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1 Introduction

In [1] it is asked whether or not there exists a finite algebra A such that
V(A) admits no finite bound on the size of its simple members but which
nevertheless admits some cardinal bound on the size of these algebras. In
this article we present an example of such an algebra. To be precise, we
will describe an 8 element algebra A′ which generates a semi-simple variety
which contains a countably infinite simple algebra into which all other infinite
simple algebras in the variety can be embedded.

The algebra A′ which we will describe is derived from an algebra dis-
covered by R. McKenzie and presented in [2]. McKenzie’s algebra (which
we will call A) generates a residually small variety which has a countably
infinite subdirectly irreducible algebra which, up to isomorphism, is the only
infinite subdirectly irreducible algebra in the variety. Thus our example is
only a modest improvement of his.

Our algebra A′ is obtained from the algebra A of section 6 in [2] by adjoin-
ing the following three new basic operations: x ◦ y, x ← y and T◦(x, y, z, u).
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Define x ◦ y on A so that

1 ◦ C = H ◦D = C, 2 ◦D = D

1 ◦ C̄ = H ◦ D̄ = C̄, 2 ◦ D̄ = D̄

and so that x ◦ y = 0 for all other values of x and y.
Define x ← y on A so that

1 ← C = 1 ← C̄ = 1

H ← C = H ← C̄ = H

2 ← D = 2 ← D̄ = 2

and so that x ← y = 0 for all other values of x and y.
Finally, define T◦ by

T◦(x, y, z, u) =





0 unless x ◦ y = z ◦ u 6= 0
x ◦ y if x ◦ y 6= 0, x = z and y = u
x ◦ y if x ◦ y = z ◦ u 6= 0, x 6= z or y 6= u

Note that all of the above operations are monotone with respect to the semi-
lattice order on A′.

Following [2] we will call a subdirectly irreducible member of V(A′) large
if it is not in HS(A′). The following Theorem summarizes the properties of
A′ which we will explore in this article.

THEOREM 1.1 The variety V(A′) is a semi-simple variety which contains
a countably infinite simple algebra Q′

Z such that every large subdirectly
irreducible algebra in V(A′) can be embedded into Q′

Z .

The algebra Q′
Z referred to in the above Theorem is obtained by adding

the following three basic operations to the algebra QZ defined in Definition
6.1 of [2]:

x ◦ y =

{
bn+1 if x = an and y = bn

0 otherwise

x ← y =

{
an if x = an and y = bn+1

0 otherwise

and
T◦(x, y, z, u) = (x ◦ y) ∧ (z ◦ u).

It is straightforward to verify that Q′
Z is a simple algebra and, by following

the proof of Lemma 6.1 of [2], is a member of V(A′).
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2 Finite Subdirectly Irreducible Algebras

In this section we will analyze the structure of the finite subdirectly irre-
ducible algebras in V(A′). We will show that every such algebra is either a
member of HS(A′) or is isomorphic to Q′

n for some n ≥ 1, where Q′
n is the

subalgebra of Q′
Z with universe

{0, a0, . . . , an, b0, . . . , bn, bn+1}.

We leave it to the reader to verify that the Q′
n are simple algebras and that

every subdirectly irreducible member of HS(A′) is simple.
For the remainder of this section, let S be a finite large subdirectly irre-

ducible algebra in V(A′). So there is some finite set T of minimal size, some
algebra B ⊆ (A′)T and some θ ∈ Con B such that S ' B/θ. Note that since
S is assumed to be large then T has at least two elements. Let θ̄ be the
unique cover of θ in Con B.

Since Lemma 6.4 of [2] is proved using the height one semilattice structure
on B and the minimality of the size of T it also holds for our algebra B. As
in [2] we define the set B1 as follows:

B1 = {u ∈ B : u = p or for some n ≥ 1 there exists x0, . . . , xn ∈ B

with u = xi for some i ≤ n and x0 · x1 · · ·xn = p}

Lemmas 6.6 and 6.7 of [2] and their proofs are valid for our algebra B
and in addition the following variant of Lemma 6.7 is also true:

if a ◦ b = c ◦ d ∈ B1 then a = c ∈ UT \ {1, 2}T and b = d ∈ W T .

This can be proved by using the operation T◦ in place of the operation T in
the proof of Lemma 6.7 found in [2].

We claim that the element p from Lemma 6.4 and used in the definition
of B1 can be chosen so that it cannot be written in the form u ← v or u ◦ v
for any elements u, v from B.

To prove this we will use some of the following easy to verify properties
of the basic operations of A′. For u, v and w ∈ A,

1. u · v 6= 0 if and only if u ← v 6= 0 and if u · v 6= 0 then u ← v = u and
u ◦ (u · v) = v,
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2. if u ◦ v 6= 0 then u · (u ◦ v) = v,

3. (u ← v) · v = u · v and if (u ← v) · w 6= 0 then v ∈ {w, w̄},
4. if (u ← v) ◦ w 6= 0 then u ◦ w ∈ {v, v̄},
5. u ← (v ← w) = 0,

6. (u ◦ v) ◦ w = 0 = (u ◦ v) · w.

Using the last item on our list, it is clear that the only iterated products
formed with the operation ◦ are the fully right-associated ones. Following
the practice established in [2] for terms involving · we will denote the (right-
associated) product x0 ◦ (x1 ◦ (· · · (xk−2 ◦ (xk−1 ◦xk)) · · ·)) by x0 ◦x1 ◦ · · · ◦xk.

If the element p obtained from Lemma 6.4 happens to be of the form a ← b
then we can replace the element p by b and the element q by c = q ◦ (q · b).
Since p(s) 6= 0 for all s ∈ T it follows that p = a and that b(s) 6= 0 for
all s ∈ T as well. Also, by using some of the above properties of the basic
operations, we see that p ◦ (p · b) = b and so the pair {p, q} is polynomially
isomorphic to the pair {b, c} via the polynomials f(x) = x ◦ (x · b) and
g(x) = p ← x of B. Thus b and c satisfy all of the properties of p and q
listed in Lemma 6.4 and (by item 5 above) b is not of the form u ← v.

Now assume that p can be written as u ◦ v for some elements u, v from
B. The proof of Lemma 6.9 using Lemma 6.7 for the operation ◦ yields that
if p = u0 ◦ u1 ◦ · · · ◦ um for some ui in B then all of the ui’s must be distinct.
So we can choose m maximal so that p = u0 ◦ u1 ◦ · · · ◦ um for some ui ∈ B.
We claim that we can replace the elements p and q by the elements um and
v where v = um−1 · um−2 · · ·u0 · q.

Using the properties of x · y and x ◦ y noted earlier we see that the
polynomial f(x) = um−1 · um−2 · · ·u0 · x maps p to um and q to v. On the
other hand, the polynomial g(x) = u0 ◦ u1 ◦ · · · ◦ x maps um to p and v to
q. Thus um and v satisfy all of the properties of p and q listed in Lemma 6.4
and, by the maximality of m, um cannot be written in the form a ◦ b for any
elements a, b from B. Also note that since um is in the range of the operation
· and 0 is the only element in the intersection of the ranges of · and ← then
the element um cannot be written as u ← v either.

Lemma 6.8 of [2] also holds for our algebra B and it can be proved by
considering three new cases in addition to the ones found in the original proof.
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Recall that in that proof it is assumed that we have a nonconstant polynomial
f(x) of minimal degree such that there is some element u ∈ B \ B1 with
f(u) ∈ B1. The three new cases correspond to considering the possibilities
that f(x) is of the form g(x) ◦ h(x), g(x) ← h(x) or T◦(g(x), h(x), k(x), l(x))
for some polynomials g(x), h(x), k(x) and l(x).

If f(x) = g(x)◦h(x) then since f(u) ∈ B1 we have that either g(u)◦h(u) =
p or for some elements a0, a1, . . . , an−1 from B, and i < n

a0 · a1 · · · ai · (g(u) ◦ h(u)) · ai+1 · · · an−1 = p.

The first of these two possibilities can be ruled out since we have selected
the element p so that it can’t be written in the form a ◦ b for any elements
a, b from B. In the second case, note that by the last item in our list of
properties of the basic operations of A′ it follows that i = n − 1 and so
p = a0 · a1 · · · an−1 · (g(u) ◦ h(u)). We deduce that

an−1 ◦ an−2 ◦ · · · ◦ a0 ◦ p = g(u) ◦ h(u)

to conclude that an−1 = g(u). From this it follows that an−1 · (g(u) ◦h(u)) =
h(u) and so both g(u) and h(u) have been shown to belong to B1. Since at
least one of g(x) and h(x) must be nonconstant, we have contradicted the
minimality of the degree of f(x).

In the case that f(x) = g(x) ← h(x) we again have two cases to consider.
The first being that f(u) = p. This case is not possible since we have assumed
that the element p is not of the form a ← b for any elements a, b from B.

The remaining case is when for some n ≥ 1 and some ai ∈ B, i ≤ n we
have a0 · a1 · · · an = p and f(u) = ai for some i ≤ n. Since the range of ←
is the set U it follows that i < n and that for some element c ∈ B1 we have
that (g(u) ← h(u)) · c is in B1.

Since the element (g(u) ← h(u)) · c does not have the element 0 in its
range then by one of the properties of← noted earlier we conclude that for all
s ∈ T , h(u)(s) ∈ {c(s), c(s)}. From Lemma 6.6 we then have that h(u) = c
since c ∈ B1. Thus h(u) ∈ B1 and, by item 3 of our list of properties of the
basic operations of A′,

(g(u) ← h(u)) · c = g(u) · h(u)

showing that g(u) ∈ B1 too. This again leads to a contradiction.
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One can handle the case f(x) = T◦(g(x), h(x), k(x), l(x)) in the manner
that the case f(x) = T (g(x), h(x), k(x), l(x)) from the proof of Lemma 6.8 is
handled.

We are now in a position to show that the algebra S is isomorphic to Q′
n

for some n, and hence that it can be embedded into Q′
Z . Following Lemma

6.9, we see that u/θ = {u} for all u ∈ B1 and that B \ B1 = 0B/θ. Also, as
in the proof of Lemma 6.9 we get that

B1 = {r0, . . . , rk−1, s0, . . . , sk}

with s0 = p and ri · si+1 = si for i < k. We can use these equalities to
discover the behaviour of the operations ◦ and ← on B1. For i < k,

ri ◦ si = ri ◦ (ri · si+1) = si+1

and since ri · si+1 = si then

ri ← si+1 = ri.

It is also the case that any other combination of elements from B1 using ◦ or
← lies in B \B1.

We leave it to the reader to verify that in B, T◦(x, y, z, u) is θ-related to
(x ◦ y) ∧ (z ◦ u) for all x, y, z, u ∈ B. If k < 2 then it can be shown that S
lies in HS(A′), contradicting the fact that T has at least 2 elements, so k ≥ 2
and thus S is isomorphic to the algebra Q′

k.

3 Infinite Subdirectly Irreducibles

We conclude our presentation by showing that every infinite subdirectly ir-
reducible algebra in V(A′) is simple and can be embedded into Q′

Z . In
fact we will show that such an algebra must be isomorphic to one of the
algebras Q′

ω, Q′
−ω or Q′

Z , where Q′
ω is the subalgebra of Q′

Z with uni-
verse {0, a0, a1, . . . , b0, b1, . . .} and Q′

−ω is the subalgebra of Q′
Z with universe

{0, a−1, a−2, . . . , b0, b−1, . . .}. We leave it to the reader to verify that each of
these three algebras is simple.

Let S be an infinite subdirectly irreducible member of V(A′). Then argu-
ing as in Lemma 6.11 of [2] we conclude that every finite subalgebra of S is
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embeddable into a finite large subdirectly irreducible algebra and hence into
Q′

Z . From this we conclude that S satisfies all universal sentences that hold
in Q′

Z and from this it follows that S is an expansion by term operations of
the algebra S′ = 〈S, 0,∧, ·, ◦,←〉 and that 〈S, 0,∧〉 is a semilattice of height
one.

We wish to choose a nonzero element b so that (0, b) lies in the monolith
of S. Since S is an expansion of a height one semilattice then this can be
done. We claim that b can be chosen so that it is of the form x · y or x ◦ y
for some elements x, y from S. Certainly b is in the range of one of the
operations ·, ◦ or ←, and if it is of the form x ← y then it is not hard to
show that the element y is also monolith-related to 0 and is in the range of
the operation ◦ since y = x ◦ (x · y) in this case.

We claim that the isomorphism class of S is determined by whether or
not we can choose b as above so that it lies in the range of one of · and ◦
but not both. Let us examine in detail the case in which we can choose an
element b with (0, b) in the monolith of S and with b in the range of · but
not in the range of ◦. As in the proof of Lemma 6.11 of [2] we claim that:

Claim 1 For each n ≥ 0, S has a unique system of elements

〈c0, . . . , cn, d0, . . . , dn+1〉
satisfying d0 = b, ck · dk+1 = dk, ck ◦ dk = dk+1 and ck ← dk+1 = ck for
0 ≤ k ≤ n. Furthermore these elements, along with 0, form a subalgebra Sn

of S and we have that the Sn’s form an increasing chain whose union is S.

The proof of this claim is similar to the proof of Claim 2 of 6.11. Our
assumption on b not being in the range of ◦ is used to conclude that the
isomorphism ϕ between F′/θ and Q′

n established in the proof of Claim 2
must carry b/θ to the element b0 of Q′

n since this is the only one of the bi’s
in Q′

n which is not in the range of ◦.
With this Claim established, it then follows that the algebra S is isomor-

phic to Q′
ω. The case in which we can choose the element b so that it lies

in the range of ◦ but not in the range of · can be handled similarly to show
that in this case the algebra S is isomorphic to the simple algebra Q′

−ω.
The remaining case to consider is that for all elements b of S with (0, b)

in the monolith, b is in the range of ◦ if and only if it is in the range of ·. In
this case the following claim can be established:

7



Claim 2 For each n ≥ 0, S has a unique system of elements

〈c−n, c−n+1, . . . , c0, . . . , cn, d−n, . . . , d0, . . . , dn+1〉
satisfying d0 = b, ck · dk+1 = dk, ck ◦ dk = dk+1 and ck ← dk+1 = ck for
−n ≤ k ≤ n. These elements, along with 0, form a subalgebra Sn of S and
the collection of the Sn’s forms an increasing chain whose union is S.

The verification of this claim is left to the reader as is the proof that with
this Claim one can establish that S is isomorphic to Q′

Z .

4 Concluding Remarks

For an algebra A, the cardinal κ(A) defined to be the least cardinal λ such
that every subdirectly irreducible algebra in the variety generated by A has
size less than λ, or ∞ if there is no cardinal bound, was introduced and
studied in [2]. If we define κ′(A) to be the smallest cardinal λ such that
every simple algebra in the variety generated by A has size less than λ, or ∞
if there is no cardinal bound, then what we have established in this article is
the existence of a finite algebra of finite type, A′, with κ′(A′) = ℵ1.

In the article [3] McKenzie shows that κ(A) is not algorithmically com-
putable for finite algebras A of finite type. His proof is based on a modifi-
cation of the algebra A from section 6 of [2]. We expect that the function
κ′(A) is also not algorithmically computable for finite algebras of finite type
but we have not verified this.

In [4] R. Willard introduces a general method for constructing algebras
similar to those presented in this paper and in McKenzie’s [2]. The reader
is encouraged to consult this paper to see how these two examples fit into a
general pattern.
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