].

The natural projection Λ → Λn converts our matrix L into a matrix L/n over Λn of rank 4.
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Lemma 2.2. The matrix L/n represents the Z/n-equivariant intersection form on H2Mn

with values in Λn. The ordinary Z-valued intersection form Ln on H2Mn is given by the

coefficient of the identity (in the ring Λn) of this form. !

Proof. Since the higher cohomology groups of Z vanish, the Künneth spectral sequence

reduces to the (second) isomorphism

H2(Mn) ∼= H2(M1; Λn) ∼= H2(M1; Λ) ⊗Λ Λn ∼= π2M1 ⊗Λ Λn ∼= Λ4
n .

The second statement of the Lemma follows from the well known expression of Z[G]-
valued intersections on a G-cover X

〈a, b〉 =
∑

g∈G

(ḡa, b) · g ∀ a, b ∈ H2X

in terms of ordinary intersection numbers (ḡa, b) of translates ḡa with b. "

To fix notation, let Vn be the free Λn-module of rank 4 (with underlying free

abelian group of rank 4n). Then L/n defines a pairing 〈 , 〉 on Vn with values in Λn and

Ln is the coefficient of the identity element in Z/n of this pairing. We write

(v, v ′) := Ln(v, v ′) = 〈v, v ′〉1 and hence |v|2 := (v, v) = 〈v, v〉1.

Let {e1, e2, e3, e4} be the Λn-basis for Vn in which we have written the matrix L above.

Then one gets a Z-basis E for Vn by multiplying ei with xj, where x is a generator of

Z/n and j = 1, . . . ,n. One can compute the norms of these basis vectors (noting that

|xjei|
2 = 〈xjei, xjei〉1 = xj · x−j〈ei, ei〉1 = 〈ei, ei〉1 = |ei|

2) by looking at the matrix L above. In

particular

|xjei|
2 = |ei|

2 =





3, 5 or 7 for i = 1, 2

2 for i = 3, 4.

The three possibilities in the first case (in which we are computing the coefficient of the

identity element in 〈e1, e1〉 = 〈e2, e2〉 = 1 + t + t2 = 3 + x + x−1 + x2 + x−2 ∈ Λn) correspond

to n ≥ 3, n = 2 (when x2 = 1) and n = 1 (when x = 1). In any case |ei|
2 is always odd for

i = 1, 2 and even for i = 3, 4. This will be used in the lemma below.

Let

N := 1 + x + x2 + · · · + xn−1
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be the norm element in Λn. It satisfies the identity N · r = N · ε(r) for all r ∈ Λn, where

ε : Λn → Z , x &→ 1

is the augmentation map. It follows that for any v, e ∈ Vn we have 〈N · v, e〉 = N〈v, e〉 =

Nε〈v, e〉 in Λn, and therefore

(N · v, e) = 〈N · v, e〉1 = (Nε〈v, e〉)1 = ε〈v, e〉 ∈ Z.

Lemma 2.3. The vector

w := N · (e3 + e4) ∈ Vn

is characteristic for Ln and satisfies |w|2 = 4n. !

Proof. We need to check that (w, e) ≡ (e, e) (mod 2) for all basis vectors e = xjei in the

basis E of Vn. We already calculated the right hand side, and for the left hand side we

have

(w, xjei) = ε〈e3 + e4, ei〉 =





5 for i = 1, 2

2 for i = 3, 4

by referring to the intersection matrix L1 = ε(L) displayed above. These numbers are

indeed odd for i = 1, 2 and even for i = 3, 4, as required. Finally, we calculate the norm

|w|2 = (w,w) = ε(N〈e3 + e4, e3 + e4〉) = ε(N)ε(2 + 2) = 4n. "

Now consider the characteristic vector w1 := w − 2e1 and calculate

|w1|
2 = |w|2 − 4

(
(w, e1) − |e1|

2) = 4n − 4
(
5 − |e1|

2) .

For n = 2 we have |e1|
2 = 5, and so |w1|

2 = 4n = 8, consistent with L2 being standard.

But for n ≥ 3 we have |e1|
2 = 3, and hence |w1|

2 = 4n − 8, which means that Ln cannot be

standard.

3 Intersection forms

In the previous section we showed that the intersection forms Ln on Vn = H2(Mn; Z)
(∼= Z4n) are not standard for any n ≥ 3, i.e. not equivalent to the diagonal form I4n.
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This section initiates a further investigation of the structure of these forms, and thus

implicitly the topological structure of the 4-manifolds Mn.

In what follows, a free abelian group of finite rank with a positive definite

unimodular form will be referred to simply as a lattice. By a classical theorem of Eichler

(see [13, 6.4]), any lattice splits uniquely as an orthogonal sum of indecomposable

lattices. There is a unique indecomposable lattice in each rank 1, 8, 12, 14 and 15, but

after that the number grows dramatically with the rank.

Of special interest here are the lattices Γ4m (of rank 4m) which are indecompos-

able for m ≥ 3. In particular Γ8 (also known as E8) and Γ12 (also known as D+
12 as in

Conway and Sloan’s treatise [3]) are the smallest non-trivial indecomposable lattices. Ex-

plicitly, Γ4m consists of all vectors in R4m whose coordinates are all integers or all half-

integers with an even integer sum. It is spanned by the vectors vi +vj and 1
2(v1 + · · ·+v4m)

(for an orthonormal basis v1, . . . , v4m).

Before stating any results, we recall some standard notions (and introduce some

new ones) concerning a lattice V with inner product ( , ). The norm of v ∈ V is the inner

product (v, v), also denoted |v|2. A vector w ∈ V is characteristic if (w, v) ≡ |v|2 mod 2

for all v ∈ V. Among the characteristic vectors, those with the smallest norm will be

called minimal. The total number µ(V) of minimal characteristic vectors in V is a useful

invariant of V. It clearly multiplies under orthogonal sums, since a vector (u, v) ∈ U ⊕ V

is (minimal) characteristic if and only if u ∈ U and v ∈ V are (minimal) characteristic.

For example, we have µ(Ik) = 2k (where Ik denotes the standard lattice) and µ(Γ8) = 1

(since Γ8 is even).

Define the defect of the lattice to be

d(V) = 1
8(rank(V) − |w|2)

for any minimal characteristic vector w in V. It is an integer, by a classical lemma

of van der Blij (see [13, 5.2]), and clearly adds under orthogonal sums. For example

d(Γ4m) = /m/20. Indeed for odd m the minimal characteristic vectors are exactly the

vectors ±2vi (and so µ(Γ4m) = 8m) while 0 is the unique minimal characteristic vector

when m is even.

Elkies shows in [5] that the defect d(V) is always nonnegative, and equal to 0 if

and only if V is standard. It is therefore a measure of non-diagonalizability. In [6], he

goes on to prove that there are only finitely many indecomposable lattices of defect one

(including Γ8 and Γ12) and raises the question of whether this is also the case for larger

defects. (This has been confirmed for defects 2 and 3 by Gaulter [10].)
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Theorem 3.1. The defect of the lattice Vn (= H2(Mn; Z) with the form Ln) satisfies the

inequality /n/30 ≤ d(Vn) < n/2. !

Proof. The result is obvious for n = 1 or 2, so assume n ≥ 3. We use the notation from the

previous section, in particular, e1, . . . , e4 is a basis for which the intersection form L is

given by the matrix on page 1 and w = N · (e3 + e4). We consider the characteristic vector

w0 := w − 2(1 + x3 + · · · + x3(/n/30−1))e1

in Vn. This vector is of the general form

wa := w − 2a(x)e1

where a(x) = a0 +a1x+ · · ·+akxk is an integer polynomial. The norm of wa can be written

in terms of the quadratic expressions ai := a0ai +a1ai+1 + · · ·+akai−1 (i.e. the dot product

of the coefficient vector (a0,a1, . . . ,ak) with its ith shift (ai,ai+1, . . . ,ai−1)) as follows:

|wa|2 = 4n − 4
(
ε〈e3 + e4,a(x)e1〉 −

(
a(x)a(x−1)〈e1, e1〉

)
1

)

= 4n − 4
(
5a(1) − 3a0 − 2(a1 + a2)

)
.

For w0, the coefficient vector consists of a sequence of /n/30 ones separated by and

terminating with at least two zeros, and so a(1) = a0 = /n/30 and a1 = a2 = 0. Thus

|w0|
2 = 4n − 8/n/30, and so by definition d(Vn) ≥ /n/30.

To obtain the upper bound, note that d(Vn) ≤ 1
8 rank(V) = n/2, and the inequality

is strict because the form on Vn is odd. "

Corollary 3.2. If Vn splits off an Ik summand for some k, then k ≤ 4n − 8/n/30. !

This is immediate from the theorem and the additivity of the defect. Observe that

the bound 4n − 8/n/30 is of the order of 4n/3 = rank(Vn)/3 for large n, and so this result

roughly states that at least two-thirds of the form Vn cannot be diagonalized.

Unfortunately this gives no new information for n < 6 beyond that contained in

Theorem 1.2. Special arguments can be used, however, to further restrict the forms for

small n. Indeed for n = 3 or 4 they can be identified precisely, using Conway and Sloan’s

root-system labeling (also see Conway’s lovely little book [2, pp. 53–58]).

Theorem 3.3. V3 and V4 are the unique odd indecomposable lattices in dimensions 12

and 16. In particular, we have V3 ∼= Γ12 and V4 ∼= D2
8[(12)]. !
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Proof. The lattices of rank 12 are Γ12, Γ8 ⊕ I4 and I12, and so by Theorem 1.2 it suffices to

eliminate Γ8 ⊕ I4. But

µ(Γ8 ⊕ I4) = 1 · 24 = 16 while µ(Γ12) = 24

and so one need only produce 17 or more minimal characteristic vectors in V3. In fact the

complete list is ±(w − 2xie) for i = 0, 1, 2 and e = e1, e2, e1 + e4 or e2 + e3, as is readily

verified. (An explicit isomorphism V3 ∼= Γ12 is easily deduced from this.)

For V4 we take a different tact, focusing on vectors of norm 2. A theorem of

Witt asserts that the norm 2 vectors in any lattice span a sub-lattice isomorphic to a

direct sum of root lattices An, Dn and En. From the classification in [3, §16.4] of lattices

of rank 16, it suffices to find a copy of D8 ⊕ D8 in V4, where D8 is the lattice whose

intersection matrix with respect to a suitable basis v1 . . . , v8 of norm 2 vectors is given

by the corresponding Dynkin diagram:

! ! ! ! ! ! !
!

!!

""v1 v2 v3 v4 v5 v6 v7

v8

Here two nodes are joined by an edge or not according to whether their associated vectors

have inner product 1 or 0. One easily checks that in V4 the vectors

v1 = x2e4, v2 = x2(−e1 + e2 + e3), v3 = x2e3, v4 = x2e1 − e2, v5 = e1 − e2

v6 = e3, v7 = −e1 + e2 + e3 − e4, v8 = w − (e1 + e2 + x2(e3 + e4))

span a copy of D8, and the vectors wi = xvi (for i = 1, . . . , 8) span an orthogonal copy

of D8. "

4 Alexander polynomial one knots that are not slice

In this section we shall prove Corollary 1.4, starting with the second part. Let K be a knot

in S3 such that the 3-manifold N obtained by 0-surgery on K bounds a smooth 4-manifold

W with fundamental group Z and such that the intersection form on π2W is represented

by L.

Since the intersection form on H2(W ; Λ) ∼= π2W is non-singular it follows imme-

diately that ∆K(t) = 1, hence K is topologically slice. Moreover, H2(W) ∼= π2W ⊗Λ Z is
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torsionfree and therefore the same is true for H1(W,N) ∼= H3(W). This, together with the

non-singularity of L ⊗Λ Z implies that the induced map H1(N) → H1(W) is an isomor-

phism.

Now assume that K bounds a smooth disk D in a rational homology ball B. Then

let C = B \ νD and X = S3 \ νK. Note that X and C have the rational homology of a circle.

Consider the smooth 4-manifold

M := W ∪∂ C.

We have inclusion-induced isomorphisms

Z ∼= H1(X)
∼=−→ H1(N)

∼=−→ H1(W)
∼=−→ H1(M)/{torsion}

∼=←− H1(C)/{torsion}.

Given n ∈ N we denote the covers corresponding to the homomorphism Z → Z/n by the

subscript n. Now let n be a prime power larger than 2 such that H∗(C) has no n-torsion.

It follows immediately from [9, Proof of Lemma 2.3] (cf. also [1, p. 184]) that Xn and Cn

are still rational homology circles and that the projection maps Xn → X and Cn → C give

isomorphisms of rational homology.

It is well-known that H1(Nn) ∼= H1(Xn). By Poincaré duality it now follows that

Nn is a rational homology S1 × S2. Using H1(N)
∼=−→ H1(W) it follows from the above

discussion and from the Meyer–Vietoris sequence corresponding to Mn = Wn ∪Nn Cn that

the inclusion maps induce an isomorphism

H2(Wn)/{torsion}
∼=−→ H2(Mn)/{torsion}.

Since π1(W) = Z we can apply Lemma 2.2 to conclude that the intersection form on

Wn (and hence on the smooth 4-manifold Mn) is given by Ln. But since Ln is positive

and non-standard by Theorem 1.2 we can again use Donaldson’s theorem A to see that

the Mn cannot exist smoothly and hence K cannot be smoothly slice to begin with. This

concludes the proof of the second part of Corollary 1.4.

To prove the first part of Corollary 1.4, it suffices to construct a smooth 4-

manifold W with the required properties and check that ∂W is 0-surgery on a knot. Start

with one 0- and one 1-handle (which we draw as a dotted unknot U in S3). Then WJ is

obtained by attaching four 2-handles along a framed link J in S1 ×D2, the complement of

U. The link J is chosen so that

1. J is the unlink if one ignores U,

2. J has trivial linking numbers with U and

3. J represents the matrix L ′.
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K

Figure 1 A knot as in Corollary 1.4.

Here L ′ is obtained from L by row and column operations that have the effect of chang-

ing ε(L) to the identity matrix ε(L ′). Note that property (2) implies that WJ is homotopy-

equivalent to S1 ∨4 S2 and a Z[Z]-basis of π2WJ is given by the cores of the four 2-handles

together with null-homotopies of J in the complement of U. These four null-homotopies

read off an intersection matrix depending on the crossing changes necessary. Prop-

erty (3) requires that this matrix is given by L ′, in particular J is 1-framed (when

ignoring U).

It is easy to see that any matrix can be realized by a link J with properties (1)

and (2). The last step is to prove that ∂WJ is 0-surgery on a knot: This uses property

(1) and the fact that J is 1-framed. As a consequence one can blow down J completely

without changing the boundary! If one draws a picture with four disjointly embedded

disks bounding J and punctured by U, then the blow down procedure puts a full twist

into all strands that go through each of these four disks. Therefore, U turns into a knot K

(and the framing has turned from a dot to a zero when studying the boundary alone). This

is our non-smoothly slice knot with trivial Alexander polynomial; in fact, it is a whole

family of such knots.

One example of such a knot K is shown in Figure 1. It is constructed from the

unknot by four finger moves. The self linking and twisting of the fingers produce the

diagonal entries of L ′, while the linking between fingers produce the off-diagonal entries.

To see this, blow up four +1 curves (the link J in the discussion above) to unhook each of

the finger tips. This transforms K into an unknot U. Now pull J back along the fingers so

that U appears as the round unknot while the components of J follow the original fingers,

clasping at both ends.
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To calculate the associated intersection form, first introduce the notation

qn = 2xn − (xn+1 + xn−1) and cn = nq0 − (q1 + q−1)

so the matrix L ′ can be written as the sum of the identity matrix with a matrix in 2 × 2

block form in which each block has all entries equal, namely to c1 and c3 for the two

diagonal blocks, and −c2 for both off diagonal blocks.

Now orient U and all the components of J counterclockwise and label each arc

of J with a power of x in a natural way: Start with 1’s right before the clasps, and then

proceed along J (following the orientation) multiplying by x (or x−1) each time J links U

positively (or negatively). Locally, each finger then has two oppositely oriented strands

that are labeled by adjacent powers of x, say xm and xm−1, which we abbreviate by simply

labeling the finger at that point with the higher exponent m. Also any crossing between

fingers can be given a sign, namely, the sign of the crossing between the strands with the

higher exponents of x. With these conventions, a positive finger crossing in which the i-th

finger with label m passes over the jth with labels n will contribute qm−n to the ijth entry

of L ′, and an analogous negative crossing contributes −qm−n. Self crossings and twisting

of the ith finger contribute in a similar way to the diagonal entries. The calculation is

then straightforward.

Remark 4.1. Note that any knot K whose 0-surgery N bounds a 4-manifold W as in

Corollary 1.4 has trivial Alexander polynomial. Therefore, K is topologically Z-slice and

hence there is a topological 4-manifold C that is a homotopy circle and has boundary

N. To construct our non-smoothable 4-manifold in the title slightly more concretely, we

only have to prove that

ML := WJ ∪∂ C

has trivial Kirby-Siebenmann. This follows from the additivity of the (relative) Kirby-

Siebenmann and the fact that K has trivial Arf invariant: ∂C also bounds a spin manifold

W ′ with signature zero and

KS(W ∪∂ C) = KS(C, ∂C) = KS(W ′ ∪∂ C) = 0

because on spin manifolds the Kirby-Siebenmann invariant equals the signature divided

by 8.
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5 More forms

Recall that our basic form L : Λ4 × Λ4 → Λ (where Λ = Z[x, x−1]) was obtained by

substituting x + x−1 for t in the matrix displayed at the beginning of this paper. In this

section, we investigate the unimodular forms

L(a) :=





1 + a + a2 a + a2 1 + a a

a + a2 1 + a + a2 a 1 + a

1 + a a 2 0

a 1 + a 0 2





obtained by substituting other elements a ∈ Λ for t. (We shall always use the same

notation for a matrix and its associated form.) Note that L(a) is hermitian with respect

to the involution x &→ x−1 if and only if a = ā, where ā denotes the image of a under this

involution (called the “conjugate” of a). So we assume that a = ā and can formulate the

precise version of Theorem 1.5 in the introduction.

Theorem 5.1. Define inductively b1 = 1 and bk+1 = 4bk + 1, and set

L(k) := L(xbk + x−bk).

Then the forms L(k) for k = 1, 2, . . . are pairwise non-isomorphic. None of these forms is

extended from the integers, and none of their associated 4-manifolds is smoothable. !

As with L = L(1) the proof requires a study of some related forms. First some

notation. For any a =
∑

aixi ∈ Λ, recall that ε(a) =
∑

ai ∈ Z and (a)1 = a0. Thus ε : Λ → Z
is the usual augmentation map, and (a) &→ (a)1 defines a linear (nonmultiplicative)

projection π : Λ → Z. We consider also the corresponding maps Λn → Z, denoted by

the same names for any n ∈ N, where Λn = Λ/(xn − 1).
Now for any (self-conjugate) a ∈ Λ and any n, the matrix L(a) can be viewed

as a matrix over Λn in which case it is denoted by L(a)/n, as is the associated form

Λ4
n × Λ4

n → Λn. These forms in turn induce integral forms Ln(a) : Λ4
n × Λ4

n → Z of rank 4n

(since Λ4
n

∼= Z4n) by composition with π, that is, Ln(a)(v,w) = (L(a)/n(v,w))1.

Note that L(a)/1 = L1(a) = ε(L(a)) = ε(L(a)/n) for all n.

Lemma 5.2. For any a ∈ Λ with ā = a, the forms Ln(a) are positive definite, odd and of

rank 4n. In particular the forms L1(a) and L2(a) are standard. Furthermore, if L(a)/n is

extended from the integers, then Ln(a) is standard. !
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Proof. We first show that L1(a) is standard. The (1, 1)-entry of its defining matrix is

1 + ε(a) + ε(a)2 which is clearly odd for any a. By the classification of odd forms of rank

4, it follows that L1(a) is standard if and only if it is positive definite. But this can be

checked over Q. First observe (following Quebbemann’s definition [14, p. 474]) that

L(a) =

(
1
2 (I + B(a)2) B(a)

B(a) 2I

)
where B(a) :=

(
1 + a a

a 1 + a

)
.

Now a quick calculation gives

PL(a)P̄t = D where P =

(
I − 1

2 B(a)
0 I

)
and D =

(
1
2 I 0

0 2I

)

and so applying the augmentation map ε : Q[x, x−1] → Q to this equation we see

that L1(a) is positive definite over Q. (This also shows that L(a) considered as a form

on (Λ ⊗Z Z[ 1
2 ])4 is extended from a form defined on Z[ 1

2 ]4.) The argument given at the

beginning of Section 2 now yields all but the last statement of the lemma.

Now assume that L(a)/n is extended from the integers. Then it must be extended

from its augmentation ε(L(a)/n), which we have just seen is standard. Hence Ln(a) is

standard. "

Lemma 5.3. Let

a = a0 +

m∑

"=1

a"(x" + x−").

If a2
0 + 2

∑
a2

" < a0 + 4
∑

a" (where all sums are from 1 to m), then Ln(a) is not standard

for any n > 4m. !

Note that this lemma applies to all elements a for which all ai ∈ {0, 1} and a" %= 0

for at least one $ > 0, and in particular to a = xk + x−k for k > 0.

Proof. First observe that all exponents in powers of x appearing in the matrix L(a) are

between −2m and 2m, and so the condition n > 4m precludes any cancelation when

passing to the quotient L(a)/n. For notational convenience, write (u, v) = Ln(a)(u, v) for

the inner product and |v|2 = (v, v) for the associated norm.

We now proceed as in the proof of Theorem 1.2. Let N = 1 + x + · · · + xn−1 and

w = N(e3 + e4). We will show that w1 = w − 2e1 is characteristic of norm < 4n.
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The argument that w is characteristic, which of course implies that w1 is as well,

is exactly the same as the argument in Section 2. We need only observe that for any

j = 0, . . . ,n − 1, the inner products (xjei, xjei) are odd for i = 1, 2 and even for i = 3, 4

(in particular equal to

(1 + a + a2)1 = 1 + a0 + a2
0 + 2

∑
a2

"

in the first case, using the condition n > 4m, and (2)1 = 2 in the second) and that the

same is true of the inner products (w, xjei) = ε(L(a)/n(e3 + e4, ei)) (which equal

ε(1 + 2a) = 1 + 2ε(a) = 1 + 2(a0 + 2
∑

a")

in the first case and ε(2) = 2 in the second).

The norm |w1|
2 = |w|2 − 4((w, e1) − |e1|

2) which equals

4n − 4
(
(1 + a0 + a0 + 4

∑
a") − (1 + a0 + a2

0 + 2
∑

a2
")

)

by the calculations above. The condition on a is exactly what is needed to show that this

is less than 4n. "

To prove Theorem 5.1, we first show that the form L(k) = L(xbk + x−bk) is not

isomorphic to any L(j) for j < k. Indeed, Lemma 5.3 shows on the one hand that the

form Ln(j) is non-standard for n > 4bj, which implies by Lemma 5.2 that L(j)/bk
is not

extended from the integers since bk > 4bj. On the other hand, the matrix L(k) has entries

in Z[xbk , x−bk ], whence L(k)/bk
has integral entries and so is extended from the integers.

Next we observe that L(k) is not extended from the integers. For if it were, then

each L(k)/n would be as well, which would imply by Lemma 5.2 that all the forms Ln(k)
would be standard, contradicting Lemma 5.3.

The final statement in the theorem follows from Lemma 5.3, exactly as in the

proof of Theorem 1.2.

Remark 5.4. The argument in the previous paragraph shows more generally that if L :

Λn × Λn → Λ is any form extended from the integers with L1 standard, then all the

integral forms Ln are standard. It is conceivable that the converse holds as well. This

would imply Conjecture 1.3 in the definite case.



Non-smoothable Four-manifolds with Infinite Cyclic Fundamental Group 17

6 More general fundamental groups

In this section we want to prove Theorem 1.6 from the introduction. But first we recall a

class of groups to which the theorem actually applies. Let k ∈ Z and consider the solvable

Baumslag-Solitar groups

Γk := 〈a, b|aba−1 = bk〉.

Note that Γ0 = Z, Γ1 = Z2 and that for k %= 0 we have a semi-direct product decomposition

(where a generates the quotient Z and b corresponds to 1
k ):

Γk
∼= Z [1

k ] ! Z.

Here n ∈ Z acts on Z[ 1
k ] by multiplication by

(
1
k

)n.

Lemma 6.1. The 2-complex corresponding to the above presentation of Γk is aspherical.

Let Nn be the index n normal subgroup of Γk generated by an and b. If k %= 1, and n is odd

in the case k = −1, then for all other k,n we have

Hi(Nn) = 0 ∀ i > 1. !

Proof. The presentation of Γ has a unique relation which is not a proper power. Then the

corresponding 2-complex is aspherical [12], just like for surface groups. It is easy to see

that Nn ∼= Z[ 1
k ] ! n · Z. Then the Wang sequence shows the homology result. "

Before we prove Theorem 1.6, we collect some useful information that applies

to closed oriented 4-manifolds M with arbitrary fundamental group Γ . Denote by Λ the

group ring Z[Γ ] and let A be a Λ-algebra.

Lemma 6.2. Consider the equivariant intersection form with coefficients in A

λA : H2(M ; A) −→ HomA(H2(M ; A),A).

given by Poincaré duality composed with the Kronecker evaluation. If A = Λ then the

radical Ker(λΛ) is isomorphic to H2(Γ ; Λ). If A = Z[G] where G = Γ/N is a quotient group,

then the image of H2(Γ ; A) in H2(M ; A) ∼= H2(M ; A) is contained in the radical Ker(λA) if

H2(N) is finite. !
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Proof. The universal coefficient spectral sequence gives an exact sequence

0 −→ H2(Γ ,Λ) −→ H2(M ; Λ) −→ HomΛ(H2(M ; Λ),Λ)

Applying Poincaré duality H2(M ; Λ) ∼= H2(M ; Λ) and identifying the composition with

λ (respectively λΓ/N) yields the first result. For the second statement we note that by

naturality of the evaluation map, it suffices to prove the vanishing of

HomA(H2(Γ ; A),A) = HomA(H2(N; Z),A).

This follows from our assumption that H2(N; Z) is finite. "

Proof of Theorem 1.6. The construction of the 4-manifold M is very similar to that of

Section 4. Start with a 4-dimensional thickening K of the finite aspherical 2-complex,

i.e. K is a handlebody with handles of index ≤ 2 corresponding to the cells of the

2-complex. We may assume that there is a 1-handle hg that corresponds to the given

element 1 %= g ∈ Γ .

Next we attach four more 2-handles in a neighborhood of the meridian to the 1-

handle hg. This is done just like in Section 4 so that the intersections between the null

homotopies for the handles represent the matrix L. In particular, these 4-handles are

attached homotopically trivially, so that the resulting 4-manifold X has the homotopy

type

X 4 K ∨ 4 · S2.

If we had attached these four 2-handles to S1 × D3, we showed in Section 4 that the

resulting 4-manifold has boundary equal to 0-surgery on a knot with trivial Alexander

polynomial. By Freedman’s theorem, this knot is Z-slice, i.e. the 0-surgery also bounds

a topological 4-manifold C which is a homotopy circle. Since we have attached the four

2-handles in X only to a meridian of hg, it follows that the boundary ∂X also bounds a

4-manifold Y that is obtained from C by adding 1- and 2-handles (corresponding to the

handles in K). Since C is a homotopy circle, it follows that Y is another K(Γ , 1). We define

M := X ∪∂ Y

and we claim that it has the two properties stated in Theorem 1.6. The inclusion Y ↪→ M

induces an exact sequence (with coefficients in any Λ-module A)

H2(Y ; A) −→ H2(M ; A)
j

−→ H2(M,Y ; A)
0

−→ H1(Y ; A)
∼=−→ H1(M ; A). (∗)
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The rightmost map is an isomorphism since the inclusion Y ↪→ M induces an isomor-

phism on fundamental groups.

We now turn to the proof of part (1) of Theorem 1.6. Consider the exact se-

quence (∗) with A = Λ = Z[Γ ]. Note that H2(Y ; Λ) = 0 since Y is a K(Γ , 1). Therefore, j

is an isomorphism and we get by excision and Poincaré duality

H2(M ; A) ∼= H2(M,Y ; A) ∼= H2(X, ∂X ; A) ∼= H2(X ; A) ∼= H2(K; A) ⊕ H2(S2; A)4

where H2(K; Λ) ∼= H2(Γ ; Λ) is the radical of the Λ-valued intersection form on π2M by

Lemma 6.2. The intersection form on H2(S2; Λ)4 (and hence the intersection form λΛ on

π2M modulo its radical) is by construction given by extending the form L from Z[Z] to

Z[Γ ] via ig. Since g has infinite order, the proof of [11, Lemma 4] can easily be seen to

carry through to show that λΛ is not extended from the integers. Alternatively the fact,

proven in (2), that λΛ gives rise to a non-standard form over Z also shows that λΛ is not

extended.

For part (2) of Theorem 1.6, let A = Z[G] = Z[Γ/N] and recall that by assumption

H2(Y ; A) ∼= H2(Γ ; A) ∼= H2(N; Z) = 0.

By Lemma 6.2, the group H2(K; A) ∼= H2(Γ ; A) lies in the radical of λA and so the above

exact sequence (∗) and the exact sequence slightly below it show that the A-valued

intersection pairing λA (modulo its radical) is given by extending the form L from Z[Z]
to A = Z[G] via the map Z → Γ → G. Denote by n the order of ϕ(g) and write k = 1

n |G|.

Pick representatives h1, . . . ,hk for G/〈g〉. Then any h ∈ G is of the form h = higj for unique

i ∈ {1, . . . , k} and j ∈ {0, . . . ,n − 1}.

Denoting the standard basis of Z4 again by e1, . . . , e4, the linearity of λG gives

λG(hjgkei,hj ′gk ′
ei ′) = hj ′λG(gkei, gk ′

ei ′)h−1
j .

Note that by the definition of λG we have λG(gkei, gk ′
ei ′) ∈ Z[〈g〉] ∈ Z[Γ ]. Furthermore,

hj ′gih−1
j = e if and only if j ′ = j and i = 0. Therefore

λG(hjgkei,hj ′gk ′
ei ′)1 = (hj ′λG(gkei, gk ′

ei ′)h−1
j )1 = δjj ′ λ(eigk, ei ′gk ′

)1.

This shows that the ordinary intersection form of Mϕ is the direct sum of k copies of

Ln. This is clearly positive definite. Taking k copies of the vector w ′ from the proof of
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Theorem 1.2 we get a characteristic vector of norm

(4n − 8)k < 4|G| = rank(H2(Mϕ)). "
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