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Overview

Overview

This talk will focus on model-based clustering via Gaussian
mixture models.

Model-based clustering and Gaussian mixture models are
introduced.

Popular techniques are reviewed.

New techniques are introduced and demonstrated on real data.
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Overview

Statistical Learning

Learning is that process by which knowledge is gained.

Statistical learning can be either supervised or unsupervised.

Models are said to learn in a ‘supervised’ fashion, when the
outcome variable is present.

In an ‘unsupervised’ learning situation, the outcome variable may
be either absent or non-existent.
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Overview

Classification Example

Consider some classification techniques.

Supervised learning examples.

Discriminant analysis.
Logistic regression.
CART.
SVMs.

Unsupervised learning examples.

Association rules.
Cluster analysis.
Self-organizing maps.
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Model-Based Clustering

Model-Based Clustering

Model-based clustering techniques can be traced at least as far
back as Wolfe (1963).

In more recent years model-based clustering has appeared in the
statistics literature with increased frequency.

Typically the data are clustered using some assumed mixture
modeling structure.

Then the group memberships are ‘learned’ in an unsupervised
fashion.
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Model-Based Clustering

Finite Mixture Models

Assume

The data are collected from a finite collection of populations.
The data within each population can be modeled using a standard
statistical model.

Gaussian mixture models have model density of the form

f (x) =
G∑

g=1

πgφ(x|µg ,Σg ).

πg is the probability that an observation belongs to group g .
φ(x|µg ,Σg ) is the density of a multivariate Gaussian

(
µg ,Σg

)
.
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Overview

MCLUST & Variable Selection

MCLUST is probably the most well known model-based
clustering technique in the literature.

Variable selection is a technique that involves repeated
application of MCLUST.

Both are supported by R packages.

mclust
clustvarsel
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MCLUST

The Covariance Structure

Banfield & Rafterey (1993), Celeux & Govaert (1995) and Fraley
& Raftery (1998, 2002) exploit an eigenvalue decomposition of
the group covariance matrices for the Gaussian mixture model.

The eigenvalue decomposition of the covariance matrix is of the
form

Σg = λgDgAgD
′
g ,

where

λg is a constant,
Dg is a matrix consisting of the eigenvectors of Σg , and
Ag is a diagonal matrix with entries proportional to the
eigenvalues of Σg .
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MCLUST

The Models

This covariance structure allows for a variety of constraints.

ID Volume Shape Orient. Covariance Number of
Decomp. Cov. Parameters

EII Equal Spherical — λI 1
VII Variable Spherical — λk I G
EEI Equal Equal Ax-Alg λA p
VEI Variable Equal Ax-Alg λgA p + G − 1
EVI Equal Variable Ax-Alg λAg pG − G + 1
VVI Variable Variable Ax-Alg λgAg pG
EEE Equal Equal Equal λDAD′ p(p + 1)/2
EEV Equal Equal Variable λDkAD′

k Gp(p + 1)/2 − (G − 1)p
VEV Variable Equal Variable λkDkAD′

k Gp(p + 1)/2 − (G − 1)(p − 1)
VVV Variable Variable Variable λkDkAkD

′
k Gp(p + 1)/2

The non-diagonal constraints have a number of covariance
parameters that is quadratic in data-dimensionality p.
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Variable Selection

The Idea

Raftery & Dean (2006) propose a variable selection method
based on the use of Bayes factors (Kass & Raftery, 1995).

This is essentially a model selection problem.

Two models, M1 and M2 say, for data X are compared using the
using Bayes factors.
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Variable Selection

Bayes Factors

The Bayes factor, B12, for model M1 versus model M2, is defined
as

B12 =
p(X | M1)

p(X | M2)
,

where

p(X | Mk) =

∫
p(X | θk ,Mk)p(θk | Mk)dθk ,

θk is the vector of parameters for model Mk , and
p(θk | Mk) is the prior distribution of Mk (Kass & Raftery, 2005).

Variables are then selected based on which model is the ‘best’.
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Variable Selection

Comments

Variable selection is often viewed as an improvement over
MCLUST.

Variable selection does not always outperform MCLUST.

In addition to model-based clustering, variable selection is a data
reduction technique.

Examples are given later...
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Factor Analysis

Factor Analysis

Introduced by Spearman (1904) following the introduction of
Principal Components by Pearson (1901).

Developed for and by psychologists.

Laid out as a statistical model by Bartlett (1953).

Spent much time as “the black sheep of statistical theory”
(Lawley & Maxwell, 1962).
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Factor Analysis

Factor Analysis — The Idea

Consider a p-dimensional real-valued data vector x.

Assume x can be modeled using a q-dimensional vector of
real-valued (unobservable) factors u.

q � p.

Data reduction technique.
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Factor Analysis

The Factor Analysis Model

The model is
x = µ + Λu + ε.

Λ is a p x q matrix of factor loadings.
u ∼ N(0, Iq) are the factors.
ε ∼ N(0,Ψ), where Ψ = diag(ψ1, ψ2, . . . , ψp).

It follows that the marginal distribution of x is multivariate
Gaussian (µ,ΛΛ′ + Ψ).

Λ is not defined uniquely. If Λ is replaced by Λ∗ = ΛD where D
is orthonormal, then

ΛΛ′ + Ψ = (Λ∗)(Λ∗)′ + Ψ.
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Probabilistic Principal Component Analysis

The PPCA Model (Tipping & Bishop, 1999a)

A special case of the factor analysis model, with Ψ = ψIp.

Therefore, the density of x is

f (x) = φ(x|µ,ΛΛ′ + ψIp).

The maximum likelihood estimate (MLE) of µ is x.

The MLEs for Λ and Ψ are found using the EM algorithm
(Dempster et al. 1977).
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Probabilistic Principal Component Analysis

EM Algorithm for PPCA: E-Step

The E-step involves calculation of the expected complete-data
log-likelihood, denoted Q.

After some mathematics, it follows that Q, evaluated with
µ = µ̂ = x, is given by

Q(Λ,Ψ) = C +
n

2
log |Ψ−1| − n

2
tr

{
Ψ−1S

}
+ n tr

{
Ψ−1Λβ̂S

}
− n

2
tr

{
Λ′Ψ−1ΛΘ

}
,

where β̂ = Λ̂′(Λ̂Λ̂′ + Ψ̂)−1 and Θ =
(
Iq − β̂Λ̂ + β̂Sβ̂

′)
.
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Probabilistic Principal Component Analysis

EM Algorithm for PPCA: M-Step

We need to maximize Q with respect to Λ and Ψ.

Graybill (1983), Lütkepohl (1996) and Magnus & Neudecker
(1999) give helpful results.

∂ log |X|
∂X

= X−1

∂ tr(XA)

∂X
= A′

∂ tr(AXB)

∂X
= B′A′

∂ tr(XAXB)

∂X
= B′X′A′ + A′X′B′

Paul McNicholas Model-Based Clustering: An Overview



Introduction Popular PGMMs Examples Longitudinal Data Summary

Probabilistic Principal Component Analysis

Results of Matrix Differentiation

Differentiating Q with respect to Λ we obtain

S1(Λ,Ψ) =
∂Q

∂Λ
= nΨ−1Sβ̂

′ − n Ψ−1ΛΘ.

Solving the equation S1(Λ̂,Ψ) = 0 we obtain

Λ̂ = Sβ̂
′
Θ−1.

Differentiating Q with respect to Ψ−1 gives

S2(Λ,Ψ) =
∂Q

∂Ψ−1
=

n

2
Ψ− n

2
S′ + n Λβ̂S− n

2
ΛΘ′Λ′.

Solving the equation S2(Λ̂, Ψ̂) ≡ S2(Λ̂, ψ̂) = 0 we obtain

ψ̂ =
1

p
tr

{
S− Λ̂β̂S

}
.
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Mixture of Factor Analyzers Model

MFA Model

Tipping & Bishop (1999b) develop a mixture of PPCAs model.

MPPCA is actually a special case of the mixture of factor
analyzers model (Ghahramani & Hinton, 1997; McLachlan &
Peel, 2000).

The MFA model assumes a Gaussian mixture model, with a
factor analysis covariance structure;

f (x) =
G∑

g=1

πgφ(x | µg ,ΛgΛ
′
g + Ψg ).
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The PGMM Models

Eight PGMMs

The parameters Λg and Ψg can be constrained across groups.

There is also the isotropic constraint, Ψg = ψg I.

These constraints leads to eight PGMMs:

Model ID Loading Error Isotropic Covariance
Matrix Variance Parameters

CCC Constrained Constrained Const. {pq − q(q − 1)/2} + 1
CCU Constrained Constrained Unconst. {pq − q(q − 1)/2} + p
CUC Constrained Unconstrained Const. {pq − q(q − 1)/2} + G
CUU Constrained Unconstrained Unconst. {pq − q(q − 1)/2} + Gp
UCC Unconstrained Constrained Const. G{pq − q(q − 1)/2} + 1
UCU Unconstrained Constrained Unconst. G{pq − q(q − 1)/2} + p
UUC Unconstrained Unconstrained Const. G{pq − q(q − 1)/2} + G
UUU Unconstrained Unconstrained Unconst. G{pq − q(q − 1)/2} + Gp
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Model Fitting

The Approach: AECM Algorithm

‘Alternating expectation-conditional maximization’ algorithm.

The PGMMs are fitted using the AECM algorithm (Meng & van
Dyk, 1997).

The AECM algorithm (Meng & van Dyk, 1997) allows a different
specification of complete-data for each conditional maximization
step.

McLachlan & Peel (2000) give extensive details of the fitting
algorithm in the UUU case.

Paul McNicholas Model-Based Clustering: An Overview



Introduction Popular PGMMs Examples Longitudinal Data Summary

Model Fitting

AECM: Stage 1 (πg and µg)

This missing data are the component membership labels zng .

These are replaced by their expected values

ẑng ∝ π̂gφ(xn|µ̂g , Λ̂g Λ̂
′
g + Ψ̂g ).

This leads to the expected complete-data log-likelihood, Q1.

Maximizing Q1 with respect to µg and πg gives the estimates,

µ̂g =

∑N
n=1 ẑngxn∑N
n=1 ẑng

and π̂g = ng/N.
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Model Fitting

AECM: Stage 2 (Λg and Ψg)

The missing data are the zng and the latent variables un.

Expected complete-data log-likelihood, Q2, is computed.

Constraints are imposed on Λg and Ψg , or not.

Q2 is then differentiated with respect to Λg and Ψ−1
g ; for

example, in the UUU case

S1

(
Λg ,Ψg

)
=
∂Q(Λg ,Ψg )

∂Λg
=

ng

2

[
Ψ−1

g Sg β̂
′
g −Ψ−1

g ΛgΘg

]

S2

(
Λg ,Ψg

)
=
∂Q(Λg ,Ψg )

∂Ψ−1
g

=
ng

2

[
Ψg − S′g + 2Λg β̂gSg − ΛgΘ

′
gΛ

′
g

]
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Further Generalization — 12 Models

Further Generalization of Covariance Structure

More recently, we use

Σg = ΛgΛ
′
g + Ψg = ΛgΛ

′
g + ωg∆g ,

where
ωg ∈ R,
∆g = diag{φ1, φ2, . . . , φp}, such that |∆g | = 1.

This leads to 12 models in total, all with a number of covariance
parameters that is linear in p.

Λg = Λ ∆g = ∆ ωg = ω ∆ = I Number of Covariance Parameters
C C U U [pq − q(q − 1)/2] + [G + (p − 1)]
U C U U G [pq − q(q − 1)/2] + [G + (p − 1)]
C U C U [pq − q(q − 1)/2] + [1 + G(p − 1)]
U U C U G [pq − q(q − 1)/2] + [1 + G(p − 1)]
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Italian Wines

Italian Wine Data

Forina et al. (1986) reported twenty-eight chemical properties of
Italian wines from the Piedmont region.

Three specific types: Barolo, Grignolino, Barbera.

27 of these 28 properties are available from the UCI Machine
Learning Database.
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PGMMs

Best PGMM

The PGMM family of models were fitted for G = 1, 2, . . . , 5 and
q = 1, 2, . . . , 5.

The best model, in terms of both BIC (Schwartz, 1978) and ICL
(Biernacki et al., 2000), is a CUU model with G = 3, q = 4.

1 2 3 4 5

1
2

3
4

5

G

q
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PGMMs

Classification for Best PGMM

Classification table for the best PGMM.

1 2 3

Barolo 59
Grignolino 70 1
Barbera 48

Rand Index=0.99

Adjusted Rand Index=0.98
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MCLUST

Results for MCLUST

Using the mclust software, the best MCLUST model was a VVI
model with three groups.

Classification for MCLUST.

1 2 3

Barolo 58 1
Grignolino 4 66 1
Barbera 48

Rand Index=0.95

Adjusted Rand Index=0.90
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Variable Selection

Results for Variable Selection

Nineteen variables were selected using variable selection via the
clustvarsel package (Dean & Raftery, 2006 ).

1 2 3 4

Barolo 52 7
Grignolino 17 54
Barbera 1 47

Rand Index=0.91

Adjusted Rand Index=0.78
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Summary

Model Comparison

Comparison of models applied to Italian wine data.

Model Rand Index Adjusted Rand Index
PGMM 0.99 0.98

MCLUST 0.95 0.90
Variable Selection 0.91 0.78

The best PGMM model had greater BIC than the best mclust
model.

MCLUST does better than Variable Selection.
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Leptograpsus Crabs Data

Crabs Data

Biological measurements on 200 crabs; 50 male and 50 female,
for each of two species; 50 orange and 50 blue.

Variable Measurement
FL Frontal lobe size in millimeters.
RW Rear width in millimeters.
CL Carapace length in millimeters.
CW Carapace width in millimeters.
BD body depth in millimeters.

The data was sourced from the MASS library in R.

These data were also analyzed by Raftery & Dean (2006).
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Leptograpsus Crabs Data

Best PGMM

All twelve PGMMs were fitted for G = 1, 2, . . . , 5 and
q = 1, 2, . . . , 5.

The best model, in terms of both BIC (Schwartz, 1978) and ICL
(Biernacki et al., 2000), is a CUUU model (G = 4, q = 1).

1 2 3 4 5

1
2

3
4

5

G

q
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Leptograpsus Crabs Data

Comment on Best PGMM

One latent variable (factor)...
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Leptograpsus Crabs Data

Classification for Best PGMM

Classification table for the best PGMM.

1 2 3 4

Blue
Male 40 10
Female 50

Orange
Male 50
Female 4 46

Rand Index=0.935

Adjusted Rand Index=0.828
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Leptograpsus Crabs Data

Results for MCLUST

Raftery & Dean (2006) report the results of applying MCLUST
and variable selection to the crabs data.

Classification for MCLUST.

1 2 3 4 5 6 7

Blue
Male 32 18
Female 31 19

Orange
Male 28 22
Female 24 21 5

Rand Index=0.851

Adjusted Rand Index=0.533
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Leptograpsus Crabs Data

Results for Variable Selection

Classification for variable selection.

1 2 3 4

Blue
Male 40 10
Female 50

Orange
Male 50
Female 5 45

Rand Index=0.931

Adjusted Rand Index=0.815
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Leptograpsus Crabs Data

Model Comparison

Comparison of models applied to crabs data.

Rand Index Adj. Rand Index Error Rate

PGMM 0.935 0.828 0.07
MCLUST 0.851 0.533 0.425
Var. Sel. 0.931 0.815 0.075

Note that best PGMM model also has higher BIC / ICL than the
best MCLUST model.

Comparison with variable selection via BIC / ICL is not valid.
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Clustering Longitudinal Data

Consider Longitudinal Data

How about clustering longitudinal data?

What type of covariance structure?

Cholesky decomposition?

Modified Cholesky decomposition — even better!.
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Modified Cholesky Decomposition

The Decomposition

Pourahmadi (1999, 2000) exploits the fact that covariance matrix
Σ of a random variable can be decomposed using the relation

TΣT′ = D,

where

T is a unique unit lower triangular matrix with diagonal elements
tii = 1, and
D is a unique diagonal matrix with strictly positive entries.

An alternative version of this relationship is written

Σ−1 = T′D−1T.
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Modified Cholesky Decomposition

The Decomposition

T and D can be interpreted statistically in terms of an
autoregressive model.

This decomposition was also used by Pan & MacKenzie (2003,
2006).

Pourahmadi et al. (2007) extended this decomposition to
account for multiple covariance matrices.
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The Models

Constraints

Consider the Gaussian mixture model with group covariance
structure,

Σg
−1 = Tg

′Dg
−1Tg.

We can impose the following constraints to get a family of 8
models, 6 of which are new.

Model Tg = T Dg = D Dg = δg I Cov. Para’s
NNN Not Constrained Not Constrained Not Constrained G [p(p − 1)/2] + Gp
NCN Not Constrained Constrained Not Constrained G [p(p − 1)/2] + p
CNN Constrained Not Constrained Not Constrained p(p − 1)/2 + Gp
CCN Constrained Constrained Not Constrained p(p − 1)/2 + p
NNC Not Constrained Not Constrained Constrained G [p(p − 1)/2] + G
NCC Not Constrained Constrained Constrained G [p(p − 1)/2] + 1
CNC Constrained Not Constrained Constrained p(p − 1)/2 + G
CCC Constrained Constrained Constrained p(p − 1)/2 + 1
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The Models

Model Fitting & Development

These models can be fitted using an expectation-conditional
maximization (ECM) algorithm (Meng & Rubin, 1993).

The ECM algorithm can be considered a more straightforward
version of the AECM algorithm; without the u.

A paper based on these 8 models is in preparation.

This family of models has great potential for growth...

The constraints imposed by Pourahmadi et al. (2007) are
currently being worked into this family of models.
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Example: Rats Data

The Data

Data on the body weights of rats on one of three different dietary
supplements.

Published by Crowder & Hand (1991).

16 rats were put on one of three different diets;

8 rats were on Diet 1,
4 were put on Diet 2, and
4 on Diet 3.
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Example: Rats Data

Groups

The three groups can be see on the following graph;
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Group 2 has a heavy rat and Group 3 has a light rat.
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Example: Rats Data

Results

The clustering for the model with the highest BIC is;
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The Rand index is 0.95 (0.88 adjusted Rand).
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Conclusions

Conclusions I

Data reduction techniques can improve clustering and
classification results.

A family of 12 parsimonious Gaussian mixture models has been
introduced, which includes the MFA and MPPCA models as
special cases.

This family of models has been shown to perform favorably when
compared to well-established techniques.

Especially useful for high-dimensional problems; many such
problems arise in bioinformatics.
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Conclusions

Conclusions II

Clustering of longitudinal data can also be achieved using
Gaussian mixture models.

A family of 8 mixture models has been introduced, with a
modified Cholesky decomposed covariance structure.

This family of models has been shown to give good results on
real data.

This family has great potential for further expansion.
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