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Abstract. A constraint languag€ on a finite setd has been callegolynomially expressivi the number of
n-ary relations expressible A-atomic formulas oveF is bounded byexp(O(n*)) for some constark. It has
recently been discovered that this property is characterized by the existenée-oflaary polymorphism satisfy-
ing certain identities; such polymorphisms are calteddge operationand include Mal’cev and near-unanimity
operations as special cases.

We prove that ifl" is any constraint language which, for some> 1, has ak-edge operation as a polymor-
phism, then the constraint satisfaction problem(foy (the closure of* under3A-atomic expressibility) is globally
tractable. We also show that the set of relations definablelowsing quantified generalized formulas is polynomi-
ally exactly learnable using improper equivalence queries.
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1. Introduction. A wide variety of combinatorial problems can be expressed within the
framework of the Constraint Satisfaction Problem (CSP). Given an instance of the CSP, the
aim is to determine if there is an assignment of values to the variables of the instance that
satisfies all of its constraints. While the class of all CSPs formBlistomplete class of
problems, there are many naturally defined subclasses that are tractable (i.e., lie in the class
P). A main research goal is to identify the subclasses of the CSP that are tractable.

One common way to define a subclass of the CSP is to restrict the relations that appear
in the constraints of an instance to a specified set of relations over some fixed domain, called
a constraint language. The Dichotomy Conjecture of Feder and Vardi [19] states that for any
constraint languagk, the corresponding subclass of the CSP, denotedIQSB(eitherNP-
complete or tractable. The Dichotomy Conjecture has been verified in a number of special
cases, most notably over domains of size 2 [28] and size 3 [7]. Over larger domains, a number
of general results have been obtained [2, 3, 6, 10, 13, 17, 25].

In this paper we introduce a condition which, when satisfied by a constraint language
T", guarantees that the subclass A39R¢ tractable. The polynomial-time algorithm that we
use to establish tractability is essentially that presented by Dalmau in [17] and our result
generalizes his and also generalizes earlier results of Feder and Vardi, Bulatov, and Jeavons,
Cohen and Cooper [19, 9, 24]. The class of constraint languages that satisfy our condition
is quite large and includes some well known constraint languages such as those that have
Mal’cev or near unanimity polymorphisms.

A polymorphism of a set of relatioris over some sed is a finitary operation o that
preserves all of the relations In Work of Jeavons and his co-authors has shown that the
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tractability of a constraint language is determined by the set of its polymorphisms and many
tractability results can be expressed in terms of the existence of certain kinds of polymor-
phisms [11]. A benefit of focusing on polymorphisms is that it allows the introduction of
ideas and techniques from universal algebra into the study of tractability and in this paper we
adopt this algebraic approach.

Our main result is that if a constraint langudgas ak-edge operation (see Definition
3.3) as a polymorphism, then Dalmau’s algorithm can be used, essentially unchanged, to
solve in polynomial time all instances of C3P( This algorithm can be regarded as a natural
generalization of the familiar Gaussian elimination algorithm for solving systems of linear
equations since it makes essential use of the fact that, in this case, all solution sets of instances
of CSP{") have small generating sets (akin to bases of vector spaces) when considered as
universes of particular algebras.

On the other hand, we argue that if a constraint languafgeéls to have a&-edge oper-
ation as a polymorphism then no “robust Gaussian-like” algorithm can solve all instances of
CSP{) in polynomial-time. So, in some sense, our result sharply determines the scope of
algorithms like Dalmau'’s to quickly settle instances of the CSP.

In Section 5 we establish thatlif is a set of relations over a finite set that is invariant
under ak-edge operation then the set of relations defined by quantified generalized formulas
overI is exactly learnable, in polynomial time, via an algorithm that makes improper equiva-
lence queries. This extends the result of Bulatov, Chen, and Dalmau in [8] and earlier results
of Dalmau and Jeavons [18].

This paper is an extended version of [22].

2. Preliminaries. DEFINITION 2.1. Aninstanceof the constraint satisfaction problem
isatriple P = (V, A,C) with
e V anon-empty, finite set (called the setvairiable3,
e A a non-empty, finite set (called tkhemain,
e C asetofconstraint§C1, . .., C, } where eaclC; is a pair (5;, R;) with
— §; atuple of variables of lengthi;, called thescopeof C;, and
— R; anm;-ary relation overA, called theconstraint relatiorf C;.
Given an instancé of the CSP we wish to answer the following question:
Is there asolutionto P, i.e., is there a functiorf : V' — A such that for
eachl < i < q, them;-tuple f(5;) € R;?

The full CSP isNP-complete (see [24]), but by restricting the nature of the constraint
relations that are allowed to appear in an instance, it is possible to find natural subclasses of
the CSP that are tractable.

DEFINITION 2.2. Let A be a domain and” a set of finitary relations overd. CSP{()
denotes the collection of all instances of the CSP with doraind with constraint relations
coming fromI". T is called theconstraint languagef the class CSRY).

DEFINITION 2.3. LetT" be a constraint language. We say thats tractable(or more
precisely, idocally tractabl if for every finite subsef’ of " the class CSRY) lies in P. If
CSP{) itself is inP then we say thal is globally tractableT" is said to beNP-completeif
for some finite subsét’ of I, the class CSHY{) is NP-complete.

A key problem in this area is to classify the (globally) tractable constraint languages.
Note that in this paper we will assume tat# NP. Feder and Vardi [19] conjecture that
every finite constraint language is either tractable dffiscomplete.

The natural duality between sets of relations (constraint languages) oved asdtsets
of operations (algebras) ofi has been studied by algebraists for some time. Jeavons and his
co-authors [23] have shown how this link between constraint languages and algebras can be
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used to transfer questions about tractability into equivalent questions about algebras. In the
remainder of this section we present a concise overview of this connection.

DEFINITION 2.4. Let A be a non-empty sef, a set of finitary relations onl, F' a set of
finitary operations ord, R ann-ary relation onA, and f anm-ary operation onA.

1. We say thatR is invariantunder f and that f is a polymorphismof R if for
all @; € R, forl < i < m, then-tuple f(dy,...,d,), i.e. whosej-th coordinate is
f@(),...,am(j)), belongs tar.

2. Pol(T") denotes the set of functions drthat are polymorphisms of all the relations
inT.

3. Inv(F’) denotes the set of all finitary relations of that are invariant under all
operations inf.

4. (T') denotednv(Pol(I")), therelational cloneon A generated by'.

We note that given a set of relatiohover a finite set4, the relational clone generated
by I is equal to the set of relations ovérdefinable from™ using primitive-positive formulas
(or conjunctive queries) (see [23]).

THEOREM 2.5. ([23])LetT" be a constraint language on a finite set.Iifis tractable
then so ig(I"). If (T") is NP-complete then so B.

We refer the reader to [12] or [27] for the basics of universal algebra, in particular to the
notions of a cartesian power and a subuniverse of an algebra. By an algebra we mean the
following:

DEFINITION 2.6. AnalgebraA is a pair (A, F') whereA is a non-empty set (called the
universeor domair) and F' is a (possibly infinite) collection of finitary operations dn The
operations inF' are called thebasic operationsf A. A term operatiorof an algebraA is a
finitary operation onA that can be obtained by repeated compositions of the basic operations
of A. An algebra idfinite if its universe is finite.

DEFINITION 2.7. LetB = (B, F) be a finite algebra and’ a constraint language over
A.

1. Ar denotes the algebria, Pol(T")) andI'gs denotes the constraint languaber (F).

2. We call the algebr® tractable globally tractableor NP-completeif the constraint
languagel's is.

Note that ifI" is a constraint language, théha.) = Inv(Pol(I')) = (I'). Hence in
algebraic terms, Theorem 2.5 states that a constraint languiageactable (ONP-complete)
if and only if the algebraAr is. Thus, the problem of characterizing the tractable constraint
languages can be reduced to the special case of characterizing the tractable finite algebras.

This is the starting point of the so-called “algebraic method” for attempting to verify
the Dichotomy Conjecture of Feder and Vardi. Using algebraic insights made possible by
this method, Bulatov, Jeavons and Krokhin [11] have conjectured a precise characterization
of which constraint languages should be tractable. Great strides have been made recently
in partially confirming the latter conjecture [7, 25, 13, 3, 2]; see the excellent survey article
[21, Section 3] for more details. The present paper may be viewed as another step towards
verification of both conjectures.

3. Algebras with few subpowers.LetI" be a constraint language on a getNote that
(i) for any instanceP = (V, A, C') of CSPU), its solution set can be naturally identified with
ann-ary member of ') wheren = |V|, and (ii) then-ary members ofl") are precisely the
universes of the subalgebras(éfr)™. Since Dalmau’s algorithm mentioned in the introduc-
tion requires that these subalgebras of powersohave algebraic generating sets of small
(polynomial inn) size, it is natural to ask wheall subalgebras of powers é&fr have small
generating sets. This leads to the following concepts:

DEFINITION 3.1. LetA be a finite algebra.
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1. Asubpowerof A is a subalgebra oA™ for somen > 1.

2. For n > 1, definega(n) to be the least integersuch that every subalgebra Af*
has a generating set of size at meost

3. Forn > 1, definesa(n) to be logarithm, base 2, of the cardinality of the set of all
subalgebras oA".

4. (Cf. [16]) A haspolynomially generated subpowefghe functionga is bounded
above by a polynomial.

5. A hasfew subpower$22] if the functionsa is bounded above by a polynomial.

We note that a constraint langualgés polynomially expressive as defined in [14] if and
only if Ar has few subpowers.

The following lemma is an immediate consequence of [4, Proposition 1.2].

LeEmmA 3.2. A finite algebraA has polynomially generated subpowers if and only if it
has few subpowers.

Thus our interest in algebras whose subpowers have small generating sets leads naturally
to the notion of algebras having few subpowers. Finite algebras with few subpowers are
thoroughly studied and characterized in [4]. The remainder of this section summarizes key
definitions, examples and results from that paper that are needed here.

DEFINITION 3.3. Letk > 2. A k-edge operatiolon a setA is a k + 1-ary operation
e(z) on A that universally satisfies thieidentities

e(, 2,9, Y, Ys -, Y, Y) R Y
e(T, Y, 2,9, Ys -, Y, Y) R Y
(Y U, Y T, Y, -5 U, Y) R Y
eV Y, U Y, Ty YY) R Y

e Y s s Yy, T Y) R Y
W Y Ys Us Yo Y T) R Y.

(Note the “shepherd’s crook” shape of the occurrences afn the left-hand side of these
identities.)
ExamplesLet A be a set.

1. AMal'cev operatioron A is a ternary operatiop(z, y, z) that satisfies the identities
p(y,z,x) = p(z,z,y) =~ y. Itis clear that a ternary operatigriz, y, z) on A is Mal'cev if
and only ifp(y, z, z) is a 2-edge operation a#.

2. A k-ary near unanimity operatioon A is ak-ary operation;(z) that satisfies the
identities

t(xay7"'ay) ~ t(y7'raya"'7y) ~ t(y>y7x7y7y) o = t(y,,y,.’)ﬁ) =Y

If ¢ is ak-ary near unanimity operation then ther 1-ary operationt(zs, zs, ..., Tk41) IS a
k-edge operation.

3. A k-ary operatiory on A is ageneralized majority-minoritfjgmn) operation([8,
17)) if for all a, b € A, we have that either for alt, y € {a, b},

9@y, y) =9, y,....y) =9y, 9., y) = =9(y,...,y,x) =Y

orforallz, y € {a,b},
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From [4, Theorem 4.7] we know that any algebra with-ary gmm term operation also has
a k-edge term operation.

THEOREM3.4. [4, Corollary 3.11]etA be a finite algebra. TheA has few subpowers
if and only if for some: > 2, A has ak-edge term operation. In this casg,(n) is bounded
above by a polynomial of degrée

We note that in [4] it is also established that if a finite algefrtails to have few sub-
powers then the functiog, is bounded below by an exponential function. This extends the
result of Chen for two element algebras found in [14].

One direction of the proof of Theorem 3.4 establishes that in the presence-efige
term operation, all subalgebras of finite powers of a finite algébhave rather small gen-
erating sets; in fact, the functiagp is in O(n*~1). The proof utilizes three auxiliary term
operations that are derivable fronkaedge term operation.

LEMMA 3.5 ([4]). Let A be a finite algebra with &-edge term operatioa. Then the
algebra(A, e) has term operationd(z, y), p(z, y, z) and s(x1, z2, ..., z) (Which are also
term operations oA) satisfying

p(z,yy) =
p(z,z,y) = d(z,y)
d(z,d(z,y)) = d(z,y)
s(y,z,z,x, ...,z x) ~ d(z,y)
s(z,y,x, 2, ..., 2,x) =T
s(z,zyy, 2. ., 0, 0) R T
s(zyx,x,z, ... 2, y) = .

The following two definitions are generalizations of those given in [8, 17] in the context
of generalized majority-minority operations.

DEFINITION 3.6. Supposé\ is an algebra withk-edge term operation and term oper-
ationsd, p, s as in Lemma 3.5. A paifa, b) € A? is aminority pair if d(a,b) = b.

By anindex (of rankn) we mean a tripld = (4, a,b) wherel < ¢ < nanda,b € A. It
is said to be aninorityindex if (a, b) is a minority pair. IfS C A", we say thaf is witnessed
in S if there existf, g € S satisfying

o f(j)=g(j) forall j <i.
e f(i) =aandg(i) =b.
In this case we calf, g witnesseso 1.

DEFINITION 3.7.Fix k > 1, let A be an algebra with:-edge term operatioa and term
operationsd, p, s as in Lemma 3.5, and suppoBeC B C A" for somen > 0.

1. Thesignatureof B, denoted by Sig, is the set of all minority indices of rankthat
are witnessed irB.
2. We say thafk is arepresentatiofmore precisely, &-representationof B if
e Forall T C [n] :={1,2,...,n} with |T| < k, the projections o3 and R to
AT are identical.
o Sigy = Sigg.
3. (R). denotes the closure d? under the operatior (or equivalently the smallest
n-ary relation onA that containsk and is invariant undee).

LEMMA 3.8. LetA be afinite algebra witlk-edge term operatioaand term operations

d, p, s as in Lemma 3.5. SuppoBes a subalgebra oA™ with universeB, R is a represen-
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tation of B, andI = (i, a, b) is a minority index witnessed iB. Then for allf € (R). with
f (@) = a, there existg € (R). such thatf, g witnessI.

Proof. Becausd is minority and witnessed if8, we can choos¢™, g* € R witnessing
1. Define

g=np(f, "9

and note thay € (R). asp can be expressed as a repeated composition decause
p(z,y,y) = xz we havef(j) = g(j) for all j < i. At coordinate;,

9(i) = pla,a,b) = d(a,b) = b

where the last equality holds becayseb) is minority. a

The proof of the following theorem may be found in [4, Corollary 3.9].

THEOREM 3.9. SupposéA is a finite algebra withk-edge term operatiom and term
operationsd, p, s as in Lemma 3.5. IB is a subalgebra oA™ and R is a representation of
B, then(R). = B.

As observed in [8] and [17], every subsBtof A™ has a representation whose size is
bounded above by a polynomial in In fact, if we setm = min(k — 1,n) then B has a
representation of size at mofSigg| + > 7 c () 7= [Projr(B)|. We will call a repre-
sentation with this property a compact representatio ofA straightforward computation
(noted in Lemma 4 of [8]) establishes that every subset’dhas a compact representation
of size bounded above by(& — 1)-degree polynomial im. This explains our earlier claim
that the functiorya is in O(n*~1) whenA has ak-edge term operation. We remark that if,
conversely, the functiopa is in O(n*~1), then itis a consequence of results in [4] tAdtas
ak + 1-edge term operation.

Note that given a subsdt of A™, R will be a compact representation of some subset
of A™ if and only if it is a compact representation of itself. This can be determined by
comparing the size aR with 2[Sigg |+ _7c (), j7=m [Projr ()], wherem = min(k—1,n),

a calculation that can be carried out in time bounded by a polynomiahkimd the size oR.

4. Tractability. In this section we argue that, with slight modifications, the polynomial-
time algorithm presented in [17] for algebras having a gmm term operation works for finite
algebras having an edge term operation. Thus we claim the following result:

THEOREM4.1. Let A be a finite algebra with few subpowers. The constraint language
T'a consisting of all subuniverses of finite cartesian power& of globally tractable.

COROLLARY 4.2. Any constraint language over a finite séthat has, for somé > 1,

a k-edge operation as a polymorphism is globally tractable.

Note that this settles a conjecture posed by Chen in [14] and Conjecture 1 from Dalmau’s

thesis [16], namely that any algebra that has polynomially generated subpowers is tractable.

For the remainder of this section, we assume thas a finite algebra of the form
(A, p(x1,...,2r11)), Wherep is ak-edge operation. Note that in order to prove Theorem
4.1 it will suffice to consider algebras of this form.

ForP = ({v1,...,un}, A, {C1,...,Cpn}) aninstance of CSPG), and for0 <1 < m,
let P, = ({v1,...,v,},4,{C1,...,Ci}), be the instance of CSP{) obtained fromP by
only using the first constraints of? and letR; denote the set of solutions &f.

In essence, the Dalmau Algorithm starts off with a compact representatign(ef A™)
and then recursively constructs compact representation®; fdor 0 < I < m. At the end of
this recursion, we havg,,, a compact representation for the set of solution® odnd soP
will have a solution if and only ifR,,, is non-empty. Of course, the algorithm can be easily
modified so that it outputs a solution &fif one exists.
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Algorithm Dalmau (({v1,...,vn}, A, {C1,...,Cn}))
Step 1 setR{ some compact representationAsf
Step2 foreachl € {0,...,m — 1} do
(Iet Cl+1 be ((Ui17 . 7’Uikl+1 ), Sl+1))

Step2.1 setR; ; := Next (R}, i1, ... ik, S141)

end for each
Step 3 if R}, # () retumn yes
Step 4 return no

TheDalmau algorithm makes use of a number of procedures that are defined and ana-
lyzed in [17]. We now present a description of these procedures, pointing out any necessary
modifications, along with estimates of their run-times. Unless otherwise noted, justifications
for the correctness and bounds on run-times can be found in Section 4 of [17].

e Nonempty (R',i1,...,1;,5) receives as input a compact representatidrof a
subuniverser of A" for somen, a sequence of elemenits . .., i, from [n], and a
subuniverses of A’. If there is some elemenite R such thaprojy;, . .4(t) €S
thenNonempty outputs some member @ with this property and if not, returns
the answer “no”. The running time dfonempty can be bounded b@(((n|A|)* +
[projgi, i,y (R 2IS|n).

e Fix-values (R/,aq,...,a,) receives as input a compact representaftorof a
subuniverser of A" for somen and a sequence of elements. . . , a,, from A and
outputs a compact representation of the subuniverse

{t € R : proj,,(t) = (a1,a2,...,am)}.

The only change in the definition &iix-values  found in Section 4.2 of [17] is
that Step 2.2.1.2 has been removed and Step 2.2.1.1 changed to
setts := p(tl,tg, tg)

wherep(x, y, z) is the operation derived from thieedge operatiorp using Lemma
3.5. See Figure 4.1 for a presentation of the modifiedvalues . The proof
of the correctness of this modified versionFok-values s similar to the proof
found in Section 4.2 of [17] but makes use of our Lemma 3.8. The running time of
Fix-values  can be bounded b@((n|A|)*+1(E+2)),

e Next (R',i1,...,1;,5) receives as input a compact representaf®dof a subuni-
verseR of A™ for somen, a sequence of elemerits ..., i; from [r], and a subuni-
verseS of A7, It outputs a compact representation of the subuniverse

R*={teR: Projg, ... ij}(t) € St

Note thatNext makes use of a similar procedure, caliext-beta , but which

has a potentially worse running time. As noted in Section 4.3 of [17], the running
time of each call toNext in line 2.1 of theDalmau Algorithm is bounded by
O((n]A||S])*+27%).

COROLLARY 4.3. The algorithmDalmau correctly decides if an instande of CSRI'4)
has a solution in time (m(n|A||S*|)*+2*), wheren is the number of variables d?, m is
the number of constraints @f, and S* is the largest constraint relation occurring iR.

To conclude this section, we describe a sense in which Corollary 4.3 is the most general
“robust Gaussian-like” tractable algorithm for CSP. Clearly both the usual Gaussian elimina-
tion over a finite field and the Dalmau algorithm in [17] share the property that solution sets to
instances of a system of “constraints™irvariables have “small generating sets” with respect
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Algorithm Fix-values  (R’,a1,...,an)

Step 1 setj:=0;U; =R’

Step 2 while j < m do

Step 2.1 setUj11 :=10

Step 2.2 for each (i,a,b) € [n] x A2, with (a,b) a minority pair,do

Step 2.2.1 if Nonempty (Uj,j + 1,4, {(a;j+1,a)}) # “no” and
Jto, t5 € U; witnessing(i, a, b) and

i>j+ 1then
(lettq be the tuple returned kyonempty (U;, j + 1,4, {a;+1,a}))
Step 2.2.11 setty := p(tl, to, t3)
Step 2.2.1.2 SetUj+1 = Uj+1 U {t17t5}

end for each
Step 2.3 foreachk’ € [k — 1]

foreachly, ...l € [n]withly <lp < -+ < lg
foreachd,,...,dy € Ado
Step 2.3.1 if Nonempty (Uj, 11, ..., L, + 1,{(d1,...,dw,a;41)}) # “no”

then (let tg be the tuple returned by
Nonempty (Uj, iyl j+ 1, {(dl, R dkr,aj+1)}))
setUj+1 = Uj+1 U {t6}
end for each
Step 2.4 setj:=75+1
end while
Step 3 return U,

FIG. 4.1.TheFix-values  Algorithm

to an appropriate algebraic structure, where “small” means “bounded by a polynomial in
We have seen thatlf is a constraint language aiithas ak-edge polymorphism for sonie
then the Dalmau algorithm can be applied to A9RXith these properties holding true. What
is more, the Dalmau algorithm applies globally to CBPherel” = (T") = Inv(Pol(T")).

Suppose, conversely, thBtis a constraint language satisfyiig= (I') and that some
algorithm with these properties applies globally to solve G3R{ polynomial time. If we
putA = Ar and note that every subpower Afis a member of* and hence can be defined
by a single constraint frorh, it follows immediately from the assumed properties thatas
polynomially generated subpowers. Heritbas ak-edge polymorphism by Lemma 3.2 and
Theorem 3.4.

5. Learnability. In this section we show how to modify the proof of Bulatov, Chen,
and Dalmau found in [8] to show that whehis a k-edge operation on a finite sdt there
is an algorithm that exactly learns, in polynomial time, thelse{ f), encoded by compact
representations.

First we give a brief overview of the learning model that is used. More details may be
found in Angluin and Kharitonov [1], or in [18, 8]. We fix a finite sdtand defineX to be
the set of all finitary tuples ovet. A conceptc is simply a subset ok along with some sort
of encoding of it, while a&oncept classs just a set of concepts.

A learning algorithmfor a concept clas§' is a procedure that, by making specific kinds
of queries to an oracle, eventually produces an encoding of a given target coricapt
C. The model that we adopt is called teract model with equivalence queridsearning
algorithms in this model are allowed to provide the oracle with a hypothetical encading
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of the target concept and the oracle either confirms thatindeed encodes or it returns
a counterexample from the symmetric differencel @nd the concept coded hiy If the
hypothesigh codes a concept that does not belong to the clatsen the query made to the
oracle is said to bamproper.

A learning algorithm is said tkearn a concept clas§' if for every target conceptfrom
C, it halts with an encoding of. The algorithmruns in polynomial timef its run-time can
be bounded by a polynomial in the size of the encoding of the target concepts and the largest
counterexample returned by the oracle. A concept dlass polynomially learnable with
equivalence queriei§there is a learning algorithm that lear@sand that runs in polynomial
time. If there is a polynomial time learning algorithm that only makes proper equivalence
queries to the oracle thefi is said to bepolynomially learnable with proper equivalence
gueries otherwise (' is said to bgolynomially learnable with improper equivalence queries

A related notion is that of beingolynomially evaluabl€[18]). A concept clas€’ has
this property if there is a polynomial time algorithm that, on input the code of a comcept
from C and a tuplex from X, determines ik is in ¢ or not.

For the remainder of this section, léte afinite setf (z1, ..., zr+1) ak-edge operation
on A, andd, p, ands the operation derived frorfias in Lemma 3.5. We |&hv( f) denote the
set of all finitary relations oved that are invariant undef. As in Definition 3.7, fork C A™,

(R); denotes the smallest relation invariant ungethat containsR (or equivalently, the
subuniverse of A, f)"™ generated byR).

ForInv(f) to be considered as a concept class, we need to specify an encoding for each
of its members and for convenience, rather than using the notion of a signature developed in
Section 4 of [8], we will use compact representations. In what follows, we could just as easily
adopt the signature formalism from [8].

Recall that every:-ary relationR over A has a compact representation (relativefto
d, p ands) and that ifR is invariant underf then every one of its compact representations
generates? as a subuniverse ¢4, f)™. Thus, we may use compact representations to code
members olnv(f).

An example presented in Section 4 of [8] shows that not all compact representations
of relations overA are necessarily compact representations of relations invariant ynder
This necessitates expanding our concept class to include arbitrary relation$, @mzoded
by compact representations via a variation of Bilevalues  routine from the previous
section. The following Lemma establishes an interpolation property that we use to modify
Fix-values

LEMMA 5.1. SupposeR C A" is a compact representation,c [n], a € A", b € R
satisfyinga; = b; forall 1 < j <4, and¢; = d(a;, b;). Suppose further that

1. For eachl C [i] with |I| = min(k — 1,i) andi € I we have an elemerf € R
with proj; (c?) = proj,(a).

2. If ¢; # a;, then(i, a;, ¢;) is witnessed iR, say byu, v.
Then{t € (R); : t; =a;forl <j <i} #0.

Proof. For notational convenience, df = a; then letu = v = c/*~2Y{}, We claim
that the algorithminterpolate found in Figure 5.1 returns an element{it € (R); :

t; =a; forl < j <i}. Fori > k, we prove by induction ofi = 0,1,...,7 — k + 1 that if
IC{j+1,j+2,...,i}with|I| = k —1andi € I, thenc)’ = a,forallt € [j]U I

The base of the induction, when= 0, follows sinceproj;(c’) = proj;(a) andc®! =
c’. Assume thaj > 0 and that thec’=!'" have the desired property for all C {j,j +
1,...,4} with |[L| = k — 1 and¢ € L. Straightforward calculations show that the elements
d andc’! produced in Steps 3.1.3 and 3.1.5loferpolate are such thatl, = q; for
L€ [j]UI\ {i}), di = ¢; and thaproj;,;(c') = proj;;ur(a), as required. O
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Algorithm Interpolate (i, b, (c!)7,u,v)
Stepl  if i < kthen return cl?
Step 2 for I C [ijwith|I|=k—1landie I
Step 2.1 setc?! := ¢!
next I
Step 3 forj=1,2,...,i—k+1
Step 3.1 forIC{j+1,...,i}with|I|=k—1andi el
Step 3.1.1 enumeratel = {{1, 0o, ..., Lr_o,i} With {1 < lo < -+ < Lp_o <1
Step 3.1.2 fort=1,2,...,k—2
Step 3.1.2.1 setJ, .= (I'\ {{:}) U{j}

nextt
Step 3.1.3 setd := s(b,c/ =M I~ bN = b2 el Tk-2)
Step 3.1.4 sete := p(c/~ 4 u,v)
Step 3.1.5 setc/! .= f(e,d, ¢/~ b =1 ei=b2 eI Tk-2)
next /
next j

Step 4 setj:=i—k+1
Step 5 return c/-{i+1,.-i}

FiG. 5.1. Thelnterpolate Algorithm

Algorithm New-Fix-values (R, aq,...,a;)

Step 1 if i = 0thenreturn R

Step 2 setU := Fix-values (R, aq,...,q;)

Step 3 if U # 0 then return U

Step 4 if there existd € New-Fix-values (R, aq,...,a;—1) with ¢; :== d(a;, b;),
and for everyI C [¢] with |I| = k — 1 andi € I there exists
c! € R with proj;(c!) = proj;(a), and there exist1, v € R witnessing
(i, ai, ¢;) (permittinga; = ¢;, in which casar = v = cl*=21V{i}) then

Step 4.1 choosesuchb, (¢!);,u, v

Step 4.2 return {Interpolate (i,b, (ch)r,u,v)}
else

Step 4.3 return ()
endif

FiG. 5.2. TheNew-Fix-values  Algorithm

We note that the run-time dhterpolate is O(n*) and hence is polynomial in.
Using thelnterpolate algorithm we define the algorithidew-Fix-values  asin Fig-
ure 5.2. UsindNew-Fix-values , we can define a relation (concept) from a given compact
representation as follows:

Let R be a compact representation of somary relation overA. The
conceptencodedby R is defined to be the set of alby,...,a,) € A"
such thaNew-Fix-values (R, a4, ...,a,) returns a non-empty set.

While the output oNew-Fix-values may be hard to pin down when its input is a
compact representation of no relation that is invariant ugidere can nevertheless state some
useful properties of it.

PROPOSITIONS.2. Let R’ be a compact representation of somery relation R over
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Stepl setR :={)
Step2 while EQ(R’) =*“no” do
leta = (ay,...,a,) be the counterexample returned BY)
Step 2.1 if thereis somé’ < k andl = {iy,...,ix } C [n] with proj;(a) ¢ proj;(R’)
Step2.1.1 thensetR := R'u{a}

Step2.2 else
Step2.2.1  computethe least such thaNew-Fix-values (R’ ay,...,a;) returnsf)
Step2.2.2 selectb = (ay,...,a;—1,b;,...,by,) from the set returned by
New-Fix-values (R',a1,...,a;-1)
Step2.2.3 setR' := R'U{a,d(a,b)}
endif
endwhile

Step3 return R’

FIG. 5.3. The Learning Algorithm

Aandleta = (a1,...,a,) € A™.

1. The concept encoded ¥ is contained in(R’) ;.

2. If Ris invariant underf thena € R if and only if New-Fix-values (R’,a) is
non-empty. Thus, iR is invariant underf then the concept encoded By is equal toR.

Proof. A careful inspection of the definitions Bfx-values  andNew-Fix-values
should convince the reader of the correctness of statementA islinvariant undetf then
by designFix-values (R/,aq,...,a,) (@and hencéNew-Fix-values (R, ay,...,a,))
returns a compact representation of the subuniverde tiat consists of all elements of
R with b; = a; for 1 < i < n. Of course, this subuniverse is either empty &iff¢ R) or
{a} and soa € R if and only if New-Fix-values returns a non-empty set (which must
be equal to{a}). So, if R is invariant underf then the concept encoded B is equal toR.

0

THEOREM 5.3. The concept class of relations ovér encoded by compact representa-
tions, is polynomially evaluable.

Proof. Let R C A™ be a compact representation. Since the run-timésxefalues
andInterpolate can be bounded by some polynomialirit is not hard to see that the
run-time ofNew-Fix-values (R, ay,...,a,) can also be bounded by a polynomiakin
for anya € A™. From this it follows that membership in the relation encoded?bgan be
determined in time bounded by a polynomiakin a

In Figure 5.3 we present a learning algorithm for the concept class of all finitary relations
of A invariant underf, coded by compact representations. We note that this algorithm is
essentially the same as that found in [8]. In Step 2 of the algorifi@y( R’') represents the
call to the oracle with hypothesi®'. If R’ does not code the target concept the® returns
a tuple from the symmetric difference of the target concept and the concept enco&éd by
It can be shown inductively tha®’ is always a subset of the target concept and§pwill
always return a tuple that lies in the target concept. Since in general, compact representations
do not code relations invariant undgrthis algorithm makes improper equivalence queries.
We have:

THEOREM5.4. Let A be a finite set and’ a k-edge operation oml. Then there exists
an algorithm that exactly learnBwv( f), encoded by compact representations, with improper
equivalence queries and whose run-time is bounded by a polynomial in the arity of the target
relation.
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Proof. Letn be the arity of the target concefpt We will argue by induction that at
any point in the execution of the learning algorithm theBeis a compact representation of
somen-ary relation contained ifi’ and that for each pass through the while-loop, the size of
R’ increases by one or two. Since the size of any compact representation-@rgmelation
over A can be bounded by a polynomial in it follows that the run-time of the learning
algorithm can be bounded by a polynomial in the arity of the target concept and that the
output of the algorithm will encode the target concept.

Initially, R’ = (, a compact representation of the empty relation. Assume that at some
later stage of the execution of the learning algorithm we have Bas a compact rep-
resentation. In Step 2, if the oracle returns the answer “yes” then the algorithm has suc-
cessfully learned a code for the target concept. If, instead, the oracle returnsugie
a = (ay,...,a,)thena € T (but not in the relation coded h§’) and R’ will be increased
in one of two ways.

If some projection ofa onto a subsel of coordinates of size< k£ is not contained in
proj;(R’') thena is added toR’ and control passes again to Step 2. The rws still
a compact representation since we have simply added-taple to R’ that witnesses that
proj;(a) € proj(T).

If on the other hand, all projections afonto small sets of coordinates are witnessed by
members of?’ then control passes to Step 2.2 and we compute the smalest such that

New-Fix-values (R as,...,a;) returns the empty set. Such aexists and > 0 since
New-Fix-values  (R',as,...,ay) returns the empty set aldew-Fix-values  (R’) re-
turnsR'.

SinceNew-Fix-values  (R’,aq,...,a;) returns the empty set then one of the condi-
tions in theif statement in Step 4 of the executionMéw-Fix-values (R, a1, ...,q;)

must fail. Note that since we are executing Step 2.2 of the learning algorithm at this point, it
must be the case that for evefyC [i] with |I| = k — 1 andi € I there existg! € R with
proj;(c!) = proj;(a). By choice ofi we know thatNew-Fix-values (R, a1, ...,a; 1)
returns a non-empty set and for ahyin this set, the element = d(a;, b;) is not equal to

a; and the minority indexi, a;, ¢;) is not witnessed imR. Thus for any selection db in

Step 2.2.2 of the learning algorithm we have that the minority index;, d(a;, b;)) is not
witnessed iR’ and hence, in Step 2.2.3, the #tJ{a, d(a, b)} is a compact representation
that is strictly bigger tha?’ and that is contained ifi. a

DEFINITION 5.5. LetT" be a set of finitary relations over the finite sét The set of
guantified generalized formulas over the bdsjslenoted by3-Form(I"), is the smallest set
of first-order formulas over the variablds, =5, . ..} that is closed under conjunction and
universal and existential quantification over thgand that contains, for eack € T" and
sequence of variablegs, the formulaR(y) (where the arity olR = the length ofy).

Using the usual semantics of first-order logic, each mentbef vV3-Form(") defines a
relation R on A. With this in mind, we also usé3-Form(") to denote the concept class of
all relations of the formRg, for ® € V3-Form('), coded byd.

COROLLARY 5.6. Let A be a set andf a k-edge operation ord. If T is a subset
of Inv(f) thenv3-FormI") is polynomially exactly learnable with improper equivalence
queries.

Proof. Lemma 1 from [8] establishes th@s is a member ofinv(f) for any ® €
v3-Form(). From this, the result follows from the previous theorem. O

We note that Theorem 5.4 and Corollary 5.6 extend results found in [18] and [8]. They
also settle one direction of a conjecture found in [16] and [14].

6. Conclusion. The study of algebras with few subpowers has led to a number of sur-
prising algebraic results and has helped to further work on the Dichotomy Conjecture for
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constraint languages. As noted earlier, our results delimit the scope of Dalmau-like algo-
rithms for solving instances of the CSP and so new algorithms will need to be devised to deal
with finite algebras that support non-trivial term operations more generaktealge terms.

Given a finite algebra (or constraint language) there is a fairly straightforward, but inef-
ficient algorithm to determine if it has a Mal’'cev term operation (or Mal’cev polymorphism).
In [20] a polynomial time algorithm to test for a Mal’cev term operation is presented that
works for idempotent algebras. It is apparently much more difficult to test for the presence
of a near unanimity term operation, but at least we know from a recent result GtiN26]
that this question is decidable. Mdi's algorithm has been successfully modified by Jonah
Horowitz at McMaster University to decide whether a finite algebra has an edge operation.

Question 1:ls there a polynomial time algorithm to test whether a finite algebra has a near-
unanimity term operation? Has an edge term operation? Are these problems easier when
restricted to idempotent algebras?

On the relational side, L. Barto has recently announced a positive solution to a conjecture
of L. Zadori, by proving that a finite constraint language has a near-unanimity polymorphism
if and only if it has a collection of ternary polymorphisms call#thsson operations(For
the definition, see e.g. [4, Theorem 4.3].) As there are just a fixed finite number of ternary
operations on a fixed finite domain, Barto’s result gives an algorithm to determine whether
a finite constraint language has a near-unanimity polymorphism. Inspired by Zadori’s con-
jecture, Bova, Chen and Valeriote [5] have conjectured that a finite constraint language has
an edge polymorphism if and only if it has a collection of 4-ary polymorphisms cBisad
operations (For the definition, see e.g. [4, Theorem 4.2].) Their conjecture, if true, implies a
positive answer to the following question.

Question 2:Is there an algorithm to determine, given a finite constraint language, whether it
has ak-edge polymorphism for some> 1?

A more direct approach to learnability than the one in Section 5 would be to use gen-
erating sets as codes for subpowers of a finite algebra, rather than compact representations.
Theorem 5.4 and Corollary 5.6 would have much cleaner proofs if the following question has
an affirmative answer.

Question 3:Let A be a finite algebra with few subpowers. Is there a polynomial time algo-
rithm that takes as input a subgetand ann-tuple a from A™ for somen, and determines

if a is in the subuniverse Ak™ generated by?? An algebra with this property is said to be
polynomially evaluablésee [18]).
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