

MODEL THEORY OF FIELDS AND ABSOLUTE GALOIS THEORY

Franziska Jahnke

supported by Marie Curie FP7 Initial Training Network MaLoA (no. 238381)

Supervisor: Dr Jochen Koenigsmann

What information about a field K does its absolute Galois group Gal(K) contain? What can we learn about its absolute Galois group by studying the theory of a field K?

(ii) A profinite group is a group which is an inverse limit of finite where $\mathcal{L} = \{L_i \mid i \in I\}$ is the collection of all intermediate fields $Gal(K) \cong Gal(K) \cong Gal(K) \cong Gal(K) \cong Gal(L_i/K),$ (iii) A profinite group is a group which is an inverse limit of finite where $\mathcal{L} = \{L_i \mid i \in I\}$ is the collection of all intermediate fields $Gal(K) \cong Gal(K) \cong Gal(K) \cong \tilde{Z},$ but not every K with $Gal(K) \cong \tilde{Z}$ is pseudofinite field. $Gal(K) \cong Gal(K) \cong Gal(K) \cong \tilde{Z},$ but not every K with $Gal(K) \cong \tilde{Z}$ is pseudofinite field.	Let K and L be fields such that $K\subseteq L$ is a Galois extension, namely an a	gebraic field extension which is normal and separable. Let K^{sep} and K^{alg} der	note the separable respectively algebraic closure of K .
groups.	 (i) We define the Galois group of L over K, denoted by Gal(L/K), to be Gal(L/K) := Aut(L/K). (ii) We define the absolute Galois group of K to be Gal(K) := Gal(K^{sep}/K). (iii) A profinite group is a group which is an inverse limit of finite groups, i.e. G ≅ im_{i∈I}G_i for a directed family {G_i}_{i∈I} of finite 	 Aut(K^{sep}/K) ≅ Aut(K^{alg}/K), absolute Galois groups are the inverse limit over all Galois groups of finite intermediate extensions, i.e. Gal(K) ≅ imi_{t∈I}Gal(L_i/K), where L = {L_i i ∈ I} is the collection of all intermediate fields 	 Gal(K) = {e} ⇔ K = K^{sep}, (Artin-Schreyer) Gal(K) is finite but non trivial iff K is a real clos field, if K is a pseudofinite field (i.e. a model of the theory of finite field then Gal(K) ≅ Ž, but not every K with Gal(K) ≅ Ž is pseudofinite field (i.e. a model of the theory of finite field then Gal(K) ≅ Z is pseudofinite field (i.e. a model of the theory of finite field then Gal(K) ≅ Z is pseudofinite field (i.e. a model of the theory of finite field then Gal(K) ≅ Z is pseudofinite field (i.e. a model of the theory of finite field then Gal(K) ≅ Z is pseudofinite field (i.e. a model of the theory of field (i.e.

DEFINITION A field K is said to be elementary characterized by its absolute Galois group if for all fields L

 $\operatorname{Gal}(L) \cong \operatorname{Gal}(K) \Leftrightarrow L \equiv K.$

THEOREM² A field K is elementary characterized by Gal(K) iff K is elementary equivalent to one of the following 1. R.

- 2. a finite extension L of \mathbb{Q}_p with $([L:L^{\mathrm{ab}}], \frac{p}{p-1} \cdot m) = 1,$ where p is some prime, L^{ab} is the maximal abelian subextension of L/\mathbb{Q}_p and m denotes the number of roots of unity μ_L in L,
- 3. $L((\mathbb{Z}_{(q)}))$, the generalized power series field over L with exponents from $\mathbb{Z}_{(q)} = \mathbb{Q} \cap \mathbb{Z}_q$, where L is as in 2. and q is some prime,
- 4. $L((\mathbb{Z}_{(p)}))$, where L is a field such that
 - (i) char(L) = 0.
 - (ii) $[L:\mathbb{Q}]_{\text{trdeg}} < \infty$,
 - (iii) L admits no proper abelian extension,
 - (iv) L has a henselian valuation with residual characteristic p. (v) L is elementarily characterized by Gal(L) only among all fields of characteristic $\neq p$,
 - $(vi) \operatorname{cd}_p \operatorname{Gal}(L) = 1,$

type

- 5. a field L elementarily characterized by Gal(L) such that (i) Gal(L) is not pro-solvable,
 - (ii) for all fields F if $Gal(F) \cong Gal(L)$ then char(F) = 0 and $[F:\mathbb{Q}]_{\mathrm{trdeg}} = \infty.$

Results

- DEFINITION A field K is large if it satisfies one of the following equi-
- (i) Each absolutely irreducible curve over K with a simple K-rational point has infinitely many K-rational points
- (ii) each function field of one variable F/K with a prime divisor of degree 1 has infinitely many such divisors (iii) K is existentially closed in K((t)).
- **DEFINITION** A profinite group is said to be a pro-p group if it is the inverse limit of p-groups.

THEOREM³ Let K be a field such that Gal(K) is a pro-p group for some prime number p. Then K is large

DEFINITION A field K is pseudo algebraically closed (PAC) if every absolute irreducible variety V over K has an K-rational point

DEFINITION A field K is bounded if it has only finitely many Galois extensions of degree n for every integer n.

In terms of the absolute Galois group a field is bounded iff its absolute Galois group has only finitely many closed subgroups of index n for every integer n

THEOREM⁴ The theory of a bounded PAC field is simple

THEOREM⁵ A PAC field whose theory is simple, is bounded.

THEOREM⁶ If K is an infinite ω -stable field, then K is algebraically closed

This implies that strongly minimal fields are algebraically closed. There is even a stronger result:

THEOREM⁷ Infinite superstable fields are algebraically closed.

DEFINITION A structure is minimal if every (with parameters from the structure) definable subset is finite or cofinite

THEOREM⁸ A minimal field of non-zero characteristic is algebraically closed.

LEMMA Let K be a minimal field. Then (i) if K is large then it is algebraically closed, (ii) K has no proper solvable extensions.

Theorem⁸ Let K be field with char(K) > 0. Suppose every $\exists \forall$ - definable subset is either finite or cofinte. Then K is algebraically closed.

Related Questions

- Are the classes defined in conditions 4. and 5. empty? • Does the same or a similar result hold if we study fields which are elementarily characterized by the theory of their absolute Galois group (in the language of inverse systems) instead of its isomorphism
- The above Theorem shows that a field with absolute Galois group isomorphic to \mathbb{Z}_p is large. Does this also hold for fields with absolute Galois groups isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_q$, where $p \neq q$ are prime numbers?
- Does $\operatorname{Gal}(K) \cong \mathbb{Z}_p$ imply that K is henselian or PAC?
- Are all minimal fields already algebraically closed?
- Are all fields in which every non-constant polynomial has a cofinite image already algebraically closed?
- ¹ eg Serge Lang, Algebra, Addison-Wesley Publishing Company, Inc., 1993 and Ribes/Zalesskii, Profinite groups, Springer-Verlag, Berlin, 2000
 ² Jochen Koenigsmann, Elementary characterization of fields by their absolute Galois group, Siberian Advances in Mathematics 14 (2004), no. 3, 16–42
 ³ Moshe Jarden, On Ample Fields, Arch. Math. (Basel) 80 (2003), no. 5, 475–477
- ⁴ Zoé Chatzidakis and Anand Pillay, Generic structures and simple theories, Ann. Pure Appl. Logic 95 (1998), no. 1-3, 71–92
- ⁵ Zoé Chatzidakis, Simplicity and independence for pseudo-algebraically closed fields, Models and computability (Leeds, 1997), LMS Lecture Note Ser. (259), 41–61, Cambridge Univ. Press
- ⁶ Angus Macintyre, On *uni-categorical theories of fields*, Flund Math. 71 (1971), pp. 1-25
 ⁷ Gregory Cherlin and Saharon Shelah, *Superstable fields and groups*, Ann. Math. Logic 18 (1980), no. 3, 227–270
- ⁸ Frank O. Wagner, Minimal fields, J. Symbolic Logic 65 (2000), no. 4, 1833–1835