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Abstract. A constraint languageΓ on a finite setA has been calledpolynomially expressiveif the number of
n-ary relations expressible by∃∧-atomic formulas overΓ is bounded byexp(O(nk)) for some constantk. It has
recently been discovered that this property is characterized by the existence of ak + 1-ary polymorphism satisfy-
ing certain identities; such polymorphisms are calledk-edge operationsand include Mal’cev and near-unanimity
operations as special cases.

We prove that ifΓ is any constraint language which, for somek > 1, has ak-edge operation as a polymor-
phism, then the constraint satisfaction problem for〈Γ〉 (the closure ofΓ under∃∧-atomic expressibility) is globally
tractable. We also show that the set of relations definable overΓ using quantified generalized formulas is polynomi-
ally exactly learnable using improper equivalence queries.
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1. Introduction. A wide variety of combinatorial problems can be expressed within the
framework of the Constraint Satisfaction Problem (CSP). Given an instance of the CSP, the
aim is to determine if there is an assignment of values to the variables of the instance that
satisfies all of its constraints. While the class of all CSPs forms anNP-complete class of
problems, there are many naturally defined subclasses that are tractable (i.e., lie in the class
P). A main research goal is to identify the subclasses of the CSP that are tractable.

One common way to define a subclass of the CSP is to restrict the relations that appear
in the constraints of an instance to a specified set of relations over some fixed domain, called
a constraint language. The Dichotomy Conjecture of Feder and Vardi [19] states that for any
constraint languageΓ, the corresponding subclass of the CSP, denoted CSP(Γ), is eitherNP-
complete or tractable. The Dichotomy Conjecture has been verified in a number of special
cases, most notably over domains of size 2 [28] and size 3 [7]. Over larger domains, a number
of general results have been obtained [2, 3, 6, 10, 13, 17, 25].

In this paper we introduce a condition which, when satisfied by a constraint language
Γ, guarantees that the subclass CSP(Γ) is tractable. The polynomial-time algorithm that we
use to establish tractability is essentially that presented by Dalmau in [17] and our result
generalizes his and also generalizes earlier results of Feder and Vardi, Bulatov, and Jeavons,
Cohen and Cooper [19, 9, 24]. The class of constraint languages that satisfy our condition
is quite large and includes some well known constraint languages such as those that have
Mal’cev or near unanimity polymorphisms.

A polymorphism of a set of relationsΓ over some setA is a finitary operation onA that
preserves all of the relations inΓ. Work of Jeavons and his co-authors has shown that the
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tractability of a constraint language is determined by the set of its polymorphisms and many
tractability results can be expressed in terms of the existence of certain kinds of polymor-
phisms [11]. A benefit of focusing on polymorphisms is that it allows the introduction of
ideas and techniques from universal algebra into the study of tractability and in this paper we
adopt this algebraic approach.

Our main result is that if a constraint languageΓ has ak-edge operation (see Definition
3.3) as a polymorphism, then Dalmau’s algorithm can be used, essentially unchanged, to
solve in polynomial time all instances of CSP(Γ). This algorithm can be regarded as a natural
generalization of the familiar Gaussian elimination algorithm for solving systems of linear
equations since it makes essential use of the fact that, in this case, all solution sets of instances
of CSP(Γ) have small generating sets (akin to bases of vector spaces) when considered as
universes of particular algebras.

On the other hand, we argue that if a constraint languageΓ fails to have ak-edge oper-
ation as a polymorphism then no “robust Gaussian-like” algorithm can solve all instances of
CSP(Γ) in polynomial-time. So, in some sense, our result sharply determines the scope of
algorithms like Dalmau’s to quickly settle instances of the CSP.

In Section 5 we establish that ifΓ is a set of relations over a finite set that is invariant
under ak-edge operation then the set of relations defined by quantified generalized formulas
overΓ is exactly learnable, in polynomial time, via an algorithm that makes improper equiva-
lence queries. This extends the result of Bulatov, Chen, and Dalmau in [8] and earlier results
of Dalmau and Jeavons [18].

This paper is an extended version of [22].

2. Preliminaries. DEFINITION 2.1. An instanceof the constraint satisfaction problem
is a tripleP = (V,A, C) with

• V a non-empty, finite set (called the set ofvariables),
• A a non-empty, finite set (called thedomain),
• C a set ofconstraints{C1, . . . , Cq} where eachCi is a pair (~si, Ri) with

– ~si a tuple of variables of lengthmi, called thescopeof Ci, and
– Ri anmi-ary relation overA, called theconstraint relationof Ci.

Given an instanceP of the CSP we wish to answer the following question:
Is there asolutionto P , i.e., is there a functionf : V → A such that for
each1 ≤ i ≤ q, themi-tuplef(~si) ∈ Ri?

The full CSP isNP-complete (see [24]), but by restricting the nature of the constraint
relations that are allowed to appear in an instance, it is possible to find natural subclasses of
the CSP that are tractable.

DEFINITION 2.2. Let A be a domain andΓ a set of finitary relations overA. CSP(Γ)
denotes the collection of all instances of the CSP with domainA and with constraint relations
coming fromΓ. Γ is called theconstraint languageof the class CSP(Γ).

DEFINITION 2.3. Let Γ be a constraint language. We say thatΓ is tractable(or more
precisely, islocally tractable) if for every finite subsetΓ′ of Γ the class CSP(Γ′) lies in P. If
CSP(Γ) itself is inP then we say thatΓ is globally tractable. Γ is said to beNP-completeif
for some finite subsetΓ′ of Γ, the class CSP(Γ′) is NP-complete.

A key problem in this area is to classify the (globally) tractable constraint languages.
Note that in this paper we will assume thatP 6= NP. Feder and Vardi [19] conjecture that
every finite constraint language is either tractable or isNP-complete.

The natural duality between sets of relations (constraint languages) over a setA and sets
of operations (algebras) onA has been studied by algebraists for some time. Jeavons and his
co-authors [23] have shown how this link between constraint languages and algebras can be
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used to transfer questions about tractability into equivalent questions about algebras. In the
remainder of this section we present a concise overview of this connection.

DEFINITION 2.4. LetA be a non-empty set,Γ a set of finitary relations onA, F a set of
finitary operations onA, R ann-ary relation onA, andf anm-ary operation onA.

1. We say thatR is invariant under f and that f is a polymorphismof R if for
all ~ai ∈ R, for 1 ≤ i ≤ m, the n-tuple f(~a1, . . . ,~am), i.e. whosej-th coordinate is
f(~a1(j), . . . ,~am(j)), belongs toR.

2. Pol(Γ) denotes the set of functions onA that are polymorphisms of all the relations
in Γ.

3. Inv(F ) denotes the set of all finitary relations onA that are invariant under all
operations inF .

4. 〈Γ〉 denotesInv(Pol(Γ)), therelational cloneonA generated byΓ.
We note that given a set of relationsΓ over a finite setA, the relational clone generated

by Γ is equal to the set of relations overA definable fromΓ using primitive-positive formulas
(or conjunctive queries) (see [23]).

THEOREM 2.5. ([23])Let Γ be a constraint language on a finite set. IfΓ is tractable
then so is〈Γ〉. If 〈Γ〉 is NP-complete then so isΓ.

We refer the reader to [12] or [27] for the basics of universal algebra, in particular to the
notions of a cartesian power and a subuniverse of an algebra. By an algebra we mean the
following:

DEFINITION 2.6. An algebraA is a pair (A,F ) whereA is a non-empty set (called the
universeor domain) andF is a (possibly infinite) collection of finitary operations onA. The
operations inF are called thebasic operationsof A. A term operationof an algebraA is a
finitary operation onA that can be obtained by repeated compositions of the basic operations
of A. An algebra isfinite if its universe is finite.

DEFINITION 2.7. Let B = (B,F ) be a finite algebra andΓ a constraint language over
A.

1. AΓ denotes the algebra(A,Pol(Γ)) andΓB denotes the constraint languageInv(F ).
2. We call the algebraB tractable, globally tractable, or NP-completeif the constraint

languageΓB is.
Note that ifΓ is a constraint language, thenΓ(AΓ) = Inv(Pol(Γ)) = 〈Γ〉. Hence in

algebraic terms, Theorem 2.5 states that a constraint languageΓ is tractable (orNP-complete)
if and only if the algebraAΓ is. Thus, the problem of characterizing the tractable constraint
languages can be reduced to the special case of characterizing the tractable finite algebras.

This is the starting point of the so-called “algebraic method” for attempting to verify
the Dichotomy Conjecture of Feder and Vardi. Using algebraic insights made possible by
this method, Bulatov, Jeavons and Krokhin [11] have conjectured a precise characterization
of which constraint languages should be tractable. Great strides have been made recently
in partially confirming the latter conjecture [7, 25, 13, 3, 2]; see the excellent survey article
[21, Section 3] for more details. The present paper may be viewed as another step towards
verification of both conjectures.

3. Algebras with few subpowers.Let Γ be a constraint language on a setA. Note that
(i) for any instanceP = (V,A, C) of CSP(Γ), its solution set can be naturally identified with
ann-ary member of〈Γ〉 wheren = |V |, and (ii) then-ary members of〈Γ〉 are precisely the
universes of the subalgebras of(AΓ)n. Since Dalmau’s algorithm mentioned in the introduc-
tion requires that these subalgebras of powers ofAΓ have algebraic generating sets of small
(polynomial inn) size, it is natural to ask whenall subalgebras of powers ofAΓ have small
generating sets. This leads to the following concepts:

DEFINITION 3.1. LetA be a finite algebra.
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1. A subpowerof A is a subalgebra ofAn for somen ≥ 1.
2. For n ≥ 1, definegA(n) to be the least integert such that every subalgebra ofAn

has a generating set of size at mostt.
3. For n ≥ 1, definesA(n) to be logarithm, base 2, of the cardinality of the set of all

subalgebras ofAn.
4. (Cf. [16]) A haspolynomially generated subpowersif the functiongA is bounded

above by a polynomial.
5. A hasfew subpowers[22] if the functionsA is bounded above by a polynomial.

We note that a constraint languageΓ is polynomially expressive as defined in [14] if and
only if AΓ has few subpowers.

The following lemma is an immediate consequence of [4, Proposition 1.2].
LEMMA 3.2. A finite algebraA has polynomially generated subpowers if and only if it

has few subpowers.
Thus our interest in algebras whose subpowers have small generating sets leads naturally

to the notion of algebras having few subpowers. Finite algebras with few subpowers are
thoroughly studied and characterized in [4]. The remainder of this section summarizes key
definitions, examples and results from that paper that are needed here.

DEFINITION 3.3. Let k ≥ 2. A k-edge operationon a setA is a k + 1-ary operation
e(x̄) onA that universally satisfies thek identities

e(x, x, y, y, y, . . . , y, y) ≈ y

e(x, y, x, y, y, . . . , y, y) ≈ y

e(y, y, y, x, y, . . . , y, y) ≈ y

e(y, y, y, y, x, . . . , y, y) ≈ y

...

e(y, y, y, y, y, . . . , x, y) ≈ y

e(y, y, y, y, y, . . . , y, x) ≈ y.

(Note the “shepherd’s crook” shape of the occurrences ofx on the left-hand side of these
identities.)

Examples. Let A be a set.
1. A Mal’cev operationonA is a ternary operationp(x, y, z) that satisfies the identities

p(y, x, x) ≈ p(x, x, y) ≈ y. It is clear that a ternary operationp(x, y, z) on A is Mal’cev if
and only ifp(y, x, z) is a 2-edge operation onA.

2. A k-ary near unanimity operationon A is ak-ary operationt(x̄) that satisfies the
identities

t(x, y, . . . , y) ≈ t(y, x, y, . . . , y) ≈ t(y, y, x, y . . . , y) ≈ · · · ≈ t(y, . . . , y, x) ≈ y

If t is ak-ary near unanimity operation then thek + 1-ary operationt(x2, x3, . . . , xk+1) is a
k-edge operation.

3. A k-ary operationg on A is ageneralized majority-minority(gmm) operation([8,
17]) if for all a, b ∈ A, we have that either for allx, y ∈ {a, b},

g(x, y, . . . , y) = g(y, x, y, . . . , y) = g(y, y, x, y . . . , y) = · · · = g(y, . . . , y, x) = y

or for all x, y ∈ {a, b},

g(y, x, . . . , x) = g(x, . . . , x, y) = y.
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From [4, Theorem 4.7] we know that any algebra with ak-ary gmm term operation also has
ak-edge term operation.

THEOREM 3.4. [4, Corollary 3.11]LetA be a finite algebra. ThenA has few subpowers
if and only if for somek ≥ 2, A has ak-edge term operation. In this case,sA(n) is bounded
above by a polynomial of degreek.

We note that in [4] it is also established that if a finite algebraA fails to have few sub-
powers then the functionsA is bounded below by an exponential function. This extends the
result of Chen for two element algebras found in [14].

One direction of the proof of Theorem 3.4 establishes that in the presence of ak-edge
term operation, all subalgebras of finite powers of a finite algebraA have rather small gen-
erating sets; in fact, the functiongA is in O(nk−1). The proof utilizes three auxiliary term
operations that are derivable from ak-edge term operation.

LEMMA 3.5 ([4]). Let A be a finite algebra with ak-edge term operatione. Then the
algebra(A, e) has term operationsd(x, y), p(x, y, z) ands(x1, x2, . . . , xk) (which are also
term operations ofA) satisfying

p(x, y, y) ≈ x

p(x, x, y) ≈ d(x, y)
d(x, d(x, y)) ≈ d(x, y)

s(y, x, x, x, . . . , x, x) ≈ d(x, y)
s(x, y, x, x, . . . , x, x) ≈ x

s(x, x, y, x, . . . , x, x) ≈ x

...

s(x, x, x, x, . . . , x, y) ≈ x.

The following two definitions are generalizations of those given in [8, 17] in the context
of generalized majority-minority operations.

DEFINITION 3.6. SupposeA is an algebra withk-edge term operatione and term oper-
ationsd, p, s as in Lemma 3.5. A pair(a, b) ∈ A2 is aminority pair if d(a, b) = b.

By an index (of rankn) we mean a tripleI = (i, a, b) where1 ≤ i ≤ n anda, b ∈ A. It
is said to be aminority index if (a, b) is a minority pair. IfS ⊆ An, we say thatI is witnessed
in S if there existf , g ∈ S satisfying

• f(j) = g(j) for all j < i.
• f(i) = a andg(i) = b.

In this case we callf , g witnessesto I.
DEFINITION 3.7. Fix k > 1, let A be an algebra withk-edge term operatione and term

operationsd, p, s as in Lemma 3.5, and supposeR ⊆ B ⊆ An for somen > 0.
1. Thesignatureof B, denoted by SigB , is the set of all minority indices of rankn that

are witnessed inB.
2. We say thatR is a representation(more precisely, ak-representation) of B if

• For all T ⊆ [n] := {1, 2, . . . , n} with |T | < k, the projections ofB andR to
AT are identical.

• SigR = SigB .
3. 〈R〉e denotes the closure ofR under the operatione (or equivalently the smallest

n-ary relation onA that containsR and is invariant undere).
LEMMA 3.8. LetA be a finite algebra withk-edge term operatione and term operations

d, p, s as in Lemma 3.5. SupposeB is a subalgebra ofAn with universeB, R is a represen-
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tation ofB, andI = (i, a, b) is a minority index witnessed inB. Then for allf ∈ 〈R〉e with
f(i) = a, there existsg ∈ 〈R〉e such thatf , g witnessI.

Proof. BecauseI is minority and witnessed inB, we can choosef∗, g∗ ∈ R witnessing
I. Define

g = p(f, f∗, g∗)

and note thatg ∈ 〈R〉e as p can be expressed as a repeated composition ofe. Because
p(x, y, y) ≈ x we havef(j) = g(j) for all j < i. At coordinatei,

g(i) = p(a, a, b) = d(a, b) = b

where the last equality holds because(a, b) is minority.
The proof of the following theorem may be found in [4, Corollary 3.9].
THEOREM 3.9. SupposeA is a finite algebra withk-edge term operatione and term

operationsd, p, s as in Lemma 3.5. IfB is a subalgebra ofAn andR is a representation of
B, then〈R〉e = B.

As observed in [8] and [17], every subsetB of An has a representation whose size is
bounded above by a polynomial inn. In fact, if we setm = min(k − 1, n) thenB has a
representation of size at most2|SigB | +

∑
T⊆[n],|T |=m |projT (B)|. We will call a repre-

sentation with this property a compact representation ofB. A straightforward computation
(noted in Lemma 4 of [8]) establishes that every subset ofAn has a compact representation
of size bounded above by a(k − 1)-degree polynomial inn. This explains our earlier claim
that the functiongA is in O(nk−1) whenA has ak-edge term operation. We remark that if,
conversely, the functiongA is in O(nk−1), then it is a consequence of results in [4] thatA has
ak + 1-edge term operation.

Note that given a subsetR of An, R will be a compact representation of some subset
of An if and only if it is a compact representation of itself. This can be determined by
comparing the size ofR with 2|SigR|+

∑
T⊆[n],|T |=m |projT (R)|, wherem = min(k−1, n),

a calculation that can be carried out in time bounded by a polynomial inn and the size ofR.

4. Tractability. In this section we argue that, with slight modifications, the polynomial-
time algorithm presented in [17] for algebras having a gmm term operation works for finite
algebras having an edge term operation. Thus we claim the following result:

THEOREM 4.1. Let A be a finite algebra with few subpowers. The constraint language
ΓA consisting of all subuniverses of finite cartesian powers ofA is globally tractable.

COROLLARY 4.2. Any constraint language over a finite setA that has, for somek > 1,
a k-edge operation as a polymorphism is globally tractable.

Note that this settles a conjecture posed by Chen in [14] and Conjecture 1 from Dalmau’s
thesis [16], namely that any algebra that has polynomially generated subpowers is tractable.

For the remainder of this section, we assume thatA is a finite algebra of the form
〈A,ϕ(x1, . . . , xk+1)〉, whereϕ is ak-edge operation. Note that in order to prove Theorem
4.1 it will suffice to consider algebras of this form.

ForP = ({v1, . . . , vn}, A, {C1, . . . , Cm}) an instance of CSP(ΓA), and for0 ≤ l ≤ m,
let Pl = ({v1, . . . , vn}, A, {C1, . . . , Cl}), be the instance of CSP(ΓA) obtained fromP by
only using the firstl constraints ofP and letRl denote the set of solutions ofPl.

In essence, the Dalmau Algorithm starts off with a compact representation ofR0 (= An)
and then recursively constructs compact representations forRl, for 0 < l ≤ m. At the end of
this recursion, we haveRm, a compact representation for the set of solutions ofP , and soP
will have a solution if and only ifRm is non-empty. Of course, the algorithm can be easily
modified so that it outputs a solution ofP if one exists.
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Algorithm Dalmau (({v1, . . . , vn}, A, {C1, . . . , Cm}))
Step 1 setR′

0 some compact representation ofAn

Step 2 for each l ∈ {0, . . . ,m− 1} do
(let Cl+1 be ((vi1 , . . . , vikl+1

), Sl+1))
Step 2.1 setR′

l+1 := Next (R′
l, i1, . . . , ikl+1 , Sl+1)

end for each
Step 3 if R′

m 6= ∅ return yes
Step 4 return no

TheDalmau algorithm makes use of a number of procedures that are defined and ana-
lyzed in [17]. We now present a description of these procedures, pointing out any necessary
modifications, along with estimates of their run-times. Unless otherwise noted, justifications
for the correctness and bounds on run-times can be found in Section 4 of [17].

• Nonempty (R′, i1, . . . , ij , S) receives as input a compact representationR′ of a
subuniverseR of An for somen, a sequence of elementsi1, . . . , ij from [n], and a
subuniverseS of Aj . If there is some elementt ∈ R such thatproj{i1,...,ij}(t) ∈ S
thenNonempty outputs some member ofR with this property and if not, returns
the answer “no”. The running time ofNonempty can be bounded byO(((n|A|)k +
|proj{i1,...,ij}(R)|)k+2|S|n).

• Fix-values (R′, a1, . . . , am) receives as input a compact representationR′ of a
subuniverseR of An for somen and a sequence of elementsa1, . . . , am from A and
outputs a compact representation of the subuniverse

{t ∈ R : proj[m](t) = (a1, a2, . . . , am)}.

The only change in the definition ofFix-values found in Section 4.2 of [17] is
that Step 2.2.1.2 has been removed and Step 2.2.1.1 changed to

sett5 := p(t1, t2, t3)
wherep(x, y, z) is the operation derived from thek-edge operationϕ using Lemma
3.5. See Figure 4.1 for a presentation of the modifiedFix-values . The proof
of the correctness of this modified version ofFix-values is similar to the proof
found in Section 4.2 of [17] but makes use of our Lemma 3.8. The running time of
Fix-values can be bounded byO((n|A|)(k+1)(k+2)).

• Next (R′, i1, . . . , ij , S) receives as input a compact representationR′ of a subuni-
verseR of An for somen, a sequence of elementsi1, . . . , ij from [n], and a subuni-
verseS of Aj . It outputs a compact representation of the subuniverse

R∗ = {t ∈ R : proj{i1,...,ij}(t) ∈ S}.

Note thatNext makes use of a similar procedure, calledNext-beta , but which
has a potentially worse running time. As noted in Section 4.3 of [17], the running
time of each call toNext in line 2.1 of theDalmau Algorithm is bounded by
O((n|A||S|)(k+2)2).

COROLLARY 4.3. The algorithmDalmau correctly decides if an instanceP of CSP(ΓA)
has a solution in timeO(m(n|A||S∗|)(k+2)2), wheren is the number of variables ofP , m is
the number of constraints ofP , andS∗ is the largest constraint relation occurring inP .

To conclude this section, we describe a sense in which Corollary 4.3 is the most general
“robust Gaussian-like” tractable algorithm for CSP. Clearly both the usual Gaussian elimina-
tion over a finite field and the Dalmau algorithm in [17] share the property that solution sets to
instances of a system of “constraints” inn variables have “small generating sets” with respect
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Algorithm Fix-values (R′, a1, . . . , am)
Step 1 setj := 0; Uj := R′

Step 2 while j < m do
Step 2.1 setUj+1 := ∅
Step 2.2 for each (i, a, b) ∈ [n]×A2, with (a, b) a minority pair,do
Step 2.2.1 if Nonempty (Uj , j + 1, i, {(aj+1, a)}) 6= “no” and

∃t2, t3 ∈ Uj witnessing(i, a, b) and
i > j + 1 then

(let t1 be the tuple returned byNonempty (Uj , j + 1, i, {aj+1, a}))
Step 2.2.1.1 sett5 := p(t1, t2, t3)
Step 2.2.1.2 setUj+1 := Uj+1 ∪ {t1, t5}

end for each
Step 2.3 for eachk′ ∈ [k − 1]

for each l1, . . . , lk′ ∈ [n] with l1 < l2 < · · · < lk′
for eachd1, . . . , dk′ ∈ A do

Step 2.3.1 if Nonempty (Uj , l1, . . . , lk′ , j + 1, {(d1, . . . , dk′ , aj+1)}) 6= “no”
then (let t6 be the tuple returned by
Nonempty (Uj , l1, . . . , lk′ , j + 1, {(d1, . . . , dk′ , aj+1)}))
setUj+1 := Uj+1 ∪ {t6}

end for each
Step 2.4 setj := j + 1

end while
Step 3 return Um

FIG. 4.1.TheFix-values Algorithm

to an appropriate algebraic structure, where “small” means “bounded by a polynomial inn.”
We have seen that ifΓ is a constraint language andΓ has ak-edge polymorphism for somek,
then the Dalmau algorithm can be applied to CSP(Γ) with these properties holding true. What
is more, the Dalmau algorithm applies globally to CSP(Γ′) whereΓ′ = 〈Γ〉 = Inv(Pol(Γ)).

Suppose, conversely, thatΓ is a constraint language satisfyingΓ = 〈Γ〉 and that some
algorithm with these properties applies globally to solve CSP(Γ) in polynomial time. If we
put A = AΓ and note that every subpower ofA is a member ofΓ and hence can be defined
by a single constraint fromΓ, it follows immediately from the assumed properties thatA has
polynomially generated subpowers. HenceΓ has ak-edge polymorphism by Lemma 3.2 and
Theorem 3.4.

5. Learnability. In this section we show how to modify the proof of Bulatov, Chen,
and Dalmau found in [8] to show that whenf is ak-edge operation on a finite setA, there
is an algorithm that exactly learns, in polynomial time, the setInv(f), encoded by compact
representations.

First we give a brief overview of the learning model that is used. More details may be
found in Angluin and Kharitonov [1], or in [18, 8]. We fix a finite setA and defineX to be
the set of all finitary tuples overA. A conceptc is simply a subset ofX along with some sort
of encoding of it, while aconcept classis just a set of concepts.

A learning algorithmfor a concept classC is a procedure that, by making specific kinds
of queries to an oracle, eventually produces an encoding of a given target conceptt from
C. The model that we adopt is called theexact model with equivalence queries. Learning
algorithms in this model are allowed to provide the oracle with a hypothetical encodingh
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of the target conceptt and the oracle either confirms thath indeed encodest or it returns
a counterexample from the symmetric difference oft and the concept coded byh. If the
hypothesish codes a concept that does not belong to the classC then the query made to the
oracle is said to beimproper.

A learning algorithm is said tolearna concept classC if for every target conceptt from
C, it halts with an encoding oft. The algorithmruns in polynomial timeif its run-time can
be bounded by a polynomial in the size of the encoding of the target concepts and the largest
counterexample returned by the oracle. A concept classC is polynomially learnable with
equivalence queriesif there is a learning algorithm that learnsC and that runs in polynomial
time. If there is a polynomial time learning algorithm that only makes proper equivalence
queries to the oracle thenC is said to bepolynomially learnable with proper equivalence
queries; otherwise,C is said to bepolynomially learnable with improper equivalence queries.

A related notion is that of beingpolynomially evaluable([18]). A concept classC has
this property if there is a polynomial time algorithm that, on input the code of a conceptc
from C and a tuplex from X, determines ifx is in c or not.

For the remainder of this section, letA be a finite set,f(x1, . . . , xk+1) ak-edge operation
onA, andd, p, ands the operation derived fromf as in Lemma 3.5. We letInv(f) denote the
set of all finitary relations overA that are invariant underf . As in Definition 3.7, forR ⊆ An,
〈R〉f denotes the smallest relation invariant underf that containsR (or equivalently, the
subuniverse of(A, f)n generated byR).

For Inv(f) to be considered as a concept class, we need to specify an encoding for each
of its members and for convenience, rather than using the notion of a signature developed in
Section 4 of [8], we will use compact representations. In what follows, we could just as easily
adopt the signature formalism from [8].

Recall that everyn-ary relationR over A has a compact representation (relative tof ,
d, p ands) and that ifR is invariant underf then every one of its compact representations
generatesR as a subuniverse of(A, f)n. Thus, we may use compact representations to code
members ofInv(f).

An example presented in Section 4 of [8] shows that not all compact representations
of relations overA are necessarily compact representations of relations invariant underf .
This necessitates expanding our concept class to include arbitrary relations overA, encoded
by compact representations via a variation of theFix-values routine from the previous
section. The following Lemma establishes an interpolation property that we use to modify
Fix-values .

LEMMA 5.1. SupposeR ⊆ An is a compact representation,i ∈ [n], a ∈ Ai, b ∈ R
satisfyingaj = bj for all 1 ≤ j < i, andci = d(ai, bi). Suppose further that

1. For eachI ⊆ [i] with |I| = min(k − 1, i) and i ∈ I we have an elementcI ∈ R
with projI(cI) = projI(a).

2. If ci 6= ai, then(i, ai, ci) is witnessed inR, say byu,v.
Then{t ∈ 〈R〉f : tj = aj for 1 ≤ j ≤ i} 6= ∅.

Proof. For notational convenience, ifci = ai then letu = v = c[k−2]∪{i}. We claim
that the algorithmInterpolate found in Figure 5.1 returns an element in{t ∈ 〈R〉f :
tj = aj for 1 ≤ j ≤ i}. For i ≥ k, we prove by induction onj = 0, 1, . . . , i − k + 1 that if
I ⊆ {j + 1, j + 2, . . . , i} with |I| = k − 1 andi ∈ I, thencj,I

t = at for all t ∈ [j] ∪ I.
The base of the induction, whenj = 0, follows sinceprojI(cI) = projI(a) andc0,I =

cI . Assume thatj > 0 and that thecj−1,L have the desired property for allL ⊆ {j, j +
1, . . . , i} with |L| = k − 1 andi ∈ L. Straightforward calculations show that the elements
d andcj,I produced in Steps 3.1.3 and 3.1.5 ofInterpolate are such thatdl = al for
l ∈ [j] ∪ (I \ {i}), di = ci and thatproj[j]∪I(cj,I) = proj[j]∪I(a), as required.
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Algorithm Interpolate (i,b, (cI)I ,u,v)
Step 1 if i < k then return c[i]

Step 2 for I ⊆ [i] with |I| = k − 1 andi ∈ I
Step 2.1 setc0,I := cI

next I
Step 3 for j = 1, 2, . . . , i− k + 1
Step 3.1 for I ⊆ {j + 1, . . . , i} with |I| = k − 1 andi ∈ I
Step 3.1.1 enumerateI = {`1, `2, . . . , `k−2, i} with `1 < `2 < · · · < `k−2 < i
Step 3.1.2 for t = 1, 2, . . . , k − 2
Step 3.1.2.1 setJt := (I \ {`t}) ∪ {j}

next t
Step 3.1.3 setd := s(b, cj−1,I , cj−1,J1 , cj−1,J2 , . . . , cj−1,Jk−2)
Step 3.1.4 sete := p(cj−1,I ,u,v)
Step 3.1.5 setcj,I := f(e,d, cj−1,I , cj−1,J1 , cj−1,J2 , . . . , cj−1,Jk−2)

next I
next j

Step 4 setj := i− k + 1
Step 5 return cj,{j+1,...,i}

FIG. 5.1.TheInterpolate Algorithm

Algorithm New-Fix-values (R, a1, . . . , ai)
Step 1 if i = 0 then return R
Step 2 setU := Fix-values (R, a1, . . . , ai)
Step 3 if U 6= ∅ then return U
Step 4 if there existsb ∈ New-Fix-values (R, a1, . . . , ai−1) with ci := d(ai, bi),

and for everyI ⊆ [i] with |I| = k − 1 andi ∈ I there exists
cI ∈ R with projI(cI) = projI(a), and there existu,v ∈ R witnessing
(i, ai, ci) (permittingai = ci, in which caseu = v = c[k−2]∪{i}), then

Step 4.1 choosesuchb, (cI)I ,u,v
Step 4.2 return {Interpolate (i,b, (cI)I ,u,v)}

else
Step 4.3 return ∅

endif

FIG. 5.2.TheNew-Fix-values Algorithm

We note that the run-time ofInterpolate is O(nk) and hence is polynomial inn.
Using theInterpolate algorithm we define the algorithmNew-Fix-values as in Fig-
ure 5.2. UsingNew-Fix-values , we can define a relation (concept) from a given compact
representation as follows:

Let R be a compact representation of somen-ary relation overA. The
conceptencodedby R is defined to be the set of all(a1, . . . , an) ∈ An

such thatNew-Fix-values (R, a1, . . . , an) returns a non-empty set.
While the output ofNew-Fix-values may be hard to pin down when its input is a

compact representation of no relation that is invariant underf , we can nevertheless state some
useful properties of it.

PROPOSITION5.2. Let R′ be a compact representation of somen-ary relationR over
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Step 1 setR′ := ∅
Step 2 while EQ(R′) = “no” do

let a = (a1, . . . , an) be the counterexample returned byEQ
Step 2.1 if there is somek′ < k andI = {i1, . . . , ik′} ⊆ [n] with projI(a) /∈ projI(R′)
Step 2.1.1 then setR′ := R′ ∪ {a}
Step 2.2 else
Step 2.2.1 computethe leasti such thatNew-Fix-values (R′, a1, . . . , ai) returns∅
Step 2.2.2 selectb = (a1, . . . , ai−1, bi, . . . , bn) from the set returned by

New-Fix-values (R′, a1, . . . , ai−1)
Step 2.2.3 setR′ := R′ ∪ {a, d(a,b)}

endif
endwhile

Step 3 return R′

FIG. 5.3.The Learning Algorithm

A and leta = (a1, . . . , an) ∈ An.
1. The concept encoded byR′ is contained in〈R′〉f .
2. If R is invariant underf thena ∈ R if and only ifNew-Fix-values (R′,a) is

non-empty. Thus, ifR is invariant underf then the concept encoded byR′ is equal toR.
Proof. A careful inspection of the definitions ofFix-values andNew-Fix-values

should convince the reader of the correctness of statement 1. IfR is invariant underf then
by design,Fix-values (R′, a1, . . . , an) (and henceNew-Fix-values (R′, a1, . . . , an))
returns a compact representation of the subuniverse ofR that consists of all elementsb of
R with bi = ai for 1 ≤ i ≤ n. Of course, this subuniverse is either empty (iffa /∈ R) or
{a} and soa ∈ R if and only if New-Fix-values returns a non-empty set (which must
be equal to{a}). So, ifR is invariant underf then the concept encoded byR′ is equal toR.

THEOREM 5.3. The concept class of relations overA, encoded by compact representa-
tions, is polynomially evaluable.

Proof. Let R ⊆ An be a compact representation. Since the run-times ofFix-values
andInterpolate can be bounded by some polynomial inn it is not hard to see that the
run-time ofNew-Fix-values (R, a1, . . . , an) can also be bounded by a polynomial inn,
for anya ∈ An. From this it follows that membership in the relation encoded byR can be
determined in time bounded by a polynomial inn.

In Figure 5.3 we present a learning algorithm for the concept class of all finitary relations
of A invariant underf , coded by compact representations. We note that this algorithm is
essentially the same as that found in [8]. In Step 2 of the algorithm,EQ(R′) represents the
call to the oracle with hypothesisR′. If R′ does not code the target concept thenEQ returns
a tuple from the symmetric difference of the target concept and the concept encoded byR′.
It can be shown inductively thatR′ is always a subset of the target concept and soEQ will
always return a tuple that lies in the target concept. Since in general, compact representations
do not code relations invariant underf , this algorithm makes improper equivalence queries.
We have:

THEOREM 5.4. Let A be a finite set andf a k-edge operation onA. Then there exists
an algorithm that exactly learnsInv(f), encoded by compact representations, with improper
equivalence queries and whose run-time is bounded by a polynomial in the arity of the target
relation.
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Proof. Let n be the arity of the target conceptT . We will argue by induction that at
any point in the execution of the learning algorithm the setR′ is a compact representation of
somen-ary relation contained inT and that for each pass through the while-loop, the size of
R′ increases by one or two. Since the size of any compact representation of ann-ary relation
over A can be bounded by a polynomial inn, it follows that the run-time of the learning
algorithm can be bounded by a polynomial in the arity of the target concept and that the
output of the algorithm will encode the target concept.

Initially, R′ = ∅, a compact representation of the empty relation. Assume that at some
later stage of the execution of the learning algorithm we have thatR′ is a compact rep-
resentation. In Step 2, if the oracle returns the answer “yes” then the algorithm has suc-
cessfully learned a code for the target concept. If, instead, the oracle returns ann-tuple
a = (a1, . . . , an) thena ∈ T (but not in the relation coded byR′) andR′ will be increased
in one of two ways.

If some projection ofa onto a subsetI of coordinates of size< k is not contained in
projI(R′) thena is added toR′ and control passes again to Step 2. The newR′ is still
a compact representation since we have simply added ann-tuple toR′ that witnesses that
projI(a) ∈ projI(T ).

If on the other hand, all projections ofa onto small sets of coordinates are witnessed by
members ofR′ then control passes to Step 2.2 and we compute the smallesti ≤ n such that
New-Fix-values (R′, a1, . . . , ai) returns the empty set. Such ani exists andi > 0 since
New-Fix-values (R′, a1, . . . , an) returns the empty set andNew-Fix-values (R′) re-
turnsR′.

SinceNew-Fix-values (R′, a1, . . . , ai) returns the empty set then one of the condi-
tions in theif statement in Step 4 of the execution ofNew-Fix-values (R′, a1, . . . , ai)
must fail. Note that since we are executing Step 2.2 of the learning algorithm at this point, it
must be the case that for everyI ⊆ [i] with |I| = k − 1 andi ∈ I there existscI ∈ R with
projI(cI) = projI(a). By choice ofi we know thatNew-Fix-values (R′, a1, . . . , ai−1)
returns a non-empty set and for anyb in this set, the elementci = d(ai, bi) is not equal to
ai and the minority index(i, ai, ci) is not witnessed inR. Thus for any selection ofb in
Step 2.2.2 of the learning algorithm we have that the minority index(i, ai, d(ai, bi)) is not
witnessed inR′ and hence, in Step 2.2.3, the setR′∪{a, d(a,b)} is a compact representation
that is strictly bigger thanR′ and that is contained inT .

DEFINITION 5.5. Let Γ be a set of finitary relations over the finite setA. The set of
quantified generalized formulas over the basisΓ, denoted by∀∃-Form(Γ), is the smallest set
of first-order formulas over the variables{x1, x2, . . .} that is closed under conjunction and
universal and existential quantification over thexi and that contains, for eachR ∈ Γ and
sequence of variablesy, the formulaR(y) (where the arity ofR = the length ofy).

Using the usual semantics of first-order logic, each memberΦ of ∀∃-Form(Γ) defines a
relationRΦ onA. With this in mind, we also use∀∃-Form(Γ) to denote the concept class of
all relations of the formRΦ, for Φ ∈ ∀∃-Form(Γ), coded byΦ.

COROLLARY 5.6. Let A be a set andf a k-edge operation onA. If Γ is a subset
of Inv(f) then ∀∃-Form(Γ) is polynomially exactly learnable with improper equivalence
queries.

Proof. Lemma 1 from [8] establishes thatRΦ is a member ofInv(f) for any Φ ∈
∀∃-Form(Γ). From this, the result follows from the previous theorem.

We note that Theorem 5.4 and Corollary 5.6 extend results found in [18] and [8]. They
also settle one direction of a conjecture found in [16] and [14].

6. Conclusion. The study of algebras with few subpowers has led to a number of sur-
prising algebraic results and has helped to further work on the Dichotomy Conjecture for
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constraint languages. As noted earlier, our results delimit the scope of Dalmau-like algo-
rithms for solving instances of the CSP and so new algorithms will need to be devised to deal
with finite algebras that support non-trivial term operations more general thank-edge terms.

Given a finite algebra (or constraint language) there is a fairly straightforward, but inef-
ficient algorithm to determine if it has a Mal’cev term operation (or Mal’cev polymorphism).
In [20] a polynomial time algorithm to test for a Mal’cev term operation is presented that
works for idempotent algebras. It is apparently much more difficult to test for the presence
of a near unanimity term operation, but at least we know from a recent result of Maróti [26]
that this question is decidable. Maróti’s algorithm has been successfully modified by Jonah
Horowitz at McMaster University to decide whether a finite algebra has an edge operation.

Question 1:Is there a polynomial time algorithm to test whether a finite algebra has a near-
unanimity term operation? Has an edge term operation? Are these problems easier when
restricted to idempotent algebras?

On the relational side, L. Barto has recently announced a positive solution to a conjecture
of L. Zádori, by proving that a finite constraint language has a near-unanimity polymorphism
if and only if it has a collection of ternary polymorphisms calledJónsson operations. (For
the definition, see e.g. [4, Theorem 4.3].) As there are just a fixed finite number of ternary
operations on a fixed finite domain, Barto’s result gives an algorithm to determine whether
a finite constraint language has a near-unanimity polymorphism. Inspired by Zadori’s con-
jecture, Bova, Chen and Valeriote [5] have conjectured that a finite constraint language has
an edge polymorphism if and only if it has a collection of 4-ary polymorphisms calledDay
operations. (For the definition, see e.g. [4, Theorem 4.2].) Their conjecture, if true, implies a
positive answer to the following question.

Question 2:Is there an algorithm to determine, given a finite constraint language, whether it
has ak-edge polymorphism for somek > 1?

A more direct approach to learnability than the one in Section 5 would be to use gen-
erating sets as codes for subpowers of a finite algebra, rather than compact representations.
Theorem 5.4 and Corollary 5.6 would have much cleaner proofs if the following question has
an affirmative answer.

Question 3:Let A be a finite algebra with few subpowers. Is there a polynomial time algo-
rithm that takes as input a subsetR and ann-tuplea from An for somen, and determines
if a is in the subuniverse ofAn generated byR? An algebra with this property is said to be
polynomially evaluable(see [18]).
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60:293–307, 2009.
[14] H. Chen. The expressive rate of constraints.Ann. Math. Artif. Intell., 44(4):341–352, 2005.
[15] H. Chen. Quantified constraint satisfaction and the polynomially generated powers property. 35th Colloquium

on Automata, Languages and Programming (ICALP), Reykjavik, 2008.
[16] V. Dalmau. Computational complexity of problems over generalized formulas. PhD thesis, Universitat
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