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Outline of the talk

• Description of the Problem;

• Literature review;

• Empirical likelihood approach;

• Simulation study;

• Generalizations.
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Description of the Problem

We consider a general problem in survey sam-

pling.

Assume that there is a finite population con-

sists of N sampling units.

Each unit has some characteristics of interest.

The problem of survey is to make inference on

the finite population parameters such as:

Population mean : Ȳ = N−1
N∑
i=1

yi;

Population CDF : FN(y) = N−1
N∑
i=1

I(yi ≤ y)

with I(yi ≤ y) being an indicator function.
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Typically, the inference is done through a sur-

vey sampling.

First, we obtain a random sample from the

finite population according to a sampling plan.

Second, we obtain measurements on sampled

units.

Finally, we analysis the data and make infer-

ences on the finite population parameters.
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More often than not, we are not satisfied with

merely giving a point estimate. An associated

confidence interval is desirable.

In the case of population mean, it is usually

true that the sample mean is asymptotically

normal.

Hence, a typical 95% confidence interval has

the form

ȳn − 1.96n−1/2ŝn, ȳn + 1.96n−1/2ŝn,

where ȳn is the sample mean and s2
n is the

sample variance (assuming n << N).
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Under some conditions, the coverage rate of

this CI converges to 95% when n,N go to in-

finity.

However, when n,N are finite, the coverage

can be very different from 95%.

A classical example is when the population is

severely skewed.

The special case we consider is when the pop-

ulation contains a large proportion of zero val-

ues.
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In accounting practice, a sample of about 100

claims is often obtained for re-counting.

Most of the claims will be found legitimate, but

a small portion of claims may be excessive.

Thus, the amount of the excessive claim for

most sampling unit is zero, with some non-

zeroes.

An accurate confidence interval can be used

by the government to compute the amount of

money the firm owes.
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The classical central limit theorem based CI is

obviously not ideal in this case.

1. The coverage rate might be far from 95%;

2. The lower bound can be smaller than zero.

Kvanli, Shen and Deng (KSD, 1998) consid-

ered a method using mixture models.
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Literature review

KSD suggested that perhaps an appropriate

parametric model can be found for non-zero

values in the population.

If so, such a population can be described by

the following density function:

f(y;µ, θ, p) = pf1(y;µ, θ)I(y 6= 0)+(1−p)I(y = 0),

where p is the population error rate and f1(y;µ, θ)

is a parametric density function with condi-

tional mean µ and nuisance parameters θ.
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Suppose Y1, . . . , Yn are iid random variables with

common density function f(y;µ, θ, p). The log-

likelihood function is then given by

ln(µ, θ, p) =
n∑
i=1

log f(yi, µ, θ, p).

We can therefore define the likelihood ratio

function for testing τ = τ0(= pµ) as

rn(τ0) = 2[sup
µ,θ,p

ln(µ, θ, p)− sup
µ,θ,p:τ=τ0

ln(µ, θ, p)].

10



Accordingly, a two-sided approximate 100(1−
α)% CI for τ is given by

{τ : rn(τ) ≤ χ2
1−α,1}. (1)

The theory behinds this procedure is the fa-

mous Wilks(1938) result of chisquare limiting

distribution of the likelihood ratio statistic.
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Even though this method also relies on asymp-

totic results, in this case the coverage rates are

usually much better as the likelihood is tailor

made just for such populations.

KSD provided simulation results when f is nor-

mal and exponential density functions.

They also discussed computational problems

related to this procedure.
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Motivation

In survey, we try to avoid parametric model

assumptions whenever possible.

For example, no models are needed when us-

ing sample mean, ratio estimator or regression

estimator.

Is there any possibility of achieving the same

precision without using the mixture model?

The empirical likelihood method comes into

picture as it is totally non-parametric.

What is it and how can it be applied here?
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Empirical Likelihood

Let Y1, Y2, . . . , Yn be a set of independent and

identically distributed (iid) random variables.

Assume their common distribution is given by

F (y).

Let pi be the probability of observing Yi.

The empirical log-likelihood function is defined

as

eln(F ) =
n∑
i=1

log pi; 0 ≤ pi ≤ 1;
n∑
i=1

pi = 1.
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Without further restrictions on the choice of F ,

the log-likelihood is maximized when pi = n−1.

The resulting maximum empirical likelihood es-

timate of F (y) is the well known empirical dis-

tribution function Fn(y) = n−1∑n
i=1 I(Yi ≤ y).

Let τ = τ(F ) = E(Y1). Then the maximum

likelihood estimate of τ is Ȳn = n−1∑n
i=1 Yi.
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This likelihood can also be used for construct-
ing confidence intervals for τ .

Let us maximize eln(F ) under an additional re-
striction

n∑
i=1

piYi = τ

for each given τ .

The result is:

pi = [n{1 + λ(Yi − τ)}]−1,

where λ is the Lagrange multiplier that solves
the equation

n∑
i=1

Yi − τ
1 + λ(Yi − τ)

= 0.

We get the “profile” empirical log-likelihood

eln(τ) = −
n∑
i=1

log[1 + λ(Yi − τ)]− n logn.
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Under mild conditions,

ern(τ0)→ χ2
1

in distribution as n→∞.

Hence, an approximate 100(1 − α)% CI for τ

is given by

{τ : ern(τ) ≤ χ2
1−α,1}.

Note that this procedure does not assume a

parametric model, nor is designed for the pop-

ulation with a large number of zero values.
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It is advantages to be totally non-parametric.

It may not work as perfectly as we would like.

After all, we do not change anything to fit our

specific problem.

How good is it? Simulation!
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One can easily observe that the performance

of KSD method depends on the appropriate

choice of models.

We cannot choose a model to meet the char-

acteristic of the population for empirical likeli-

hood. The coverage is better when the data is

bell shaped compared to exponentially shaped.

One advantage of empirical likelihood is that

it provides more balanced coverage; its lower

bound is rightfully larger (compared to normal

mixture method).
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Generalization

If the data is collected via a stratified simple

random sample design, can we still use these

methods?

The finite mixture model approach might still

work. However, it will meet quite a bit chal-

lenge in computation and in theory.

The empirical likelihood method works just as

simple as before.
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Let use present the case when there are two

strata in the population.

The likelihood looks like

elm,n(p1, . . . , pm, q1, . . . , qn) =
m∑
i=1

log pi+
n∑

j=1

log qj.

An additional constraint regarding to the pop-

ulation mean is give by

W1

m∑
i=1

pixi +W2

n∑
j=1

qjyj = τ,

where W1, W2 are stratum weights.
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A large sample result can be established.

Theorem 4.1 Suppose xi, i = 1, . . . , xm and

yi, j = 1, . . . , n are two sets of iid random vari-

ables and m/n → ρ ∈ (0,1) as n → ∞. As-

sume E[|X1|3] < ∞ and E[|Y1|3] < ∞. Let

τ0 = W1E(X1) + W2E(Y1). Then erm,n(τ0) as

defined earlier has chisquare limiting distribu-

tion with one degree of freedom.
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Let us try a rought proof.

We assume, without proof, that

τ1(t) = x̄m+Op(m
−1/2), τ2(t) = ȳn+Op(n

−1/2),

where x̄m and ȳn are the sample means, t solves

W1τ1(t)+W2τ2(t) = τ0 and Op(·) denotes order

in probability.

It can then be shown that t/n = Op(n−1/2).

Put τ1 = τ1(t) and τ2 = τ2(t). We have

0 =
m∑
i=1

xi − τ1

1 +m−1W1t(xi − τ1)

=
m∑
i=1

(xi − τ1)−

m−1W1t
m∑
i=1

(xi − τ1)2 +Op(1).
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Therefore, we get

τ1 = x̄m +
W1t

m2

m∑
i=1

(xi − x̄m)2 +Op(m
−1)

= x̄m +
W1t

m
s2
x +Op(m

−1),

where s2
x = m−1∑m

i=1(xi − x̄m)2.

Similarly,

τ2 = ȳn +
W2t

n
s2
y +Op(n

−1).

Setting

W1τ1 +W2τ2 = τ0 = W1E(X) +W2E(Y ),

we get

t =
W1{x̄m − E(X)}+W2{ȳn − E(Y )}

W1s2
x/m+W2s2

y/n
+Op(1).
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Hence

erm,n(τ(t))

= 2
m∑
i=1

log{1 +W1t(xi − τ1)/m}

+2
n∑

j=1

log{1 +W2t(yj − τ2)/n}

=
[W1{x̄m − E(X)}+W2{ȳn − E(Y )}]2

W2
1 s

2
x/m+W2

2 s
2
y/n

+op(1),

The conclusion then follows from the fact that

W1{x̄m−E(X)}+W2{ȳn−E(Y )} is asymptot-

ically normal with mean 0 and variance

W2
1m
−1σ2

x +W2
2n
−1σ2

y .
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We skip the details of the computational issue.

However, we have an algorithm which allows

us to do a linear search on a convex function.

Hence, the computation is fast and the com-

putational convergence is guaranteed.

The simulation indicates that the coverage prop-

erties of empirical likelihood method are very

good in this situations too.
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