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A property of the solvable radical in finitely
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Abstract

It is shown that in a finitely decidable equational class, the solvable
radical of any finite subdirectly irreducible member is comparable to
all congruences of the irreducible if the type of the monolith is 2. In
the type 1 case we establish that the centralizer of the monolith is
strongly solvable.

An equationally defined class of algebras V is said to be finitely decidable
if the first order theory of the class of finite members of V is recursive (or
decidable). An advance in the study of finitely generated finitely decidable
equational classes was obtained by the first author and can be found in [4]. In
that paper a list of conditions is produced which is shown to be both necessary
and sufficient for a finitely generated congruence modular equational class to
be finitely decidable. One of the conditions in the list is:

The centralizer of the monolith of any finite subdirectly irre-
ducible algebra in the equational class is comparable to every
congruence of the algebra.

In this paper we establish the necessity of this condition under the assumption
of finite decidability in a congruence modular setting. Note that if V is a

*2000 Mathematical Subject Classification, Primary 03B25; Secondary 08B99.

T Keywords: decidability, variety, universal algebra

iThe first author was supported by a research grant from KBN of Poland and the
second author was supported by a research grant from the NSERC of Canada



congruence modular equational class then the only types (in the sense of
tame congruence theory) which can appear in the finite algebras in V are 2,
3 and 4.

If A is a finite irreducible algebra whose monolith p has type 3, 4, or 5
then the centralizer of 1 is 04 and so the condition (f) automatically holds.
Thus, the only interesting cases are when the type of (04, 1) is 1 or 2. We
suspect, but have no proof, that (1) holds even when the type of the monolith
is 1. In this paper we offer a proof of the type 2 case. We also show that an
important feature of the type 2 case holds in the type 1 case as well.

In [5] it is shown that if the monolith of a finite irreducible algebra is of
type 2 and the algebra generates an equational class which is not hereditarily
undecidable then the centralizer of the monolith is equal to the solvable
radical of the algebra. Note that the solvable radical of a finite algebra is the
largest solvable congruence of the algebra. We establish that in the type 1
case that the centralizer of the monolith is a (strongly) solvable congruence.

For the basic facts of general algebraic structures which we assume in
this paper, please consult [2]. For detailed information on tame congruence
theory and on decidability, the books [3, 1, 7] are recommended.

We would like to list some terminology and notation which we use through-
out this paper and which may not be familiar to the reader. If D is a sub-
algebra of AX (for some X) which contains all of the constant elements a,
for a € A, then we call D a diagonal subalgebra of AX (a is the element
of A% which takes on the value a at all coordinates z € X). If p(Z) is a
polynomial operation of the algebra A, then the operation on D which acts
coordinatewise like the operation p is a polynomial operation of D. When
the context is clear, we will also denote this operation by p(z). If D is a
diagonal subalgebra of AX and U is a subset of A then D(U) will denote the
set DNUX.

The transfer principles are tame congruence theoretic conditions on a
finite algebra which have proven to be quite useful in the study of decidability.

Definition 1 Let A be a finite algebra and let i, j be two distinct integers
between 1 and 5. We say that A satisfies the (i,j) transfer principle if when-
ever a, 3 and vy are congruences of A with o < 8 < v and typ(«, 5) =1 and
typ(3,7) = j, then there is some congruence § lying below v and covering «
with typ(a, d) = j.

The question of which transfer principles must hold in a finitely decidable
equational class is greatly simplified by the fact that in such a class, types
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4 and 5 cannot occur (see [3]). There are examples of finite algebras which
generate finitely decidable equational classes and for which the (1,3) and
(2,3) transfer principles fail. All other relevant transfer principles must
hold in a finite algebra which generates an equational class which is finitely
decidable.

THEOREM 2 ([9, 8]) Let B be a finite algebra with Vg,(B) not heredi-
tarily undecidable. Then the minimal sets of B of type 2 and 3 have empty
tails, and the (1,2), (2,1), (3,1) and (3, 2) transfer principles hold in B.

THEOREM 3 Let A be a finite irreducible algebra with monolith v of type
2. If SPgn(A) is not hereditarily undecidable then the centralizer of u is
comparable to all congruences of A.

PROOF. As noted earlier, since A lies in a finitely decidable equational
class then the only types which can appear as labels in Con A are 1, 2, and
3. If the centralizer of pu fails to be comparable to all congruences of A, then
by the result of Jeong mentioned earlier, we know that the solvable radical
of A has this same defect.

It follows that there is some prime quotient (a, 3) of A of type 3 with «
solvable and with 8 incomparable to the solvable radical of A. Choose such
a prime quotient with « as small as possible in Con A. Since « is solvable
and [ isn’t comparable with the solvable radical then there is some solvable
cover 7y of a. Since the (2, 1) transfer principle holds in A and the monolith
of A is of type 2 then typ(a,y) = 2.

Let B = {0,1} be an («, §)-minimal set, U an («a,y)-minimal set and V'
a (0, u)-minimal set. According to Lemma 4.30 from [3], it is not possible
that U or V contain any type 3 minimal set. In fact neither of these sets can
properly contain the range of a nonconstant idempotent polynomial, so, in
particular, 8|y C a. Of course, it is possible that the («, 5) and the (0, p)-
minimal sets coincide, and in that case we choose U and V' to be equal.

Since p is the monolith of A, then for any pair (¢, d) € u|y and for any
distinct elements a and b from A, there is a polynomial p with p(a) = ¢ and
p(b) = d. We are using the fact that Ay is a Malcev algebra, which follows
because the tail of V' is empty. For a similar reason, Aly is also Malcev.
Also, the congruence generated by (0, 1) is equal to 3, due to the minimality
of the type 3 prime quotient («, 3). From this it follows that for any two
a-related elements, a and b, from either U or V, there is a unary polynomial
p with p(0) = a and p(1) = 0.



Under the assumption that the theorem is false, we will be able to seman-
tically embed the class of finite graphs into SPg,(A). Fix a pair of elements
(a,b) € v|v \ a and let (¢,d) be a pair of elements from ply \ 04. Let p(z)
be some unary polynomial of A with range contained in V' and such that
p(a) = c and p(b) = d.

Let G = (G, E) be a finite graph and let X = GUEU{co}. Here, E
consists of a set of 2-element subsets of G. We may assume that this union
is a disjoint one. Let D be the diagonal subalgebra of AX generated by the
sets {0,1}* and {f, : v € G}, where for v € G, f, is the function from X
to {a,b} defined by:

b ifx=w
folx)=3X b ifvexek .
a otherwise

Since there is a polynomial of A which maps 0 to ¢ and 1 to d, and since
{0,1}¥ C D, then {c,d}* C D too and this polynomial can be used to
define, in a first order way, a boolean algebra on D({c, d}).

Even though not all of the generators of D are constant modulo 7, it
follows that all of the elements in D(U) have this property.

Claim 3.1 Let f € D(U). Then f is constant modulo .

Since f € D(U), then there is some polynomial #(Z,y) of A with range
contained in U, some {0, 1}-valued functions b; and some v; € G, such that

fF=t(fo,s oy fo,, 01, bm).

(We are applying the polynomial ¢ of A componentwise in the above display.
This operation is a polynomial of D since D is a diagonal subalgebra of A.
We will continue this practice throughout the proof.) Since |y C «, then

componentwise f is a-related to t(fy,, ..., fu,,0,...,0), an element of D(U)
which is y-constant. Since a C « then f is also -constant.

We now set out to show that we can define, in a first order way, the
elements of D(U) which are two-valued, modulo p. Once this has been ac-
complished, it will be a fairly straightforward exercise to specify the semantic
embedding.

Claim 3.2 Let S be a subset of U or V' that is contained in some a-class.
Then the set D(S) is definable by some first order formula.
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Let S = {so,51,...,8k} and let d(z,y, z) be a Malcev polynomial for U
or V, depending on whether S is a subset of U or V. Let x + y be the
polynomial d(z, sg,y). Then f € D(S) if and only if there are some unary
polynomials of A, ¢, ..., gr and some elements by, ..., by from D({0,1})
such that

e i(0) = sp and g;(1) = s, for all i < k;

o b ANb; = 0forali<j<k (A is the meet operation of the boolean
algebra on D({0, 1})); and

o f=g1(b1) + ga(b2) + - - - + gr(bi) (associating to the left).

We leave the detailed verification of this to the reader. Since A has only a
finite number of unary polynomials and D({0,1}) is definable as the range
of a certain unary polynomial of A then the above condition is clearly first
order definable.

An immediate consequence of the above claim is that the a-constant
elements in D(U) or D(V) are definable by first order formulas CONY ()
and CONY (z) since both D(U) and D(V) are first order definable.

Claim 3.3 There is a first order formula TWO(x) that defines a subset of
the elements of D(U) which are 2-valued modulo i and which contains the
generators f, for allv € G.

It is not hard to see that the elements f = f, for some v € G satisfy the
following first order properties:

e “CONY(f) and f € D(U),
e p(f) € D({c,d}) and p(f) is not constant,

e for each polynomial g of A with range contained in V, if CONY (g(f))
then ¢g(f) € D({u,v}) for some (u,v) € aly,

e for each pair of polynomials g(x) and h(x) of A, if g(f) and h(f) are
{c,d}-valued and are both nonconstant, then either g(f) = h(f) or
g(f) = h(f), where 2’ is the boolean complement of the {c, d}-valued
function z in the boolean algebra definable on {c, d}*.



It is also true that if an element of D satisfies all of the above conditions then
there are two (v \ «)-related elements x and y from U such that {z,y} C
range(f) C (x/p)U(y/p). To see this, let f be an element of D which satisfies
the above conditions. Since ~CONY (f) holds then modulo y, f takes on at
least 2 values.

To reach a contradiction, suppose that the elements u, v, and w are
contained in the range of f and that pairwise none of these elements are
p-related. By an earlier observation, there is a polynomial g(z) of A such
that ¢ has range contained in V' and g(u) = ¢ and g(v) = d. Since ¢ and d
are pi-related and u and v aren’t then it follows that g(v|y) C a. By Claim
3.1 we conclude that g(f) is constant modulo «, i.e., CONY (g(f)) holds.
Then, g(f) must be {c, d}-valued.

There are two cases to consider, and both can be handled similarly. Either
g(w) = g(v) = d or g(w) = g(u) = c. In the former case, choose some
polynomial h(z) of A with range contained in V' and with h(w) = ¢ and
h(v) = d. By applying the argument from the previous paragraph, we see
that h(f) is {c,d}-valued. By construction though, it turns out that g(f) is
not equal to either h(f) or h(f)’, a contradiction.

Therefore the conjunction of the above properties defines the sought after
formula.

An immediate consequence of the previous claim is that if u is trivial on
the set U, then the formula TWO defines a collection of 2-valued functions
in D(U) which contains the generators f,, v € G. In the event that u|y # Oy,
then U = V' (by our assumptions) and so the polynomial p collapses u|y into
0. So, in both cases, if D = TWO(f), then the functions f modulo p and
p(f) have the same “shape”.

Let GEN(f) be a first order formula which is equivalent to the following
conditions:

e TWO(f),
e the meet of p(f) and x¢ is an atom in the Boolean algebra on D({¢, d}),
e the meet of p(f) and y equals ¢ in the Boolean algebra on D({c, d})

where x¢ is the {c, d}-valued element of D that takes on the value d on the
set G and c elsewhere and Y, is c-valued except at oo, where it takes on the
value d.



Claim 3.4 D = GEN(f,) forallv € G, and for allh € D, if D = GEN(h)
then p(h) = p(f,) for some v € G.

By construction, one part of this claim is easy to establish, and for the
other, assume that D = GEN(h). Then there is some polynomial ¢ of A
with range contained in U, elements b; from D({0,1}) and distinct v; € G
such that

h=1(foys- s fonsb1y-ceybm).

As in the proof of Claim 3.1 we see that h is componentwise a-related to
t'(fors- -+ fo,), where t'(Z) = ¢(z,0,0,...,0). Moreover, from Claim 3.1 we
know that h is constant modulo . Since TWO holds for h then there
must be two elements z and y of U which are 7 \ a-related and such that
{z,y} C range(h) C x/uUy/u. Without loss of generality we may assume
that h(oo) = z, and so p(z) = c.

Since p(h) Axq is an atom, then there is exactly one v € G with p(h)(v) =
d. Tt follows that (h(v),z) ¢ u, since p(z) = ¢, and so h(v) is p-related to
y. Without loss of generality, we may assume that h(v) = y. Using a similar
argument, it can be shown that for every w # v, h(w) is p-related to x.

We now show that the vertex v must be equal to one of the vertices vy,
..., U, that are used to produce h. If this is not the case, then evaluating h
at v we find that

y=h) «

t'(
= t'(a,a,...,a)
t'(
a h(

a contradiction. By rearranging the variables of ¢ we may assume that v = v;.
We have now established the following facts:

y=nh) at(ba,...,a),

r « h(v)at'(a,a,...,a,b,a,..., a),

for ¢ > 1, and
= h(oo) a t'(a,a,..., a).

Using the fact that v is Abelian over «, the above can be used to show that

t'(b,a,...,a,b,a,...,a) at'(ba,... aaa,... a)
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/ /
t'(a,...,a,b,a,...,a,b,a,...,a) at'(a,...,a,b,a,...,a,a,a,...,a).

To complete the proof of this claim we must show that for any edge e € F,
p(h)(e) = d if and only if v € e. Assume that e = {v, w} belongs to E. Then

hie)at'(b,a,...,a,z,a,...,a)at (ba,..., a)ay,

where z is either b or a depending on whether w = v; for some ¢ or not.

Thus, p(h)(e) = d. On the other hand, if the edge e does not contain v, then

arguing in a similar fashion, we conclude that h(e)ax and so p(h)(e) = c.
We conclude that p(h) = p(f,) as required.

The vertices of the graph G can be represented by the elements of D({c, d})
which satisfy the following formula VER(f):

Jh(GEN(h) A f ~ p(h))
and the edge relation of G can be recovered from D by the formula EDGE(f, g):
VER(f) A\ VER(g) A f # g A [f A g # d].

Thus, up to isomorphism, we can recover the graph G from D using the
formulas VER and EDGE and so SPg,,(A) is hereditarily undecidable. This
contradicts our hypothesis, and so we conclude that the centralizer of u must
be comparable to all congruences of A. |

As noted earlier, Jeong has shown that if A is a finite irreducible with
monolith p of type 2 then the centralizer of i is equal to the solvable radical
of A if the equational class generated by A is finitely decidable. Here we
establish a weaker result in the type 1 case.

THEOREM 4 Let A be a finite irreducible algebra with strongly abelian
monolith p and with Vg, (A) not hereditarily undecidable. Then the central-
izer of p is a strongly solvable congruence.

This theorem will follow from a sequence of lemmas which we now present.
In order to set them up, let A be a finite (not necessarily irreducible) algebra
with congruences
Oa<pCa=<p
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such that « is strongly solvable, typ(«, #) = 3, and {0, 1} is an («, 3)-minimal
set with = Cg, (0,1), for some elements 0 and 1 from A.

We will show that if M is any (04, u)-trace and if {0,1}* centralizes M?
over 04 (or C'({0,1}2, M?;04)) then A generates an hereditarily undecidable
equational class.

Kearnes and Kiss [6] show that besides the usual notion of centrality,
there are others which play a significant role in the study of general algebra.
One of them is the rectangulation relation, R(L, R;¢), and is defined for
symmetric binary relations L and R and a congruence 6 on an algebra A as
follows:

L and (c;,d;) € R for i < n and j < m, if (t(a,c),t(b,d)) €
then (t(a,c),t(a,d)) € 9.

For all polynomials t(x1, ..., Zn, Y1, ..., Ym) of A and all (a;,b;) €
o

Let T' be the tolerance of A generated by (0,1). Our proof of Theo-
rem 4 is divided into three pieces, with the main division being whether or
not R(T, M?;0,) holds. Under our centrality assumption, this condition is
equivalent to the following holding for all a, b € M:

For all polynomials ¢(x,y) of A, if t(a,0) = ¢(b, 1) then t(a,0) =
t(b,0).

LEMMA 5 If R(T, M?*04) holds then T N jp = 04.

Proor. If TN pu # 04 then there is a polynomial p(x) of A with
p(0) = a # b = p(1) and with a, b € M. By modifying an argument due to
Jeong ([5], lemma 9), we can show that the class of finite boolean triples can
be semantically embedded into Vg,(A), contradicting our assumption.

Let F be the subalgebra of A3 generated by the diagonal and {0,1}* and
let ¢g = (0,0,0), ¢; = (1,0,0), co = (0,1,0) and ¢3 = (0,0,1). For i < 3, let
d; = p(c).

Claim 5.1 Fori=1,2,3, the set N; = {co,¢;} is a type 3 minimal set of F.

Since F' contains all of {0,1}3 and the diagonal, and since {0,1} supports
all of the boolean operations as restrictions of polynomials of A, it follows
that the induced algebra of F on N; is polynomially equivalent to a boolean
algebra.
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Furthermore, since {0, 1} is the range of some idempotent polynomial of
A, we can easily construct an idempotent polynomial of F with range N;. If
we let (; be the congruence of F generated by N; and «; some subcover of
B; then it follows that N; is a minimal set with respect to the pair (s, 5;).

Let ' be the congruence of F generated by {d;, ds, ds}>.
Claim 5.2 The I'-class of dy is a singleton, and so (dy,d;) ¢ T fori=1,2,3.

It suffices to show that if s(x) is a polynomial of F such that s(d;) = dy
then s(d;) = dy for all 4, j between 1 and 3. For example, suppose that
s(dy) = dy and consider s(dy). Since s is a polynomial of F then there is a
polynomial 7(x, §) of A and elements o; from {0, 1} such that s(z) = r(x, )
for all z € F.

From the equality s(d;) = dy we gather that

T(b7 5/0) = r(a,%) = T(a7’72> =a,

where, for ¢ < 3, 4; is the sequence of 0’s and 1’s determined by the ith
component of the tuple 7.

Using the rectangularity condition, combined with the fact that {0,1}
supports a polynomial complementation operation, it follows that r(a,%o) =
r(b,%) = a. Now employing our centrality assumption, we conclude that
r(a,¥;) = r(b,7;) = a for all i < 3. The claim follows from these equalities.

Let F/ = F/T and set 0y = o3/T", 0, = (Bxaxa)/T, 0, = (Bx 3xa)/T,
and 03 = (6 x a x (3)/T". By the previous claim we know that the element
do/T" is distinct from the element d; /T = dy/T" = d3/T.

Using F’ and the congruences just defined, we can semantically embed
the class of finite boolean triples into the class of all finite powers of F/. The
details of how to accomplish this are identical with those presented by Jeong
in [5] and so will not presented here. 1

LEMMA 6 If R(T, M?;04) fails then SPg,HS(A?) is hereditarily undecid-
able.

PROOF. Let U be a (04, #)-minimal set which contains the trace M. Since

the type of (04, i) is 1 then the failure of R(T, M?;04) can be witnessed by
a binary polynomial ¢(z,y) and elements a, b € M such that:
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e t(a,0) =1t(b,1) and t(a,0) # t(b,0),
e { has range contained in U,
o {(z,0) =z for all z € U,

e t(z,1)|y is a permutation of U which is not the identity map.

It would be nice to know that additionally, ¢(a,1) = a and t(b,1) # b, but
this may not be the case. In order to arrange this, we consider a particular
quotient of a subalgebra of AZ.

Let B be the diagonal subalgebra of A? generated by the singleton {(a, b)}
and let 0 be the congruence of B generated by {((u, ), (v,v)) : u, v € M}.
Let C be the quotient of B by ¢ and let ¢ and d denote the elements (a, a)/d
and (a,b)/d respectively. We will use 0 and 1 to denote the elements (0,0)/0
and (1,1)/6 of C respectively and will use t(x,y) to denote the polynomial
of C determined by the original .

Let U denote {(u,v)/d : (u,v) € U?N B} and let e(z) be an idempotent
polynomial of C whose range is U. The following observations follow directly
from the construction of C.

Claim 6.1

1. The set {0,1} is the range of an idempotent polynomial of C and the
induced algebra on this set is polynomially equivalent to a boolean alge-
bra.

2. (u,v) € U*NB if and only if u = p(a) and v = p(b) for some polynomial
p of A with range contained in U.

3. For (u,v), (z,y) € U>N B, ((u,v),(x,y)) € 0 if and only if (u,v) =
(z,y) or u=ovuxr =y.

4. t(x,0) =2x for allz € U, t(c,1) = c and t(d, 1) # d.

5. C({0,1},{c,d}?*; 0]y) holds, i.e., if s(x,7) is a polynomial of C whose

range is contained in U and u and v are {c, d}-sequences then s(0,u) =
s(0,0) if and only if s(1,u) = s(1,0).

6. If s(z) is a polynomial of C whose range is contained in U then s|i.q
depends on at most 1 variable. If this restriction is essentially unary,
then it is a permutation of U.

12



We will interpret the class of finite graphs in the class SPg,(C). Let
G = (V, E) be a finite graph and set X =V x 2. Forv € V, let f, € C* be
defined by:

. 1 fv=w
f”((w’l)):{o if v#w
and for e € E let f. € C* be defined by:

: d fweeandi=1

Je((w, 1)) = { ¢ otherwise

Let D be the diagonal subalgebra of C* generated by the f,’s and the f.’s.
Note that since {0, 1} supports the boolean operations then D contains all
of the componentwise joins of sets of f,’s. In fact, all {0, 1}-valued elements
of D can be expressed in this way. Furthermore, the set of vertices of G
are in bijective correspondence with the atoms of the boolean algebra of
{0, 1}-valued elements of D.

Claim 6.2 Each element f € D(U) is of one of the following two disjoint
sorts:

1. 8(fo,- s fo,,) for some polynomial s of C with range contained in U
and some vertices vy, ..., Uy in V.

2. {(fe, fors-oos Jo,,) for some polynomial s of C with range contained in

U such that s(z,0,...,0)|g is a permutation, some e € E and some
vertices vy, ..., Uy n V.

Any element f € D(U) is of the form s(fo,, ..., fe,, fors- - - » fu,,) for some
polynomial s of C with range contained in U and some edges and vertices
e; and v;. By the previous claim we have that s(z1,...,2,,0,...,0)[(cq is
either constant or is essentially unary. In the former case it follows that
5(Z,0)|{c.q} is constant for any sequence & of 0’s and 1’s. So, in this case we
can express [ in the form s'(f,,,..., f,,), for a suitable polynomial s’ of C.
We’ll say that such an element is of vertex sort.

In the latter case, suppose that s(zi,...,2,,0,...,0)|{q depends just
on its first variable. Then for any sequence ¢ of 0’s and 1’s the polyno-
mial s(x1,...,%n,0)|{cqy also depends only on the first variable. So, we can
write f as s'(fe,, fors .- fo,,) for some suitably chosen polynomial s’ with
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§'(x,0,...,0)|g a permutation. Such an element will be said to be of edge
sort.

To show that each element in D(U) is assigned a unique sort, it suffices
to find a property which differentiates the two sorts.

Let P denote the set of all polynomials p of C whose range is U and
such that p(z,0,...,0)|7 is a permutation of U. Note that because of our
centrality assumption, it follows that if p € P then p(z,7)|7 is a permutation
of U for any sequence & of 0’s and 1’s.

Note that if f can be expressed as s'(fu,--., fu,) then f((w,0)) =
f((w, 1)) for allw € V', while if it can be written in the form s'(fe, fo,,- - -, fo,)
with s € P then f((w,0)) # f((w,1)) if and only if w € e. This demon-
strates that the two sorts of elements in D(U) provide a partition of this set
into two classes. It also demonstrates that in the latter case, the edge e is
uniquely determined by f.

Claim 6.3 The set of elements of vertex sort and the set of elements of edge
sort are first order definable.

It suffices to show that the set of elements of vertex sort is definable,
since the set of elements of edge sort is complementary to this set within
D(U). Choose finitely many polynomials s, s, ..., s; of C such that each
polynomial s of C has the same range as one of the s;’s on the set {0, 1}.

Since D contains a large variety of {0, 1}-valued functions then it is the

case that an element f is of vertex sort if and only if

f € D(U) and f = 5,(g) for some i < k and some g; € D({0,1}).

Let EDGE be a first order formula which defines the set of elements of
edge sort. Note that D = EDGE(f,) for any e € E. We know that each
element of edge sort determines a unique edge from the graph G, but this
association may be many to one, and so in general the set of elements of edge
sort is not in one to one correspondence with E. To remedy this, we next
define an equivalence relation ~ on the set of elements of edge sort such that
each ~ class contains exactly one generator f,.

Consider the following set of permutations of U:

N ={X : Ax)=p(z,0)|g for some polynomial p(x,y) of C with
range contained in U and some sequence & of 0’s and 1’s
with p(z,0,...,0) =z for all z € U }.
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Our centrality condition ensures that p(z,&) is a permutation of U if
p(z,0,...,0) is. Note that this set of permutations is actually a finite sub-
group of the group of symmetries of U and that, by suitably composing poly-
nomials, we can produce a single polynomial s(x,y) with range contained in
U, with s(z,0,...,0) =z for all x € U and with

N = {s(z,0)|g : ¢ some sequence of 0’s and 1’s}.

Define the relation ~ on the set of elements of edge sort as follows: f ~ g
if and only if

EDGE(f), EDGE(g) and there is some polynomial p of C with
p(U) = U and some sequence ¢ from D({0, 1}) with f = p(s(g,7)).

Claim 6.4 f ~ g if and only if there are polynomials t; and ty in P, an
edge e € E, and vertices v; and w; € V with f = t1(fe, fo,-- - fu,) and

g = t2(feafw1>"'7fwm)-

Assume that f ~ g. Then there is a polynomial r of P, an edge e of
E and vertices w; of V with g = r(fe, furs---, fun)- [ ~ ¢ implies that
f = p(s(g,0)) for suitable p and 7. Since the {0, 1}-valued functions in D
can be expressed as boolean combinations of the f,’s then we may replace &
by a sequence of these elements if we first modify the polynomial s. So, we
can find an element s’ of P and some vertices v; with f = p(s'(g, furs -+, fo.))
and thus

f :p(sl(r(fe7fwl7'"7fwm)7fvl7“'7ka>)7

as required.

Conversely, suppose that f = t1(fe, fo,, -+, fo,) and g = to(fe, fuors - fuw,)-
Since to(x,7)|7 is a bijection for all {0, 1}-sequences & then there is a poly-
nomial ¢’ in P with #'(x,0)|7 the inverse to ta(x,d)|y for all . Thus
fe=1(g, fwrs---» fu,,) and hence f =t1(t'(g, furs-- s fum)s fors-- s Jo.)-

Let p(x) = t1(¢'(x,0,...,0),0,...,0) and let p'(x) be a polynomial of C
with p'(p(z)) = z for all x € U. Then, for any sequences & and &' of 0’s and
1’s, the function p/(t,(t'(z,5),d"))|g is in N. Thus we can find some sequence
g € D({0,1}) with p'(t1(¢'(g, fuwrs- -+ fwm)s fors -« Jo,) = S(g,0). Finally,
we have that f = p(s(g,)) as required.

It easily follows from this claim that ~ is an equivalence relation on the
set of elements of edge sort and that each ~ class contains a unique generator
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fe. Thus, the set of edges of G is in bijective correspondence with the set of
~ classes.

To finish the proof we need only recover the edge relation amongst the
vertices of G. Recall that we have identified the vertices of G with the atoms
in the boolean algebra D({0,1}). Define D to be the set

{A € PolC|y : MU) =U and either t(A(c), 1) # A(c) or t(\(d),1) # A(d)}

and let x be the cardinality of D. Note that both D and x are independent
of the graph G.

For v € V and f an element of D with D = EDGE(f), define I'(f, f,)
to be the set

{m € PolC|y : #(U) = U and t(n(f), f») # 7(f)}.

Claim 6.5 If f ~ g andv € V then U'(f, f,) and I'(g, f,) have the same size
and no more than K elements.

If f ~ gthen f = p(s(g,0)) for some sequence g € D({0,1}) and some
polynomial p(z) of C with p(U) = U. Let 7 be the sequence of 0’s and 1’s
of the same length as ¢ defined by: 7; = 0;((v,0)). We claim that the map
which sends A in I'(f, f,) to A(p(s(z,7))|7) is an injection into I'(g, f,).

Since p(s(x,7))|g is a permutation of U, then certainly our map is an
injection. We need only check that its range is indeed in I'(g, f,). To do this,

we need to determine if
t(8(g), fo) # B(9),

where 8 = A(p(s(x,7))|g). Since t(z,0) = x for all x € U and t(A\(f), f») #
A(f), then t(A(f), fo)((v,7)) # A(f)((v,4)) for some i = 0 or 1. But then

t(6(9), fo)((v,9)) = #(B(g((v,))), 1
= t(Ap(s(9((v,7)),7))), 1)
= tAp(s(g,0))), fo) (v, 7))
= 1A, fo)((v,7))
7 AN((v,12))
= B(9)((v, 7).

Thus our map is an injection from I'(f, f,) into I'(g, f,) and so, by symmetry,
these two sets have the same size.



As there is a unique e € E with f ~ f. then to finish the proof of this
claim it will suffice to show that I'(f, f,) € D. This follows from the fact
that f. is a {c, d}-valued function.

Claim 6.6 Forw €V and e € E, the set I'(fe, fu) has size k if and only if
w € e.

Let e = {u,v} and assume that w = u. We will show that D C I'(fe, fu)
in this case. If A\ € D then t(A(c),1) # A(c) or t(\(d),1) # A(d). Since
{fe((w,0)), fe((w, 1))} = {c,d} then t(A(fe), fw) and A(fe) differ at either
(w,0) or (w, 1), demonstrating that A € I'(fe, fu).

Conversely, suppose that w ¢ e. We need only find some element of D
which is not in I'(f., fu). Since t(c,0) = t(c,1) = ¢ and t(z,0) = z for all
x € U then it is not hard to see that ¢(f., f,,) = f., demonstrating that the
identity map is not a member of I'(f,, f,,). As the identity map on U is in D
then we have shown that I'(f., f,,) has fewer than x elements.

To finish the proof, we need to find a first order formula which describes
the edge relation on G. Let E(x,y) be any first order formula which expresses
that

e 1 and y are distinct atoms in the boolean algebra D({0,1}), and
e there exists some h with EDGE(h) and with I'(h, z) and I'(h,y) both

having x elements.

Then for v, w € V, {v,w} € E if and only if E(f,, f,,) holds in D. 1

One final semantic embedding is needed to complete our proof. We state
the following lemma in rather general terms since it will have applications
beyond the present situation.

LEMMA 7 Let B be a finite algebra which contains a minimal set {0,1}
with respect to some type 3 prime quotient. Suppose that U is a minimal set
with respect to a type 1 prime quotient Op < v and that there is some polyno-
mial p(x) of B with range contained in U and with {p(0),p(1)} intersecting,
but not contained in some (0p,v)-trace. Vy;,,(B) is hereditarily undecidable
if either one of the following conditions holds:

1. The set {p(0),p(1)} is polynomially isomorphic to {0,1}.
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2. There is no polynomial q of B with (¢(0),q(1)) € v\ 05 and for every
polynomial h of B with range contained in U if h(0) # h(1) then
{R(0),h(1)} can be mapped onto a 2 element set contained in a proper
subset of U which is the range of some idempotent polynomial of B.

PROOF.

If case 1 holds then we may assume that 0 and 1 belong to U and that p is
an idempotent map with range U. In either case, let V' be some proper subset
of U which is the range of some idempotent polynomial e with g(x) some
polynomial with range V' and which separates p(0) and p(1). Let a = p(0)
and b = p(1) and suppose that a belongs to the (04, v)-trace N in U. Choose
some other element a’ from N.

Let G = (V, E) be a finite graph and let co; and ooy be two points not
in V. Let X = VU{o01,002} and for e € E, let f. be the function from X
to {a,d’,b} defined by

b ifzece
fe(x) =4 d ifx =009 .

a otherwise
For v € V, let f, be the {0,1}-valued function in B¥ defined by

1 fe=v0
0 otherwise

folz) = {

Let D be the diagonal subalgebra of AX generated by the set of f.’s and
fu’s.

As in the proof of Claim 6.2 of Lemma 6 it is the case that every element
f of D(U) falls into one of two classes: either it can be expressed, for some
ec Fand v, €V, as

® t(fu,-.., fu,) for some polynomial ¢ with range contained in U, or
o t(fe, furs---, fu,) for some polynomial ¢ with range contained in U and
with ¢(z,0,...,0)|y a permutation.

To see why this is so in the present circumstances, let’s consider an element
f € DU). We can write f as t(fe,, .-, fems fors- -+, fu,,) for some polynomial
t with range contained in U and for some generators f., and f,,. Now, either
t(@1, ..., 2, 0,...,0)|{aa} is constant or essentially unary since v is strongly
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abelian. In the former case, it follows that f = t(pe,, ..., Pems fors-- s for)
where, for 1 < m, p,, is equal to f., at all coordinates except ocos, where it
takes on the value a. This is because at 0oy, the generators f,, all take on
the value 0. The elements p., are not generators of D, but they are members
of this algebra, since they can be obtained by applying the polynomial p(x)
to a join of an appropriate pair of {0, 1}-valued generators. The end result
of this is that we can express the element f as a polynomial of B applied to
a number of generators of the form f,.

The remaining case in this analysis can be handled in a similar manner.
Let us call an element permutational if it falls into the second class.

It is not difficult to see that the permutational elements can be charac-
terized as those elements f of D(U) for which f(co1) # f(002). Using an
argument similar to the one employed in the proof of Claim 6.3 of Lemma 6
it can be shown that the set of permutational elements can be defined via a
first order formula.

We would like to associate a unique element of E to each permutational
element but will instead only achieve this for a particular definable collection
of permutational elements which resemble the f,’s with respect to the action
of unary polynomials of B. Let us define the unary relation EDGE(f) by:

e f is permutational,
e ¢(f) is nonconstant, and

e there are distinct vertices v and w so that for all unary polynomials h
of B with range properly contained in U if h(f) is not constant then
h(f) = h(p(fuV fw)) (where V is a polynomial which acts as the boolean
join operation on {0, 1}).

This relation is first order definable since the f,’s coincide with the atoms in
the boolean algebra D({0,1}) which take on the value 0 at ooy and co,.

Claim 7.1 For f a permutational element, if D = EDGE(f) then q(f) =
q(p(fo V fuw)) for some unique v, w € V with {v,w} € E. For any e € E,
D | EDGE(/,).

By design, if e € E then D = EDGE(f.). On the other hand, suppose
that f is permutational and satisfies EDGE. Let t(x, 7) be some polynomial
of B with range contained in U and with t(x,0,...,0)|y a permutation and
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let e € E and v € V with f = t(fe, fos- -+, fu,)- Since EDGE holds for f
then there are v, w € V which witness this. We will show that e = {v, w}.

Suppose not, say u € e \ {v,w}. Let ¢ = f(o0y), ¢ = f(o02) and d =
f(u). Since f is permutational, then ¢ = t(a,0,...,0) # t(a’,0,...,0) = ¢
and by suitably rearranging the variables of ¢ we may assume that d =
t(b,0,...,0,1,...,1). In case 1 (where 0 = a and 1 = b) it follows that {c, d}
is polynomially isomorphic to {0,1} and so there is a polynomial h of B
with range equal to {0,1} and with h(c) = 0 and h(d) = 1. Thus h(f) is
nonconstant and so h(f) = h(p(f, V fu)). But

h(f)(oo1) = h(c) =0 # 1 = h(d) = h(f)(u)

and f, V fu(oo1) = fu V fu(u) leads to a contradiction.

In case 2, the fact that ¢ = t(a,0,...,0) and d = ¢(b,0,...,0,1...,1)
along with the fact that p maps 0 to @ and 1 to b leads to a polynomial A
with range contained in U and with h(0) = ¢ and h(1) = d. By assumption
{¢,d} can be mapped onto a two element subset of U via some polynomial
r(z) with range properly contained in U. Then since EDGE holds for f
it follows that r(f) = r(p(f, V fu)). As in the previous case, this leads
to a contradiction, since r(f) takes on different values at co; and u while

r(p(f, V fu)) doesn’t.

We are now in a position to finish the proof. As noted earlier, the elements
of the graph can be identified with the atoms of the boolean algebra D({0,1})
which take on the value 0 at co; and ocoy. From the previous claim, two
vertices v and w will be edge related if and only if there is some element f
of D for which EDGE holds and such that ¢(f) = ¢(p(f, V fw))- |

The following lemma will provide a reduction to our earlier results under
certain circumstances.

LEMMA 8 Let B be a finite algebra and let u < v and v < 0 be a pair of
prime quotients in the congruence lattice of B with typ(u,v) = typ(y,d) = 1.

If U is a minimal set with respect to both (u,v) and (7,6) and R is any binary
relation on B then C(R,v|uy; 1) iff C(R,d|u;7).

PROOF.  Assume that C(R,v|y; ) holds and let t(z,yi,...,yx) be a
polynomial of B and 7 and & are sequences from U with (7;,0;) € 0 for i < k.
Suppose that (0,1) € R and that (¢(0,7),t(0,5)) ¢ v but (¢t(1,7),t(1,)) €

~v. We may assume that ¢ has range contained in U.
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Since (7,0) is of type 1 then t(0,7) depends, modulo v on at exactly
1 variable when restricted to the product of the d|y-classes which contain
the 7;’s. Suppose that this polynomial depends on y;. Then (71,07) ¢ ~
and the map t(0,y1,7s,...,7%)|v is a permutation of U since it does not
collapse d|y into y. Thus ¢(0,y1, 7 ..., 7) does not collapse v|y into p and by
C(R,v|y; u) we conclude that t(1, 41, 7o, . .., 7) has the same property. This
implies that ¢(1,y, 72, ..., 7;) is a permutation of U and so ¢(1,7) and (1, 7)
lie in different ~-classes since 7, and oy do. This contradicts (t(1,7),t(1,5)) €
~v and so we are done. |

Finally, we may present the proof of Theorem 4.

PROOF. By virtue of Theorem 2 we may assume that the (1, 2) transfer
principle holds and that all type 3 minimal sets have exactly 2 elements.
It follows that all solvable congruences of A are actually strongly solvable.
Suppose that the centralizer of p is not strongly solvable and let M be a
(04, p)-trace contained in a (04, u)-minimal set U. Choose  minimal with
a < 3 a type 3 pair of congruences for some a with C(3, M?;04). Let {0,1}
be an («, #)-minimal set and let 7" be the tolerance of A generated by (0, 1).
By the minimality of 3, it follows that Cg, (0,1) = 3, and that « is strongly
solvable. By choice, C({0,1}?, M?;04) holds. From Lemmas 5 and 6 we may
assume that R(T, M?;04) holds and that there is no polynomial p(z) with
(p(0),p(1)) € w\ 0 (this is equivalent to T'N = 04).

Fix some element a in M. Since the congruence p of A is contained in the
congruence generated by {0, 1} then there must be a polynomial p of A whose
range is contained in U and with p(0) = a # p(1). Since (p(0),p(1)) ¢ p
then {p(0),p(1)} is not contained in any (04, p)-trace of U.

We will show that condition 2 of Lemma 7 holds in order to finish our
proof. Suppose that h is a polynomial of A with range contained in U and
with h(0) # h(1). Further, suppose that {h(0),h(1)} cannot be mapped
onto a 2 element subset of any proper subset of U which is the range of an
idempotent polynomial of A.

Let ¢ be the congruence generated by h(0) and h(1) and let v be some
subcover of §. Note that 0 # p and so v # 04. Also, note that § C « or else
{h(0), (1)} would be an («a, §)-minimal set, contrary to our assumptions on
{h(0),h(1)}. Thus ¢ is a strongly solvable congruence. Since d|y € 7|y then
it follows that U contains some (7,d)-minimal set V. By our assumption
on h, we see that V' must be equal to U and so by Lemma 8 it follows that
C({0,1}2,6]y;~) holds.
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By considering the quotient A /v we see that we are now in a position

to apply either Lemma 5 or 6 to show that A generates an equational class
which is not finitely decidable. So, condition 2 of Lemma 7 holds and we

conclude that Vy;,(A) is hereditarily undecidable. |
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