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VARIETIES WITH FEW SUBALGEBRAS OF POWERS
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MATTHEW VALERIOTE, AND ROSS WILLARD

Abstract. The Constraint Satisfaction Problem Dichotomy Conjecture of

Feder and Vardi [12] has in the last 10 years been profitably reformulated as
a conjecture about the set SPfin(A) of subalgebras of finite Cartesian powers

of a finite universal algebra A [20, 5]. One particular strategy, advanced by

Dalmau in his doctoral thesis [8], has confirmed the conjecture for a certain
class of finite algebras A which, among other things, have the property that

the number of subalgebras of An is bounded by an exponential polynomial.

In this paper we characterize the finite algebras A with this property, which
we call having few subpowers, and develop a representation theory for the

subpowers of algebras having few subpowers. Our characterization shows that
algebras having few subpowers are the finite members of a newly discovered

and surprisingly robust Maltsev class defined by the existence of a special

term we call an edge term. We also prove some tight connections between
the asymptotic behavior of the number of subalgebras of An and some related

functions on the one hand, and some standard algebraic properties of A on the

other. The theory developed here was applied to the Constraint Satisfaction
Problem Dichotomy Conjecture in [18], completing Dalmau’s strategy.

0. Introduction

One approach to assessing the complexity of a class of structures is to count
the number of members according to some type of measure. The rate of growth
of the associated counting function can then be used to gauge the complexity of
the class. Ideally, there should be some strong correlation between classes with low
complexity and nice structural properties of the members of the class.

Perhaps the most celebrated example of this type of phenomenon is due to Shelah
[26]. For a class C of structures and κ a cardinal, I(C, κ), the spectrum function
of C, denotes the number of members of C of cardinality κ, up to isomorphism.
The study of the spectra of first order definable classes has a rich history and a
number of classic results of model theory can be expressed in terms of spectra.
For example, in [24], Morley proves that if C is a class defined by a countable first
order theory and I(C, κ) = 1 for some uncountable κ, then I(C, κ) = 1 for all
uncountable κ. For such a first order class, it is not hard to see that I(C, κ) ≤ 22κ
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for all infinite κ. In [26], Shelah provides a complete list of structural properties
that captures those first order classes whose spectra fail to attain this maximum
for some uncountable cardinal. It turns out that for these classes there is a useful,
albeit abstract, notion of dimension that can be applied to their models. In the
realm of general algebra a much stronger structural result has been obtained. In
[16], Hart, Starchenko, and Valeriote show that if the spectrum function of a variety
over a countable language (a variety is a class of algebras of the same type defined
by a set of equations) fails to attain the maximum possible value for some infinite
cardinal then the variety decomposes in a strong sense as the product of a variety
of essentially unary multi-sorted algebras and a variety of modules over some ring.

If one is interested in gauging the complexity of a variety by the number of
its finite members then a successful approach has been developed by Berman and
Idziak [2] using the G-spectrum. For a variety V and natural number k, GV(k) is
defined to be the number of at most k-generated members of V, up to isomorphism.
In general this function counts finitely generated members, not finite members, but
if V is locally finite (i.e., all finitely generated members of V are finite), then the
function GV does indeed count finite members and is in addition integer-valued.
Berman and Idziak establish strong connections between the rate of growth of the
G-spectrum of a locally finite variety and structural properties (both local and
global) of its members. In [19] Idziak, McKenzie, and Valeriote show that if V is a
locally finite variety whose G-spectrum is bounded above by a polynomial then a
decomposition similar to that mentioned in the previous paragraph is obtained.

In this paper we develop another approach to counting finite algebras and use
it to define a novel and deeply interesting class of algebras that is closely tied to
some more familiar sorts of algebras and varieties. We also point out the surprising
connection that this class of algebras has to two current topics in computer science:
constraint satisfaction, and learnability. This connection is fully developed in the
companion paper [18]. For the necessary background in general algebra the reader
is referred to [23] or [6] and for an overview of the theory of Maltsev conditions,
Chapter 5 of [14].

Definition 0.1. Let A be a finite algebra and n a positive integer. sA(n) is defined
to be the logarithm, base 2, of the cardinality of the set of subuniverses of An.

We note that for a finite algebra A there are at most 2|A|
n

subuniverses of An

and so sA(n) ≤ |A|n for all n > 0.

Definition 0.2. We say that a finite algebra A has few subpowers iff sA(n) ∈ O(nk)
for some k ∈ N . We say that A has many subpowers if there exists a real number
c > 1 such that cn ∈ O(sA(n)).

Closely related to the function sA are the following two functions.

Definition 0.3. For a finite algebra A and positive integer n,
• gA(n) is defined to be the least integer κ such that every subuniverse of

An has an at most κ-element generating set.
• iA(n) is the least integer κ such that every independent subset of An has

at most κ elements (where X ⊆ An is independent iff no proper subset of
X generates the same subalgebra of An as does X).

The growth rates of sA(n), gA(n), and iA(n) are closely linked (Proposition 1.2);
in particular, if any one of them is bounded above by a polynomial (bounded below
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by an exponential function), then so are the other two. Using this observation, we
can quickly identify two special classes of finite algebras that have few subpowers.
First, it is easy to see that gG(n) ≤ cn where c = log2 |G| whenever G is a finite
group. Thus every finite group has few subpowers, and the same argument holds for
any expansion of a finite group by additional operations. By much more complicated
arguments, and motivated by problems in theoretical computer science, Bulatov and
Dalmau [4] have shown that this result can be extended to any finite algebra which
has a so-called “Maltsev term” (see the comment following Theorem 4.8 for the
definition; A having a Maltsev term is equivalent to every algebra in the variety
HSP(A) generated by A having permuting congruences).

Second, the Baker-Pixley theorem easily implies that sA(n) ≤
(
n
k−1

)
|A|k−1 when-

ever A is a finite algebra having a k-ary “near unanimity term” (for the definition,
see Example 2.2(2); this is a special class of algebras generalizing lattices and
boolean algebras). Thus every finite algebra having a near unanimity term has few
subpowers. Extending these two classes, Dalmau [9] introduced a novel but some-
what ad hoc common generalization of Maltsev term and near unanimity term,
called a gmm term, and showed that any finite algebra having such a term has few
subpowers.

One of the chief results of our paper is the discovery of a simple Maltsev prop-
erty that is a natural generalization of having a Maltsev term and having a near
unanimity term, and is equivalent in finite algebras to having few subpowers (Corol-
lary 3.11). We show that this property implies the fundamentally important prop-
erty that congruence lattices are modular (Theorem 4.9 and Theorem 4.2) and
point out that the converse does not hold (see Section 6). We also show that the
subalgebra functions and their growth rates have surprising connections to other
properties traditionally studied in general algebra. For example, we show that for
a finite algebra A, iA(n) ∈ O(n) iff HSP(A) has permuting congruences; and if
HSP(A) does not have permuting congruences, then iA(n) ∈ Ω(n2) (Theorem 4.9).
Furthermore, HSP(A) is arithmetical (i.e., the congruence lattices of algebras in
HSP(A) are distributive and permutable) iff sA(n) =Θ n log(n); and if HSP(A) is
not arithmetical, then sA(n) ∈ Ω(n2) (Theorem 4.10).

We shall see that the subalgebra functions exhibit sharp dichotomies. Perhaps
the most striking result of this paper is Theorem 3.12, which implies that for a
finite nontrivial algebra A, either iA(n) =Θ nk for some (unique) integer k ≥ 1, or
iA(n) ∈ Ω(cn) for some c > 1, and we show that every possibility is realized by a
2-element algebra.

The paper [18] applies our main results to two areas of computer science: the
constraint satisfaction problem (CSP), and learnability. While the collection of all
constraint satisfaction problems is known to form an NP-complete class, there are
natural subclasses, parametrized by finite algebras, or more generally, constraint
languages, that turn out to be tractable. Feder and Vardi [12] conjecture that any
subclass of the CSP defined by a constraint language is either NP-complete or can
be solved in polynomial time. Determining whether this dichotomy holds is one of
the main objectives in current research on the CSP. Using Corollary 3.11 and the
theory of compact representations that we develop in Section 3 it is shown in [18]
that the CSP and learnability problem classes that arise from finite algebras with
few subpowers can be solved in polynomial time. These results provide support for
the Dichotomy Conjecture and extend earlier work on the CSP and learnability by
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Bulatov, Chen, Dalmau, and Jeavons [3, 4, 7, 8, 9, 10] and also settle conjectures
of Chen and Dalmau. We note that their work anticipates the theory we develop
in Section 3.

In Section 5 of this paper we introduce and study companion functions to the
three subalgebra functions defined earlier. These invariants deal with congruences
and congruence generation and, as we show, their behaviour is closely correlated
with the types of congruence identities that the variety generated by an algebra
satisfies. The final section of the paper presents examples of algebras over the set
{0, 1} to illustrate the types of functions that can arise as one of our six invariants.

1. Basic results

Since we are interested in the rate of growth of functions we introduce some
useful notation.

Definition 1.1. Let N+ = {1, 2, 3, . . .} and suppose f, g : N+ → [0,∞).
• f ∈ O(g) denotes (as usual) that for some positive c, f(n) ≤ cg(n) for all

sufficiently large n ∈ N+.
• f ∈ Ω(g) signifies g ∈ O(f), and f =Θ g signifies that f ∈ O(g) and
g ∈ O(f).

• f ∈ L(g) denotes that for some positive integer `, f(n) ≤ g(`n) for all
sufficiently large n ∈ N+. f =L g signifies that f ∈ L(g) and g ∈ L(f).

It may be easily shown that for a fixed k ∈ N+ we have (i) O(nk) = L(nk), (ii)
nk ∈ O(f) implies nk ∈ L(f) for any function f , and (iii) the converse holds if f is
non-decreasing. Furthermore, for any functions f, g,

(iv) f ∈ L(g) iff L(f) ⊆ L(g);
(v) 2n ∈ L(f) iff cn ∈ O(f) for some real number c > 1, if f is non-decreasing.

The following proposition lists some of the easily established, basic connections
between the three subalgebra functions. Throughout the paper, lg(x) denotes the
logarithm of x, base 2.

Proposition 1.2. For any finite algebra A with |A| > 1, and for any n ∈ N+ we
have:

(0) sA, gA, iA are non-decreasing functions.
(1) gA(n) ≤ iA(n) ≤ sA(n).
(2) c ·n lg(n) ≤ sA(n) ≤ d ·n gA(n) where c is a positive constant and d =

lg(|A|), and n− 1 ≤ iA(n).
(3) sA(n) ≤ |A|n (and sA(n) = iA(n) = gA(n) = |A|n if A has no operations).
(4) If B is any finite algebra in HSP(A) then sB ∈ L(sA), gB ∈ L(gA), and

iB ∈ L(iA).

For statement (2), notice that the number of subuniverses of An is no less than
the nth Bell number B(n) — the number of equivalence relations on n — and
it is known that lg(B(n)) =Θ n lg(n). That n − 1 ≤ iA(n) can be proved by
picking distinct 0, 1 ∈ A, defining u(i) to be the element of An which is equal to 1
at coordinate i and 0 at all other coordinates, and noting that {u(2), . . . , u(n)} is
necessarily an independent subset of An.

Note that it follows from Proposition 1.2(4) that the =L equivalence class of
each function sA, gA, iA is an invariant of the variety generated by A.
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2. Edge term identities and related identities

We begin this section by introducing the Maltsev property that we will later see
characterizes having few subpowers.

Definition 2.1. Suppose V is a variety and k is an integer, k ≥ 2. A term t in
k+ 1 variables is called a k-edge term for V if the following k identities are true in
V:

t(y, y, x, x, x, . . . , x) ≈ x

t(y, x, y, x, x, . . . , x) ≈ x

t(x, x, x, y, x, . . . , x) ≈ x

t(x, x, x, x, y, . . . , x) ≈ x

...
t(x, x, x, x, x, . . . , y) ≈ x.

A term is a k-edge term for an algebra A iff it is a k-edge term for the variety
V(A) = HSP(A) generated by A.

Examples 2.2. (1) A 2-edge term for a variety is a term t(x, y, z) satisfying
t(y, y, x) ≈ x and t(y, x, y) ≈ x. Modulo interchanging the first and second
variables, these are the identities that define a Maltsev term. Hence every
variety (or algebra) with a Maltsev term has a 2-edge term and vice versa.

(2) For k ≥ 3, a k-ary term m(x1, . . . , xk) is a near unanimity term for a variety
V if for each i = 1, 2, . . . , k, we have

V |= m(x, x, . . . , x, y, x, . . . , x) ≈ x
↑
i

If k ≥ 3 and m(x1, . . . , xk) is a k-ary near unanimity term for V, then
t(x1, x2, . . . , xk+1) := m(x2, . . . , xk+1) is a k-edge term for V. Hence every
variety (or algebra) having a k-ary near unanimity term has a k-edge term.

We see from the above examples that having a k-edge term (for some k ≥ 2)
simultaneously generalizes having a Maltsev term and having a near unanimity
term. As noted in the Introduction, these two examples also happen to be classes
of finite algebras previously known to have few subpowers.

Proposition 2.3. Suppose A is a finite algebra.
(1) If A has a Maltsev term, then gA(n) ∈ O(n).
(2) If A has a k-ary near unanimity term, then sA(n) ∈ O(nk−1).

Proof. (1) follows from Lemma 3.1 of [4], while (2) follows from Theorem 2.1 of [1].
•

Maltsev terms, near unanimity terms, and k-edge terms are special cases of a
more general class of terms we call ∆-special cube terms. Before defining them, we
describe one further special case. For the remainder of this section,

• V is a fixed nontrivial variety,
• k is a fixed integer, k ≥ 2,
• F is the free algebra in V freely generated by two distinct elements x, y.
• [k] = {1, 2, . . . , k}.
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• Ωk is the set of all non-void subsets of [k].

Definition 2.4. For S ⊆ [k], let CS : [k] → {x, y} be the function defined by
CS(i) = y ↔ i ∈ S for all i ∈ [k]. We regard CS as an element of F k.

Definition 2.5. Suppose t(x) is a term in the language of V having 2k−1 variables
x = 〈xS〉S∈Ωk

indexed by Ωk. We say that t is a k-dimensional cube term (or a
k-cube term) for V iff

(†) tF
k

(〈CS〉S∈Ωk
) = C∅.

Clearly the equation (†) can be reformulated in terms of the satisfaction of
some identities in V, by evaluating (†) at each coordinate i ∈ [k] and applying the
universal properties of F in V. For i ∈ [k] and S ∈ Ωk set viS = CS(i) ∈ {x, y}, and
let εit denote the identity

t(〈viS〉S∈Ωk
) ≈ x.

Then the term t(x) is a k-cube term for V iff each of the identities ε1t , . . . , ε
k
t is valid

in V. These identities are rather unwieldy; nonetheless, it may be instructive to
display the k-cube identities for small values of k. To do this, we need to choose a
linear ordering of Ωk; we adopt the convention that S1 precedes S2 iff CS1 precedes
CS2 lexicographically. Thus when k = 2, the definition of a 2-cube term requires
that tF

2
(C{2}, C{1}, C{1,2}) = C∅, i.e., that tF

2
((x, y), (y, x), (y, y)) = (x, x), which

is equivalent to the satisfaction in V of the identities

ε1t : t(x, y, y) ≈ x

ε2t : t(y, x, y) ≈ x.

Thus a 2-cube term is just a 2-edge term (modulo switching its first and third
variables) and hence is a Maltsev term (modulo switching its second and third
variables). Similarly, a 3-cube term for V is a term t in seven variables satisfying
tF

3
(C{3}, C{2}, C{2,3}, C{1}, C{1,3}, C{1,2}, C{1,2,3}) = C∅, i.e.,

tF
3
((x, x, y), (x, y, x), (x, y, y), (y, x, x), (y, x, y), (y, y, x), (y, y, y)) = (x, x, x),

which is equivalent to the satisfaction in V of the identities

ε1t : t(x, x, x, y, y, y, y) ≈ x

ε2t : t(x, y, y, x, x, y, y) ≈ x

ε3t : t(y, x, y, x, y, x, y) ≈ x.

And a 4-cube term for V is a term t in 15 variables satisfying the identities

ε1t : t(x, x, x, x, x, x, x, y, y, y, y, y, y, y, y) ≈ x

ε2t : t(x, x, x, y, y, y, y, x, x, x, x, y, y, y, y) ≈ x

ε3t : t(x, y, y, x, x, y, y, x, x, y, y, x, x, y, y) ≈ x

ε4t : t(y, x, y, x, y, x, y, x, y, x, y, x, y, x, y) ≈ x.

Proposition 2.6. Assume that V is 2-finite (i.e., F = FV(2) is finite) and k ≥ 2.

(1) If iF(k) < 2k, then V has a k-cube term.
(2) If there exists m ≥ k such that iF(m) <

(
m
k

)
, then V has a k-cube term.
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Proof. The subset X = {CS : S ⊆ [k]} of Fk has size 2k. Hence if iF(k) < 2k,
then X is too large to be independent, so there exists S0 ⊆ [k] such that CS0 ∈
SgFk

({CS : S ⊆ [k], S 6= S0}). Since Aut(Fk) acts transitively on {CS : S ⊆ [k]},
we can assume that S0 = ∅. Hence

C∅ ∈ SgFk

({CS : S ∈ Ωk}),

which implies V has a k-cube term, proving item (1).
To prove (2), we modify the above argument. Assume m ≥ k and iF(m) <

(
m
k

)
.

Let Φ be the set of all k-element subsets of [m], and for each T ∈ Φ define DT ∈
{x, y}m by DT (i) = x iff i ∈ T . The set {DT : T ∈ Φ} is a subset of Fm of size(
m
k

)
, so by assumption it cannot be independent. Hence there exists T0 ∈ Φ such

that
DT0 ∈ SgFm

({DT : T ∈ Φ, T 6= T0}).
Under any identification of T0 with [k], the projection projT0

: Fm → FT0 sends
DT0 to C∅ and {DT : T ∈ Φ, T 6= T0} to {CS : S ∈ Ωk}. Hence

C∅ ∈ SgFk

({CS : S ∈ Ωk}),

which again implies that V has a k-cube term. •

We now define the general notion of ∆-special cube term for a variety.

Definition 2.7. Recall that k ≥ 2 and Ωk is the set of all non-void subsets of [k].
(1) Suppose ∆ is a nonempty subset of Ωk, and t(x) is a term whose variables

are indexed by ∆. We say that t is a ∆-special cube term for V iff

tF
k

(〈CS〉S∈∆) = C∅.

(2) Define ∆? = {S ⊆ [k] : |S| = 1 or S = {1, i} for some 2 ≤ i ≤ k}.
(3) Define ∆e = {{1, 2}, {1}, {2}, {3}, {4}, . . . , {k}}.

Observe that ∆e ⊆ ∆? ⊆ Ωk (with equalities iff k = 2), and that a k-cube term
is a ∆-special cube term where ∆ = Ωk. Just as was the case for k-cube terms,
the notion of a ∆-special cube term can be reformulated in terms of k identities
satisfied in V. In particular, using the ordering of ∆e implicit in its definition, a
term t in k + 1 variables is a ∆e-special cube term iff it satisfies

tF
k

(C{1,2}, C{1}, C{2}, C{3}, C{4}, . . . , C{k}) = C∅,

which is precisely equivalent to V satisfying the k-edge identities in Definition 2.1.
In other words, a k-edge term is just a ∆e-special cube term. (This explains our
name for k-edge terms: the set ∆e consists of the singletons and one edge {1, 2}.)
Note also that a k-ary near unanimity term (for k ≥ 3) is a ∆nu-special cube term
where ∆nu = {{1}, {2}, . . . , {k}}.

In general, given ∅ 6= ∆ ⊆ Ωk, let M∆ denote the (k ×∆) matrix whose (i, S)-
entry (i ∈ [k], S ∈ ∆) is

viS = CS(i) =
{
y if i ∈ S
x otherwise.

Thus the Sth column of M∆ is CS , S ∈ ∆. For 1 ≤ i ≤ k let R∆(i) = 〈viS〉S∈∆

denote the ith row of M∆. Then a term t is a ∆-special cube term for V iff its
variables are indexed by ∆ and V |= t(R∆(i)) ≈ x for all 1 ≤ i ≤ k.
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Obviously if ∅ 6= ∆ ⊆ Γ ⊆ Ωk and V has a ∆-special cube term, then V has
a Γ-special cube term. Our next goal is to prove the converse implication under
suitable hypotheses. If ∅ 6= Γ ⊆ Ωk, we say that Γ is an order ideal of (Ωk,⊆) iff
∅ 6= T ⊆ S ∈ Γ implies T ∈ Γ.

Lemma 2.8. Suppose Γ is an order ideal of (Ωk,⊆) and ∆? ⊆ Γ. Fix 2 ≤ ` ≤ k
and define

Γ` = {S ∈ Γ : ` 6∈ S} ∪∆?.

If V has a Γ-special cube term, then V has a Γ`-special cube term.

Proof. We may assume with no loss of generality that ` = 2. We first introduce
some notation. If a, b ∈ F then we use ηa,b to denote the endomorphism of F which
sends x 7→ a and y 7→ b. We let ηa,b act on powers of F in the natural way. We
also write udual for ηy,x(u), and ua/y for ηx,a(u). Let x̂ and ŷ respectively denote
the constant x-valued and y-valued members of FΓ.

Now let t be a Γ-special cube term for V. Thus the variables of t are indexed by Γ
and V satisfies the identities t(RΓ(i)) ≈ x, 1 ≤ i ≤ k, where RΓ(i) = 〈CS(i)〉S∈Γ ∈
{x, y}Γ. Hence for each i ∈ [k]:

(1) tF(RΓ(i)) = x.
(2) tF(RΓ(i)dual) = y.
(3) tF(x̂) = x.
(4) tF(ŷ) = y.
(5) tF(RΓ(i)a/y) = x for any a ∈ F .

Let G = {CS : S ∈ Γ2} and B = SgFk

(G). We will be done if we can prove
C∅ ∈ B. First, define δ = 〈δS〉S∈Γ ∈ {x, y}Γ by

δS =
{
y if S = {2}
x otherwise

and define a = tF(δ) ∈ F . Next, for T ⊆ [k] define C◦
T ∈ F k as follows:

C◦
T (i) =

{
a if i = 2 ∈ T

CT (i) otherwise.

Claim 2.9. If T ∈ Γ, then C◦
T ∈ B.

The claim is proved via cases.

Case 1. 2 6∈ T . Then T ∈ Γ2 and hence C◦
T = CT ∈ G ⊆ B.

Case 2. 2 ∈ T 6= {2}. In this case we let M denote the (k×Γ) matrix whose rows
M(1), . . . ,M(k) are given as follows:

M(1) =
{

ŷ if 1 ∈ T
RΓ(2) otherwise

M(2) = δ

M(i) =
{
RΓ(2)dual if i ∈ T

x̂ otherwise , 3 ≤ i ≤ k.

Observe that tF(M(2)) = a while tF(M(i)) = CT (i) for i ∈ [k] \ {2}. Thus if MS

denotes the Sth column of M , then we have shown tF
k

(〈MS〉S∈Γ) = C◦
T . Hence we



VARIETIES WITH FEW SUBALGEBRAS OF POWERS 9

will have proved the claim in Case 2 if we can show that each column of M is in
B. One can check that for S ∈ Γ,

MS =

 CT\{2} if 2 6∈ S
C{1} if 2 ∈ S 6= {2}
C{1,2} if S = {2}.

As the hypotheses imply each of T \ {2}, {1}, {1, 2} ∈ Γ2, it follows that MS ∈ G ⊆
B for all S ∈ Γ, completing Case 2.

Case 3. T = {2}. Let N be the (k × Γ) matrix whose rows N(1), . . . , N(k) are
given by N(2) = δ and N(i) = RΓ(i) for i 6= 2. By the same logic as in Case 2, it
suffices to show that each column of N is in B. In fact,

NS =

 CS if 2 6∈ S
CS\{2} if 2 ∈ S 6= {2}
C{2} if S = {2},

which is in G ⊆ B in every case. This completes Case 3 and hence proves Claim 2.9.

Now let C◦ be the (k × Γ) matrix whose Sth column is C◦
S (S ∈ Γ). If C◦(i)

denotes the ith row of C◦, then clearly C◦(2) = RΓ(2)a/y while C◦(i) = RΓ(i) for
i 6= 2. Thus C∅ = tF

k

(〈C◦
S〉S∈Γ) ∈ B by Claim 2.9, proving that V has a Γ2-special

cube term. •

Lemma 2.10. If V has a ∆?-special cube term, then V has a k-edge term.

Proof. Let t be a ∆?-special cube term for V. We argue as in the first two paragraphs
of the proof of Lemma 2.8, using Γ = ∆?. Thus we have for each i ∈ [k]:

(1) tF(R∆?(i)) = x.
(2) tF(R∆?(i)b/y) = x for any b ∈ F .

Let G = {CS : S ∈ ∆e} and B = SgFk

(G). We will be done if we can prove
C∅ ∈ B. First, define ε = 〈εS〉S∈Γ by

εS =
{
y if S = {1}
x otherwise

and define b = tF(ε). Next, for T ⊆ [k] define C�
T ∈ F k by

C�
T (i) =

{
b if i = 1 ∈ T

CT (i) otherwise.

Claim 2.11. If T ∈ ∆?, then C�
T ∈ B.

The claim is proved via cases.

Case 1. 1 6∈ T . Then T ∈ ∆e and hence C�
T = CT ∈ G ⊆ B.

Case 2. T = {1, i}, i ≥ 3. In this case we let M denote the (k×∆?) matrix whose
rows M(1), . . . ,M(k) are given as follows:

M(1) = ε

M(2) = R∆?(1)

M(i) = R∆?(1)dual

M(j) = x̂, for j ∈ [k] \ {1, 2, i}.
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Observe that tF(M(1)) = b while tF(M(j)) = CT (j) for j ≥ 2. Thus if MS denotes
the Sth column of M , then we have shown tF

k

(〈MS〉S∈∆?) = C�
T . Hence we will

have proved the claim in Case 2 if we can show that each column of M is in B.
One can check that for S ∈ ∆?,

MS =

 C{i} if 1 6∈ S
C{2} if 1 ∈ S 6= {1}
C{1,2} if S = {1}.

As each of {i}, {2}, {1, 2} ∈ ∆e, it follows that MS ∈ G ⊆ B for all S ∈ ∆?,
completing Case 2.

Case 3. T = {1, 2}. Let N be the (k × Γ) matrix whose rows N(1), . . . , N(k) are
given byN(1) = ε, N(2) = ŷ, andN(i) = x̂ for i ≥ 3. Clearly tF

k

(〈NS〉S∈∆?) = C�
T ,

and each column of N is either C{2} or C{1,2}, both of which are in G ⊆ B as
required.

Case 4. T = {1}. Let P be the (k × Γ) matrix whose rows P (1), . . . , P (k) are
given by P (1) = ε, and P (i) = R∆?(i) for i 6= 1. Then for S ∈ ∆?,

PS =
{

CS if |S| = 1
CS\{1} otherwise,

which is in G ⊆ B in either case. This completes Case 4 and hence proves
Claim 2.11.

Now let C� be the (k ×∆?) matrix whose Sth column is C�
S (S ∈ ∆?). If C�(i)

denotes the ith row of C�, then clearly C�(1) = R∆?(1)b/y while C�(i) = R∆?(i) for
i > 1. Thus C∅ = tF

k

(〈C�
S〉S∈∆?) ∈ B by Claim 2.11, proving that V has a k-edge

term. •

Theorem 2.12. For k ≥ 2 and a variety V, the following are equivalent :

(1) V has a ∆-special cube term for some ∅ 6= ∆ ⊆ Ωk;
(2) V has a k-cube term;
(3) V has a k-edge term.

Proof. (3) ⇒ (1) is trivially true, and (1) ⇒ (2) follows from comments preceding
Lemma 2.8, so assume that V has a k-cube term t. Then consecutive applications
of Lemma 2.8 with ` = 2, 3, . . . , k give the existence of a ∆?-special cube term.
Lemma 2.10 then gives a k-edge term, proving (2) ⇒ (3). •

Using the equivalence of (2) and (3) in Theorem 2.12, Kearnes and Szendrei
[21] have recently shown that every variety having a k-edge term also has what
they call an (m,n)-parallelogram term for all m,n ≥ 1 with m + n = k. An
(m,n)-parallelogram term is a (k + 3)-ary term Pm,n that satisfies the k equations
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corresponding to each row of the following equality:

Pm,n



y y x y x · · · x x · · · x x
y y x x y x x x x

...
...

. . .
...

y y x x x y x x x
x y y x x x y x x

...
...

. . .
...

x y y x x x x y x
x y y x x x x x y


=



x
x
...
x
x
...
x
x


,

where the rightmost block of variables is a k × k array and the upper and lower
leftmost blocks are m × 3 and n × 3 arrays, respectively. Observe that P is a
∆-special cube term P where

∆ = {[m], {m+ 1, . . . , k}, [k], {1}, {2}, . . . , {k}}.

Kearnes and Szendrei use these terms in their study of critical relations in relational
clones. The reader is referred to [21] for further details.

In case V is finitely generated, we can deduce one further consequence from the
existence of a cube term. We will use this result in the next section.

Lemma 2.13. Let A be a finite algebra with a k-edge term t. Then A also has
terms d(x, y), p(x, y, z) and s(x1, x2, . . . , xk) satisfying

p(x, y, y) ≈ x

s(y, x, x, x, . . . , x, x) ≈ p(x, x, y)
s(x, y, x, x, . . . , x, x) ≈ x

s(x, x, y, x, . . . , x, x) ≈ x

...
s(x, x, x, x, . . . , x, y) ≈ x

d(x, y) ≈ p(x, x, y)
d(x, d(x, y)) ≈ d(x, y).

Note the similarity between the above identities (ignoring those involving d) and
those that Gumm terms satisfy. Just as Gumm terms can be thought of as “gluing
a Maltsev term to Jónsson terms,” so the above identities can be thought of as
“gluing a Maltsev term to a near-unanimity term.”

Proof. Define

r(x, y, z3, . . . , zk) = t(y, x, y, z3, . . . , zk)
e(x, y) = r(x, y, y, y, . . . , y).

For each n ≥ 0 we define the nth iterate of r in its first variable in the usual way:

r0(1)(x, y; z) = x

rn+1
(1) (x, y; z) = r(rn(1)(x, y; z), y; z).
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The iterates en(1)(x, y) of e are defined similarly. One can show inductively that for
all n ≥ 0,

A |= rn(1)(x, y, y, y, . . . , y, y) ≈ en(1)(x, y)

A |= rn(1)(y, x, y, y, . . . , y, y) ≈ y

A |= rn(1)(y, y, x, y, . . . , y, y) ≈ y

...
A |= rn(1)(y, y, y, y, . . . , y, x) ≈ y.

Because A is finite, we can use [17, Lemma 4.4] to get an integer N > 1 such
that

rN(1)(x, y, z) = r2N(1) (x, y, z) = rN(1)(r
N
(1)(x, y, z), y, z)

for all x, y, zi ∈ A.
Define

s(x1, x2, . . . , xk) = rN(1)(x1, x2, x3, . . . , xk)

d(x, y) = eN(1)(y, x)

p(x, y, z) = t(y, eN−1
(1) (z, y), x, x, x, . . . x).

The identities required for s then follow from the identities for rn(1) displayed
above. We check the remaining identities:

p(x, y, y) ≈ t(y, eN−1
(1) (y, y), x, x, x, . . . , x) ≈ t(y, y, x, x, x, . . . , x) ≈ x

p(x, x, y) ≈ t(x, eN−1
(1) (y, x), x, x, x, . . . , x) ≈ e(eN−1

(1) (y, x), x) ≈ d(x, y)

d(x, d(x, y)) ≈ eN(1)(e
N
(1)(y, x), x) ≈ eN(1)(y, x) ≈ d(x, y).

This completes the proof of Lemma 2.13 •

3. Compact representations of subpowers

In this section we prove that a finite algebra has few subpowers if and only if
it has a k-edge term for some k ≥ 2. Much of the work has already been done;
what remains to be shown is that A has few subpowers under the assumption that
it has a k-edge term. Our main tools are the notion of a compact representation
of an arbitrary subpower of A and the related notion of quasi-representation of an
arbitrary subset of An. Our presentation closely follows the paper [4] of Bulatov
and Dalmau, which proved the existence of compact representations in the Maltsev
case (equivalently, the case of a 2-edge term), and is indebted to Dalmau’s paper [9]
which did the same for algebras having a so-called “generalized majority-minority
operation” (see the definition preceding Theorem 4.7). The following generalizes a
key definition from [9].

Definition 3.1. Suppose A is a finite algebra with k-edge term t and terms d, p, s
as in Lemma 2.13. A pair (a, b) ∈ A2 is a minority pair if d(a, b) = b.

Note that if A is a finite algebra with a k-edge term, then (a, c) is a minority
pair whenever a, b ∈ A and c = d(a, b).

By an index (of rank n) we mean a triple (i, a, b) where 1 ≤ i ≤ n and a, b ∈ A.
It is said to be a minority index if (a, b) is a minority pair. If R,S ⊆ An, we say
that (i, a, b) is witnessed in R× S if there exist f ∈ R and g ∈ S satisfying
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• f(j) = g(j) for all j < i.
• f(i) = a and g(i) = b.

In this case we call f, g witnesses to (i, a, b). We say that (i, a, b) is witnessed in R
if (i, a, b) is witnessed in R×R.

Definition 3.2. Let A be a finite algebra with k-edge term t and terms d, p, s as
in Lemma 2.13, and suppose R,S ⊆ An.

(1) The signature of R is the set SigR of all minority indices (i, a, b) witnessed
in R.

(2) We say that R is a representation of S if
• R ⊆ S,
• for all T ⊆ {1, 2, . . . , n} with |T | < k, πT (R) = πT (S), and
• SigR = SigS .

(3) R is compact if |R| ≤ 2|SigR|+
∑

|T |=m |πT (R)| where m = min(k − 1, n),
and is weakly compact if n < k or |R| ≤ 2n|A|2 +

(
n
k−1

)
|A|k−1.

So, if A is a finite algebra with a k-edge term, then each of its subpowers has
a representation and, clearly, (i) every subset of An has a compact representation,
(ii) compact subsets of An are weakly compact, and (iii) weakly compact subsets
of An are bounded in size by a polynomial in n of degree k − 1. We will show
that if B ≤ An and R is a representation of B, then SgAn(R) = B, thus proving
that gA ∈ O(nk−1) (and hence sA, iA ∈ O(nk)). We will also define the more
complicated notion of a quasi-representation, prove that every subset S ⊆ An has a
weakly compact quasi-representation, and prove that if R is a quasi-representation
of S ⊆ An, then SgAn(R) = SgAn(S). This will prove the sharper result that
iA ∈ O(nk−1).

Definition 3.3. Let A be a finite algebra with k-edge term t and terms d, p, s as
in Lemma 2.13, and suppose R,S ⊆ An. We say that R is a quasi-representation
of S if R ⊆ S and there exist subsets R1 ⊆ R2 ⊆ · · · ⊆ Rn = R such that:

• For all T ⊆ {1, 2, . . . , n} with |T | < k, πT (R1) = πT (S);
• For 2 ≤ i ≤ n, if the index (i, a, b) is witnessed in S × SgAn(Ri−1), then

(i, a, c) is witnessed in SgAn(Ri), where c := d(a, b).

Lemma 3.4. Let A be a finite algebra with k-edge term.
(1) Every S ⊆ An has a weakly compact quasi-representation.
(2) If B ≤ An, then every representation of B is a quasi-representation of B.

Proof. (1) Assume S ⊆ An. If n < k then S is a weakly compact quasi-representation
of itself and we are done. If n ≥ k, choose R1 ⊆ S with |R1| minimal so that
πT (R1) = πT (S) for all T ⊆ {1, 2, . . . , n} with |T | < k. Then |R1| ≤

(
n
k−1

)
|A|k−1.

For 2 ≤ i ≤ n, if Ri−1 ⊆ S has been defined, let

Si = {(a, c) ∈ A2 : (i, a, c) is not witnessed in Ri−1 × SgAn(Ri−1), but ∃b ∈ A
such that c = d(a, b) and (i, a, b) is witnessed in S × SgAn(Ri−1)}.

For each (a, c) ∈ Si, choose (fa,c, ga,c) ∈ S × SgAn(Ri−1) witnessing (i, a, b) for
some b ∈ A satisfying c = d(a, b). Now define

Ri = Ri−1 ∪ {fa,c : (a, c) ∈ Si}.
Finally let R = Rn. Clearly |R| ≤ (n− 1)|A|2 + |R1| so R is weakly compact. We
turn to showing that R is a quasi-representation of S via the sets R1, R2, . . . , Rn.
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Clearly R1 satisfies the first condition of the definition. Suppose (i, a, b) is an index
witnessed in S × SgAn(Ri−1) for some 2 ≤ i ≤ n, and let c = d(a, b). If (i, a, c)
is witnessed in Ri−1 × SgAn(Ri−1), then it is certainly witnessed in SgAn(Ri) as
well, since Ri−1 ⊆ Ri. On the other hand, if (i, a, c) is not witnessed in Ri−1 ×
SgAn(Ri−1), then (a, c) ∈ Si. It follows that (i, a, c) is witnessed in SgAn(Ri) by
fa,c, h where h := d(fa,c, ga,c), as required.

(2) Assume B ≤ An and R is a representation of B. Define R∗ = SgAn(R) ⊆ B
and R1 = R2 = · · · = Rn = R and check the definition of quasi-representation.
What must be shown is that if 2 ≤ i ≤ n and (i, a, b) is witnessed in B ×R∗, then
(i, a, c) is witnessed in R∗ where c = d(a, b). Choose (f, g) ∈ B × R∗ witnessing
(i, a, b), and let h = d(f, g). Note that (a, c) is a minority pair and f, h witness
(i, a, c) in B, so (i, a, c) ∈ SigB . Since R is a representation of B we have SigR =
SigB , so (i, a, c) is witnessed in R ⊆ R∗ as required. •

Lemma 3.5. Let A be a finite algebra with k-edge term t and terms d, p, s as in
Lemma 2.13. Suppose B ≤ An and (i, a, c) is a minority index witnessed in B.
Then for all f ∈ B with f(i) = a, there exists g ∈ B such that f, g witness (i, a, c).

Proof. Choose f∗, g∗ ∈ B witnessing (i, a, c). Define g = p(f, f∗, g∗) ∈ B. Because
A |= p(x, y, y) ≈ x we have f(j) = g(j) for all j < i. And at coordinate i,

g(i) = p(a, a, c) = d(a, c) = c

where the last equality holds because (a, c) is minority. •

Theorem 3.6. Suppose A is a finite algebra with k-edge term t and terms d, p, s
as in Lemma 2.13. If R is a quasi-representation of S ⊆ An, then SgAn(R) =
SgAn(S).

Proof. We may assume n ≥ k, since otherwise R = S. Let R∗ = SgAn(R) and
let h = (a1, a2, . . . , an) ∈ S be fixed for the remainder of the proof. We wish
to show that h ∈ R∗. Choose sets R1, . . . , Rn = R satisfying the definition of
quasi-representation. The proof will be completed by showing the following claim.

Claim 3.7. For all 1 ≤ m ≤ n there exists fm ∈ SgAn(Rm) with fm(j) = aj for
all 1 ≤ j ≤ m.

We prove the claim by induction onm. Whenm ≤ k−1, the claim is true because
R1 ⊆ Rk−1 and πT (R1) = πT (S) where T = {1, 2, . . . ,m}. So assume that m ≥ k
and we have already established the existence of fm−1 ∈ SgAn(Rm−1) satisfying
the stated condition. Let a = am, b = fm−1(m), and c = d(a, b). Then h, fm−1

witness (m,a, b) in S × SgAn(Rm−1), so by the definition of quasi-representation,
(m,a, c) is witnessed in SgAn(Rm). For the remainder of the proof of this claim,
let R∗

m = SgAn(Rm).
The existence of fm ∈ R∗

m will follow from the next subclaim.

Claim 3.8. For all T ⊆ {1, 2, . . . ,m−1} there exists fTm ∈ R∗
m such that fTm(j) = aj

for all j ∈ T and fTm(m) = a.

We prove the subclaim by induction on |T |, starting with |T | ≤ k − 2, where
the subclaim is true because R1 represents all projections of h ∈ S onto k − 1
coordinates. Inductively, assume that |T | ≥ k − 1 and the subclaim has been
established for all T ′ with |T ′| < |T |. List the elements of T as i1 < i2 < · · · < i|T |.
For 1 ≤ j ≤ k − 1 let Uj = T \ {ij} and note that inductively we have fUj

m ∈ R∗
m.
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Define

g′ = s(fm−1, f
U1
m , fU2

m , . . . , fUk−1
m ) ∈ R∗

m.

The identities for s imply that g′(j) = aj for j ∈ T , and that

g′(m) = s(b, a, a, . . . , a) = d(a, b) = c.

If a = c then we may set fTm = g′. If not, then since (i) (a, c) is a minority pair,
(ii) (m,a, c) is witnessed in R∗

m, (iii) fU1
m ∈ R∗

m, and (iv) fU1
m (m) = a, we may use

Lemma 3.5 to obtain g ∈ R∗
m such that fU1

m , g witness (m,a, c). Finally, put

fTm = t(g, g′, fU1
m , fU2

m , . . . , fUk−1
m ) ∈ R∗

m.

The k-edge identities for t imply that fTm has the required properties. •

The following Corollary supplies a proof promised in [18, Theorem 3.9]. Dalmau
[9] previously proved a version of it for finite algebras having a generalized majority-
minority operation (see the definition preceding Theorem 4.7); these include all
finite algebras having either a near-unanimity term or a Maltsev term.

Corollary 3.9. Let A be a finite algebra with a k-edge term. If B ≤ An and R is
a representation of B, then SgAn(R) = B.

Proof. By Lemma 3.4(2) and Theorem 3.6. •

We can now state our results characterizing finite algebras with few subpowers.

Theorem 3.10. Let A be a finite algebra and k ≥ 2. The following are equivalent :
(1) A has a k-cube term.
(2) A has a k-edge term.
(3) iA(n) ∈ O(nk−1).
(4) nk 6∈ O(iA(n)).

Proof. (1) ⇔ (2) holds by Theorem 2.12, while (2) ⇒ (3) follows from Lemma 3.4(1)
and Theorem 3.6 and the observation that weakly compact subsets of An are of
size O(nk−1). (3) ⇒ (4) is clear. Finally, assume (4); then nk 6∈ L(iA(n)) by
Proposition 1.2(0) and comment (iii) preceding it. Let F = FV(A)(2) be the free
algebra in V(A) on two generators. Then L(iF(n)) ⊆ L(iA(n)) by Proposition 1.2(4)
and comment (iv) that precedes it, so nk 6∈ L(iF(n)) as well. Thus for every ` ∈ N+

there exist arbitrarily large n ∈ N+ such that iF(`n) < nk. In particular, there
exists n ∈ N+ with iF(kn) < nk. Since nk ≤

(
kn
k

)
, we get that V(A) has a k-cube

term by Proposition 2.6, proving (4) ⇒ (1). •

Corollary 3.11. A finite algebra A has few subpowers iff it has a k-edge term for
some k ≥ 2.

Proof. If A has a k-edge term, then Theorem 3.10 yields iA(n) ∈ O(nk−1) and
hence sA(n) ∈ O(nk) by Proposition 1.2(2), proving that A has few subpowers.
Conversely, if sA(n) ∈ O(nk), then Proposition 1.2(1) yields iA(n) ∈ O(nk) and so
A has a (k + 1)-edge term by Theorem 3.10. •

Note that the only direct use of the k-edge term t in the proof of Corollary 3.11
occurs in the penultimate sentence of the proof of Theorem 3.6. Therefore, one
can ask whether or not the presence of terms p and s that satisfy the conditions of
Lemma 2.13 would be enough to establish that A has few subpowers. Unfortunately,
the 2 element implication algebra has such terms but fails to have few subpowers
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by Theorem 4.4. In fact any finite algebra in CD(3)1 has ternary terms s and p
that satisfy the conditions of Lemma 2.13.

We can sharpen Theorem 3.10 to obtain the following “stratification result”
concerning the asymptotic growth of iA(n).

Theorem 3.12. Let A be a finite algebra with more than one element. Then either
(1) or (2) below holds for A:

(1) iA(n) =L n
k for a (unique) positive integer k, in which case

• iA(n) =Θ nk,
• gA(n) ∈ Ω(nk−1) ∩O(nk),
• sA(n) ∈ Ω(nk) ∩O(nk+1),
• A has an `-edge term for all ` > k but for no ` ≤ k, and
• A has few subpowers.

(2) iA(n) =L 2n, in which case
• sA(n) =L gA(n) =L 2n,
• A has no k-edge term for any k ≥ 2, and
• A has many subpowers.

Proof. Suppose that A has few subpowers. Then A has a k-edge term and nk 6∈
O(iA(n)) for some k ≥ 2, by Corollary 3.11 and Theorem 3.10. Let k be the least
positive integer such that nk 6∈ O(iA(n)). Then k ≥ 2 by Proposition 1.2(2). By
Theorem 3.10, A has an `-edge term for all ` ≥ k, and iA(n) ∈ O(nk−1). By the
choice of k, we also have nk−1 ∈ O(iA(n)), so iA(n) =Θ nk−1. The remaining items
in (1) follow from Proposition 1.2 and comments preceding it.

Suppose that it is not the case that A has few subpowers. Then A has no k-
edge term for any k, by Corollary 3.11. Let F be the free algebra in V(A) on two
generators. As any k-edge term for F is also a k-edge term for A, it follows that
F has no k-edge term for any k. Hence by Proposition 2.6(1) and Theorem 3.10,
2k ≤ iF(k) for all k ≥ 2, and so by Proposition 1.2,

2n ∈ L(iF(n)) ⊆ L(iA(n)) ⊆ L(sA(n)).

By Proposition 1.2(2) and comment (v) preceding it, we also get 2n ∈ L(gA(n)).
On the other hand, if ` = dlg |A|e then

gA(n) ≤ iA(n) ≤ sA(n) ≤ 2`n for all n ∈ N

by Proposition 1.2(3), proving gA(n), iA(n), sA(n) ∈ L(2n). Finally, since 2n ∈
L(sA(n)) and sA(n) is a non-decreasing function, comment (v) preceding Proposi-
tion 1.2 implies that A has many subpowers. •

4. Connections with other Maltsev Conditions

In this section we explore the connections between some familiar Maltsev condi-
tions and the Maltsev condition of having few subpowers. Our first result demon-
strates that having few subpowers implies congruence modularity. We prove this
by establishing that any algebra that has a k-edge term also has Day terms. In
Section 5 we provide another proof of congruence modularity using the modular
commutator.

1An algebra is in CD(3) if it has Jónsson terms p0, p1, p2, p3 satisfying the identities in Theo-
rem 4.3 with n = 3.
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Theorem 4.1 ([11]). A variety V is congruence modular if and only if for some n
there are terms m0(x, y, z, u), . . . , mn(x, y, z, u) such that V satisfies

m0(x, y, z, u) ≈ x

mn(x, y, z, u) ≈ u

mi(x, y, y, x) ≈ x, for all i ≤ n

mi(x, x, y, y) ≈ mi+1(x, x, y, y), for all even i < n

mi(x, y, y, z) ≈ mi+1(x, y, y, z), for all odd i < n.

Terms that satisfy the above equations are called Day terms.

Theorem 4.2. If a variety V has a k-edge term for some k ≥ 2 then it has Day
terms and so is congruence modular.

Proof. Suppose that t(x1, . . . , xk+1) is a k-edge term for V. Define the terms
mi(x, y, z, u) for 0 ≤ i ≤ 2k − 2 by:

m0(x, y, z, u) = x

m1(x, y, z, u) = t(z, u, y, x, x, . . . , x)
m2(x, y, z, u) = t(z, u, z, x, x, . . . , x)
m3(x, y, z, u) = t(u, u, u, y, x, . . . , x)
m4(x, y, z, u) = t(u, u, u, z, x, . . . , x)

...
m2k−3(x, y, z, u) = t(u, u, u, u, . . . , u, y)
m2k−2(x, y, z, u) = t(u, u, u, u, . . . , u, z)

For 2 ≤ i ≤ k − 1, the terms m2i−1 and m2i are obtained by substituting y and z
for xi+2 in t(u, u, . . . , xi+2, x, . . . , x), respectively. Using the definition of a k-edge
term it is straightforward to verify that the mi are Day terms for V. •

We note that if A is finite and has a k-edge term then using the terms provided
by Lemma 2.13, Gumm terms [13] for A can be constructed in a manner similar to
that employed in the proof of the previous theorem.

We now investigate an intriguing connection between k-edge terms and congru-
ence distributivity. As noted earlier, a near-unanimity term is a special type of
k-edge term and it is well known that any algebra that possesses a near-unanimity
term generates a congruence distributive variety. We prove that conversely, any
algebra that generates a congruence distributive variety and that has a k-edge term
must have a (k-ary) near-unanimity term. A conceptually different proof of this
fact can be found in [22].

Theorem 4.3 (Jónsson). A variety is congruence distributive if and only if for
some n it has terms pi(x, y, z), 0 ≤ i ≤ n that satisfy the equations

p0(x, y, z) ≈ x

pn(x, y, z) ≈ z

pi(x, y, x) ≈ x for all i
pi(x, x, y) ≈ pi+1(x, x, y) for all i even
pi(x, y, y) ≈ pi+1(x, y, y) for all i odd
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Terms that satisfy the above equations are called Jónsson terms. It is a straight-
forward exercise to show that from a k-ary near-unanimity term, one can construct
a sequence of 2k − 3 Jónsson terms.

Following the approach introduced in [22], we define a subset S of An to be
totally symmetric if for any a ∈ S and any permutation π ∈ Sym({1, . . . , n}), we
have that aπ ∈ S, where aπ(i) := a(π−1(i)). Clearly, if a subalgebra of An has a
totally symmetric generating set, then it is totally symmetric.

Theorem 4.4. A variety V is congruence distributive and has a k-edge term t iff
V has a k-ary near-unanimity term s (k ≥ 3).

Proof. One direction of this theorem has already been noted. For the other, assume
that V is congruence distributive with Jónsson terms pi(x, y, z), 0 ≤ i ≤ n and has
a k-edge term t(x1, . . . , xk+1). Let F = F(x, y) be the free algebra in V freely
generated by {x, y}. For 1 ≤ i ≤ k, let yi be the element of F k such that yi(i) = y

and yi(j) = x, for j 6= i and let G be the subalgebra of Fk generated by {yi : 1 ≤
i ≤ k}. Since G has a totally symmetric generating set then as noted above, G is
a totally symmetric subset of F k. We aim to prove that x ∈ G, where x(i) = x for
all 1 ≤ i ≤ k.

We now define the elements ai, bi, ci ∈ F for 1 ≤ i < n to be ai = pi(y, x, x),
bi = pi(y, y, x) and ci = pi(x, x, y). It will be convenient to represent k-tuples of
these elements, along with x and y as words over this set of elements.

We first prove that for each 1 ≤ i < n, aicixk−2 and bicix
k−2 are both in

G. To see this, just notice that aicixk−2 = pi(y1,y3,y2) and that bicixk−2 =
pi(y1,y1,y2). Next notice that b1xk−1 = yxk−1 = y1 ∈ G.

Claim 4.5. For each i, 1 ≤ i < n, aixk−1 ∈ G iff bix
k−1 ∈ G.

We prove one implication only, as the other one is analogous. So, assume that
aix

k−1 ∈ G. The symmetry of G implies that for each j < k − 1, the elements
bj = bix

jcix
k−2−j are in G. Using the properties of the k-edge term t, we calculate

that
bix

k−1 = t(aicixk−2, aix
k−1,b0,b1, . . . ,bk−2),

as required. •
Now we proceed to prove by induction on i that for each 0 < i < n, both aixk−1

and bix
k−1 are in G. For i = 1 we have noted that b1xk−1 = y1 ∈ G, and so by

Claim 4.5, we also have that a1x
k−1 ∈ G. Assume that both aix

k−1 and bix
k−1

are in G. By the Jónsson equations, either ai = ai+1 or bi = bi+1 and therefore, at
least one of the elements ai+1x

k−1, bi+1x
k−1 is in G. But, then by Claim 4.5, this

means that both of them are in G.
Since one of the elements an−1, bn−1 must be equal to x (by Jónsson’s equations),

it follows that x ∈ G. Now, as x ∈ G, then there must exist a term p such that
p(y1, . . . ,yk) = x. By examining the coordinates of this equation, we conclude that
in F,

p(y, x, . . . , x) = p(x, y, x, . . . , x) = · · · = p(x, x, . . . , x, y) = x.

Finally, since F is the V-free algebra, then p is a near-unanimity term for V. •

Corollary 4.6. Suppose A is a finite nontrivial algebra and k ≥ 4. If A has a
k-ary near unanimity term but no (k− 1)-ary near unanimity term, then iA(n) =Θ

sA(n) =Θ nk−1.
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Proof. By Theorem 4.4, V(A) is congruence distributive and A has a k-edge term
but not a (k − 1)-edge term. Thus by Theorem 3.12, iA(n) =Θ nk−1 and sA(n) ∈
Ω(nk−1). Since sA(n) ∈ O(nk−1) by Proposition 2.3(2), we get sA(n) =Θ nk−1. •

We note that another consequence of Theorem 4.4 is that in the lattice of inter-
pretability types of varieties [14], the filter consisting of those varieties that possess
a near-unanimity term is the proper intersection of two larger filters that both
happen to consist of congruence modular varieties. This provides another proof
of Corollary 3.18 from [25]. In that paper, Sequeira establishes the corollary by
introducing a Maltsev condition that happens to be defined using a certain type of
2k-ary ∆-special cube term, for ∆ equal to the set of all singletons and complements
of singletons of [k].

A generalized majority-minority operation (or gmm operation) on a set A is an
operation g(x1, . . . , xk) on A such that for all a, b ∈ A, either

g(y, x, . . . , x) = g(x, y, x, . . . , x) = · · · = g(x, x, . . . , x, y) = x for all
x, y ∈ {a, b}

or
g(y, x, . . . , x) = g(x, x, . . . , x, y) = y for all x, y ∈ {a, b}.

A pair (a, b) of A is called a majority pair (with respect to g) if the first condition
holds for {a, b} and is called a minority pair if the second condition holds (compare
with Definition 3.1).

In [3] and [9], Bulatov, Chen, and Dalmau introduced and studied gmm oper-
ations in the context of learnability and the constraint satisfaction problem. It
follows from their work that finite algebras equipped with a gmm term operation
have few subpowers. We provide a proof of this by showing that such algebras have
k-edge term operations.

Theorem 4.7. Let g(x1, . . . , xk) be a gmm term operation of the algebra A. Then
A has a k-edge term operation.

Proof. Let d(x, y) be the binary term operation g(x, y, ..., y) of A. It follows that a
pair (a, b) from A is a majority pair with respect to g if d(a, b) = b and is a minority
pair if d(a, b) = a. It is elementary to show that the term operation

t(x1, ..., xk+1) = g(x2, d(x1, x3), d(x1, x4), ..., d(x1, xk), d(x3, xk+1))

is a k-edge term operation of A. •

Theorem 3.12 (with Proposition 1.2) establishes polynomial upper bounds for
the functions sA and iA for finite algebras that have k-edge term operations. We
conclude this section by providing lower bounds for these functions under the as-
sumption that the variety generated by a finite algebra fails certain Maltsev condi-
tions.

Theorem 4.8 (Maltsev). A variety is congruence permutable if and only if it has
a term p(x, y, z) that satisfies the equations

p(y, x, x) ≈ p(x, x, y) ≈ y

A term that satisfies the equations from this theorem is called a Maltsev term.

Theorem 4.9. Let A be a finite algebra with |A| > 1. If A has a Maltsev term,
then iA(n) =Θ n. If A has no Maltsev term then n2 ∈ O(iA(n)).
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Proof. This follows immediately from Proposition 1.2(2), Theorem 3.10, and the
fact that a ternary term t(x, y, z) of an algebra A is a 2-edge term if and only if
the term t(y, x, z) is a Maltsev term of A. •

Theorem 4.10. Let A be a finite algebra with |A| > 1. If HSP(A) is arithmeti-
cal, i.e., both congruence permutable and congruence distributive, then sA(n) =Θ

n lg(n). Conversely, if HSP(A) is not arithmetical or, more particularly, is not
congruence distributive, then n2 ∈ O(sA(n)).

Proof. Suppose first that HSP(A) is congruence distributive and congruence per-
mutable. We shall find an appropriate constant E, and prove by induction on n
that sA(n) ≤ En lg(n).

Let n ≥ 1 and let T be any subalgebra of An+1. Write Tn for the projection of T
onto the first n-coordinates, write Qi for the projection of T onto the ith coordinate,
0 ≤ i ≤ n, and put Q = Qn. Thus Tn is a subalgebra of An and Q is a subalgebra of
A. Since HSP(A) is congruence permutable then according to Fleischer’s Lemma
(Theorem 4.74 from [23]), T is an equalizer—there is a congruence θ of Tn and a
congruence λ of Q, and an isomorphism φ : Tn/θ ∼= Q/λ, so that

T = {〈a0, . . . , an〉 : 〈a0, . . . , an−1〉 ∈ Tn , an ∈ Q , φ(〈a0, . . . , an−1〉/θ) = an/λ} .
Since the congruence lattice of Tn is distributive, there are congruences θi on Qi so
that

θ = {(f, g) ∈ T 2
n : (fi, gi) ∈ θi for 0 ≤ i < n} .

Since the cardinality of Tn/θ is bounded by |Q/λ|, i.e., by |A|, then there is some
k ≤ |A| and some 0 ≤ i0 < i1 < · · · < ik−1 < n so that

θ = {(f, g) ∈ T 2
n : (fij , gij ) ∈ θji for 0 ≤ j < k} .

It follows that the algebra T is completely determined by the following data:

Tn; {i0, . . . , ik−1}; θi0 , . . . , θik−1 ;Q;λ;φ .

It also follows that there is a constant C, determined independently of n and k,
so that once given Tn and {i0, . . . , ik−1}, the number of possible choices for all of
θi0 , . . . , θik−1 , Q, λ, φ is no greater than C. If sn denotes the number of subalgebras
of An, we then have

sn+1 ≤ sn ·
(
n

k

)
· C .

We can choose other positive constants D,E so that for n > 1,

sn+1 ≤ sn · nDk ≤ sn · nE

and so that sA(2) ≤ E2 lg(2) (= 2E). Now by induction, if n ≥ 2 and sA(n) ≤
En lg(n), then taking logarithms in the displayed inequality yields:

sA(n+ 1) ≤ sA(n) + E · lg(n) ≤ E · n lg(n) + E · lg(n) ≤
E · (n+ 1) lg(n) ≤ E · (n+ 1) lg(n+ 1) .

Thus sA(n) ∈ O(n lg(n)) and so sA(n) =Θ n lg(n) since by Proposition 1.2 we have
that n lg(n) ∈ O(sA(n)).

Now, for the other direction, suppose that HSP(A) is not arithmetical. In Theo-
rem 4.9 we saw that if A has no Maltsev term, then n2 ∈ O(iA(n)) ⊆ O(sA(n)) and
so we can assume that A has a Maltsev term. Thus HSP(A) is congruence modular,
but not congruence distributive. This implies that type 2 occurs in HSP(A) (see
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[17], pages 126–127) and so there is a finite algebra B ∈ HSP(A) with a minimal
congruence β of type 2.

Choosing a (0B , β)-minimal set U and a (0B , β)-trace N ⊆ U we have that the
induced algebra V = B|N is polynomially equivalent to a 1-dimensional vector space
over a finite field. It follows that for n ≥ 1, V n ⊆ Bn is polynomially equivalent to
an n-dimensional vector space over that field. For any vector subspace W ⊆ V n,
let B(W ) be the subalgebra of Bn generated by W together with all the constant
functions b̄, b ∈ B. Using Lemma 6.14 of [17] it follows that the map W 7→ B(W )
is a one-to-one mapping of the lattice of vector subspaces of V n into the lattice of
subalgebras of Bn. From the discussion of the subpowers of the 2-element Boolean
group in Section 6 it follows that n2 ∈ O(sB(n)) and hence also in O(sA(n)). •

Remark 4.11. Observe that in the case where A has a Maltsev term and has no
Pixley term, we actually have sA =Θ n2, as follows from the theorem just proved,
Theorem 4.9, and Proposition 1.2.

5. Congruence Functions

In parallel with the subalgebra functions defined in 0.1 and 0.3 we define the
following congruence functions.

Definition 5.1. For a finite algebra A and positive integer n,
• cA(n) is defined to be the logarithm, base 2, of the maximum cardinality

of a congruence lattice of a subalgebra of An.
• gcA(n) is defined to be the least integer κ such that for every S ⊆ An,

every congruence of S is generated by a set of at most κ ordered pairs of
elements of S.

• icA(n) is defined to be the least integer κ such that for every S ⊆ An,
every independent subset of S2 has at most κ elements (where X ⊆ S2 is
independent iff no proper subset of X generates the same congruence of S
as does X).

The following properties of these functions are easy to establish.

Proposition 5.2. For any finite algebra A with |A| > 1, and for any n ∈ N we
have:

(1) cA(n) ≤ sA(2n), gcA(n) ≤ gA(2n), icA(n) ≤ iA(2n).
(2) gcA(n) ≤ icA(n) ≤ cA(n).
(3) n ≤ cA(n) ≤ 2 lg(|A|) · n · gcA(n).
(4) icA(n) ≤ |A|n − 1 and cA(n) ∈ O(n|A|n) (and the bounds are achieved if

A has no operations).
(5) If B is any finite algebra in HSP(A) then cB ∈ L(cA), gcB ∈ L(gcA), and

icB ∈ L(icA).

The main result of this section establishes that the growth rate of the function
cA reflects the congruence modularity and/or congruence distributivity of HSP(A).

Theorem 5.3. Let A be any finite algebra.
(i) If HSP(A) is not congruence distributive, then n2 ∈ L(cA(n)).
(ii) If HSP(A) is congruence distributive, then cA(n) ∈ L(n).
(iii) If HSP(A) is not congruence modular, then 2n ∈ L(cA(n)).
(iv) If HSP(A) is congruence modular, then cA(n) ∈ L(n2).
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Proof. We first observe that in the case where HSP(A) is congruence modular but
not congruence distributive, the considerations in the last paragraph of the proof of
Theorem 4.10 establish that n2 ∈ O(cA(n)): Let Cn = B(V n). The mapping from
subspaces W of V n to congruences of Cn, W 7→ CgCn

(W ×W ), is in this case a
one-to-one mapping from the lattice of subspaces of V n to the congruence lattice
of Cn. Thus n2 ∈ O(cA(n)) (implying that n2 ∈ L(cA(n))).

Now suppose that HSP(A) is not congruence modular. Then by the Shifting
Lemma (see the proof of Theorem 3.5 in [15]) we can choose a finite algebra B ∈
HSP(A), congruences α, β, γ on B with α ∧ β ≤ γ, and elements a, b, c, d ∈ B so
that (a, b), (c, d) ∈ α, (a, c), (b, d) ∈ β, (c, d) ∈ γ and (a, b) 6∈ γ. (In fact, B can be
taken to be the free algebra on four generators in this variety.)

We are going to show that for n > 1, B2n has a subalgebra C that has a set of 2n

congruence-independent ordered pairs of elements. Thus cB(2n) ≥ icB(2n) ≥ 2n,
showing that 2n ∈ L(cB(n)) ⊆ L(cA(n)).

To begin, we replace γ by α∧γ, thus assuring that α∧β < γ < α. We define C to
be the subalgebra of B2n consisting of those functions f such that (f(i), f(j)) ∈ β
for all 0 ≤ i, j < 2n. Now let M be the collection of all subsets of {0, 1, . . . , n− 1}.
For X ∈M we define two elements fX , gX in C: fX is the function that takes the
value a at 2i and c at 2i+ 1 for each i ∈ X, and takes the value a at 2i+ 1 and c
at 2i for i ∈ {0, . . . , n − 1} \X. gX is the function that takes the value b exactly
where fX has value a, and has the value d exactly where fX has value c.

We put θX equal to the congruence of C generated by (fX , gX) and claim that
for all X ∈M ,

(fX , gX) 6∈
∨
{θY : Y ∈M \ {X}} .

The claim obviously will finish the proof of (i) and (iii).
To prove, it, suppose, otherwise. Then we have X0 ∈M and a chain

fX0 = g0, . . . , gk = gX0

where for each i < k, {gi, gi+1} = {pi(fYi
), pi(gYi

)} where pi is a polynomial of C
and Yi ∈M \ {X0}. Let us write

E = {2i : i ∈ X0} ∪ {2i+ 1 : 0 ≤ i ≤ n− 1, i 6∈ X0} .

We shall get a contradiction by showing that for all 0 ≤ u ≤ k gu(j) is γ-related to
a for all j ∈ E. Since gk(j) = b for j ∈ E, we will have an obvious contradiction.
The proof is by induction on u ≤ k.

Note that g0 is constantly equal to a on E. Now suppose that u < k and gu|E
takes only values γ-related to a We have that

{gu, gu+1} = {pu(fYu
), pu(gYu

)} .

Now fYu
and gYu

are α-related at every j < 2n, and so this also holds for gu+1 and
gu.

If j ∈ E and j = 2i for some i ∈ X0 \ Yu then gu(j) and gu+1(j) are γ-related
since fYu(j) and gYu(j) are. On the other hand, if j = 2i+ 1 for some i ∈ Yu \X0

then we also have that gu(j) and gu+1(j) are γ-related.
If j = 2i for some i ∈ X0∩Yu then, by considering some element in the symmetric

difference of X0 and Yu, we obtain a k ∈ E with k 6= j and gu+1(k) γ a. Then

gu(j) γ a γ gu(k) γ gu+1(k) and gu(j) α gu+1(j)
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and so gu+1(k) α gu+1(j). Since these two elements are also β-related it follows
that in fact they are γ-related. Thus gu+1(j) γ a, as required. The remaining case,
j = 2i + 1 for some i /∈ X0 ∪ Yu, can be handled in a similar fashion and so we
conclude that gu+1(j) γ a for all j ∈ E.

This completes our inductive proof that gu(j) γ a for all u ≤ k and all j ∈ E.
We have now finished with (i) and (iii).

Now we tackle (ii). Suppose that HSP(A) is congruence distributive. Let n ≥ 1
and B be any subalgebra of An. Write pi for the ith projection homomorphism
mapping B → A. As is well-known, congruence distributivity implies that every
congruence of B is of the form ∧

0≤i<n

p−1
i (θi)

for some system of congruences θi on A. Thus the number of congruences of B is
no greater than cn where c is the number of congruences of A. This shows that
cA(n) ∈ O(n) = L(n).

Finally, we prove (iv). Assume that HSP(A) is congruence modular. Let n ≥ 1
and B ⊆ An. We first argue that the height of Con B is at most cn where c
is the maximal height of Con C where C ranges over the subalgebras of A. For
0 ≤ i < n, let ηi be the kernel of the projection homomorphism from B to A at
the ith coordinate. Each interval (η0 ∧ · · · ηi−1)/(η0 ∧ · · · ∧ ηi−1 ∧ ηi), 0 ≤ i < n is
isomorphic to a subinterval of the interval 1B/ηi and hence has height ≤ c. Thus
the height of Con B is at most cn.

Next, we find a bound for the number of polynomial equivalence classes of min-
imal sets for congruence covers in B. Suppose that α ≺ β are congruences of B
with β covering α. Let β′ be minimal among all congruences τ with τ ≤ β, τ 6≤ α.
Put α′ = α ∧ β′ so that α′ ≺ β′. Choose a projection kernel ηi with ηi 6≥ β′. Thus
ηi ∧ β′ ≤ α. Now ηi ∧ β′ ≤ α′ and hence, by modularity,

ηi ∨ α′ = α′′ 6= ηi ∨ β′ = β′′ .

Thus we have α′′ ≺ β′′. Let U be any (α′′, β′′)-minimal set. Then since (α′, β′) and
(α, β) are perspective to (α′′, β′′), we have that U is a (α, β)-minimal set. Let W be
a family of subsets of B consisting of, for each 0 ≤ i < n and for each congruence
cover β � α ≥ ηi, one (α, β)-minimal set. Now the size of W is at most dn where d
is the square of the maximal size of Con C, C ⊆ A; and as we have seen, for every
α ≺ β in Con B, there is an (α, β)-minimal set U ∈ W.

Now we can bound the number of covers of any member of Con B. Let α0 ∈
Con B. We define a function t mapping the set of covers of α0 into the set W.
Suppose that α0 ≺ β. Choose U ∈ W, an (α0, β)-minimal set, and put t(β) = U .
We claim that for each U ∈ W, there are at most |B| covers β of α0 with t(β) = U .
To see this, choose u0 ∈ U . Given β � α0 with t(β) = U , we know that β is
generated by α0 together with any pair in (β \α0)∩U2. Since the induced algebra
on U has regular congruences, then there is v ∈ U such that β is generated by
α0 ∪ {(u0, v)}. This shows that the number of such β is at most |U | ≤ |B|.

Now it follows that the number of covers of α0 is at most

dn|B| ≤ dn|A|n .
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Next, since the height of Con B is at most cn, then the cardinality of Con B is
bounded by

1 + q + q2 + · · ·+ qcn ≤ qcn+1 − 1
q − 1

≤ 2qcn , q = dn|A|n .

(In this formula, 1 counts the zero element of the lattice, q bounds the number of
atoms, q2 bounds the number of elements of height 2—covers of atoms—and so
on.) This simplifies to

|Con B| ≤ 2(dn)cn|A|cn
2
≤ |A|2cn

2
= 2en

2
, for large n ,

where e = 2c lg |A|. This formula shows that cA ∈ L(n2), as required. •

From Theorem 4.2 and Corollary 3.11 it follows that if a finite algebra A has
few subpowers then HSP(A) is congruence modular. This result also follows from
Theorem 5.3 since, as noted in Proposition 5.2, cA(n) ≤ sA(2n) for all n.

6. Examples

In this section we present examples of algebras over the set {0, 1} to illustrate
some of the functions that can occur as one of the invariants that we have been
studying in this paper. In section 4 of [7], Chen uses Post’s classification of the
lattice of clones over a two element set to characterize those algebras with domain
{0, 1} that have few subpowers (or, using his terminology, that are polynomially
expressive). Our results from this section, summarized in Table 1, provide a re-
finement and extension of Chen’s analysis. The examples that we consider are
constructed from the following operations on {0, 1}:

• x ∧ y (the smaller of x and y),
• x ∨ y (the larger of x and y),
• π(x) = 1− x,
• x→ y = π(x) ∨ y,
• x⊕ y (the sum of x and y, modulo 2).

Boolean algebra. The first algebra we consider is A = 〈{0, 1},∧,∨, π〉, the 2-
element Boolean algebra. Let B be any subalgebra of An. Every atom of B is a join
of some of the n atoms of An. So B partitions the atoms of An. Conversely, each
partition of the n atoms of An corresponds to a subuniverse B of An. So sA(n)
is lg(B(n)), where B(n) is the n-th Bell number. If {c1, . . . , cm} is an independent
subset of An, then

{0̄, 1̄} ⊂ Sg({c1}) ⊂ Sg({c1, c2}) ⊂ · · · ⊂ Sg({c1, c2, . . . , cm}) ⊆ An.

Any chain in the lattice of subuniverses of An has cardinality at most n, so m < n.
Let the atoms of An be ai, for 0 ≤ i < n, with ai = (0, . . . , 0, 1, 0, . . . , 0) having
a 1 in coordinate i. We claim that the set M = {a0, a1, . . . , an−2} is independent.
For example, a0 is not in Sg({a1, . . . , an−2}) because for each 1 ≤ i ≤ n − 2 we
have ai(0) = ai(n−1), and this property is preserved when forming the subalgebra
generated by these n− 2 atoms. Hence iA(n) = n− 1.

If B is a subalgebra of An then B ∼= Am for some 1 ≤ m ≤ n. If k ≥ lg(m),
then B is a surjective homomorphic image of A2k

, the k-generated free algebra in
HSP(A), whence B is generated by at most k elements. On the other hand, if k <
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Algebra sA(n) iA(n) gA(n) cA(n) icA(n) gcA(n)

∧, ∨, π lg(B(n)) n− 1 dlg ne n n 1

⊕ =Θ n2 n n =Θ n2 n n

∧, ∨ =Θ n2 =Θ n2 n+ 1 n n dn/2e
→ ≥ lg(|FD(n)|) ≥

(
n

dn/2e
)

≥
(

n
dn/2e

)
n n dn/2e

∨ ≥ lg(|FD(n)|) ≥
(

n
dn/2e

)
≥

(
n

dn/2e
)

≥ lg(|FD(n)|) ≥
(

n
dn/2e

)
≥ 1

2 ·
(

n
dn/2e

)
π 2n−1 2n−1 2n−1 =Θ n2n =Θ 2n =Θ 2n

Table 1. The six invariants for certain 2-element algebras A.

lg(m), then B is larger than the free algebra on k generators, and hence cannot be
generated by k or fewer elements. These considerations show that gA(n) = dlg(n)e.

If B is a subalgebra of An then the congruence lattice of B is isomorphic to
B: every congruence relation of B is a principal congruence of the form Cg(0, q)
for q ∈ B. Hence cA(n) = n and gcA(n) = 1. If X ⊆ B2 is an independent
subset of B2, where Am ∼= B ⊆ An , then distinct subsets of X generate distinct
congruence relations on B. So 2|X| ≤ |Con B| = 2m and thus icA(n) ≤ n. Since the
ordered pairs (0, ai) for the atoms ai of An form an independent set we conclude
that icA(n) = n.

Boolean group. Next, we consider the group A = 〈{0, 1},⊕〉. We have that
sA(n) = cA(n) since A is Abelian. Here the subalgebra of An generated by an
element b corresponds to the congruence generated by (0, b). Thus iA(n) = icA(n)
and gA(n) = gcA(n). The value of sA(n) is the number of subspaces of an n-
dimensional vector space over the 2-element field. This is the sum over k of the
Gaussian binomial coefficients {n, k}2. Since {n, k}2 is approximated by 2k(n−k)

we find that sA(n) =Θ n2. It is easily checked that iA(n) = gA(n) = n.

Lattice. Next let A = 〈{0, 1},∧,∨〉 be the 2-element lattice. Then A has
no Maltsev term but does have a 3-ary near unanimity term. By Theorem 4.9
and Proposition 2.3(2), we have n2 ∈ O(iA(n)) and sA(n) ∈ O(n2). Thus by
Proposition 1.2 (1), we conclude that iA(n) =Θ sA(n) =Θ n2. Every sublattice S
of An has height at most n and therefore the poset of join irreducible elements of
S has cardinality at most n. Since the join irreducible elements, together with 0S ,
generate S, we have that gA(n) ≤ n+ 1. As An has an (n+ 1)-element chain as a
sublattice and since no proper subset of an (n + 1)-element chain can generate it,
we conclude that gA(n) = n+ 1.

The congruence lattice of An is isomorphic to An, hence cA(n) ≥ n. If S is a
sublattice of An, then every congruence of S is equal to the kernel of a projection
of S into Am over some m ≤ n coordinates (by congruence distributivity); i.e.,
congruences of S extend to An. Thus cA(n) = n. These observations also imply
that the height of Con S is at most n, implying that icA(n) ≤ n. Where a0, . . . , an−1

are the atoms of An, the pairs (0̄, ai) form an independent set in (An)2 of n elements,
hence icA(n) = n.
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To calculate gcA(n), let S ⊆ An and let C = {a0, . . . , am} be any maximal chain
in S, with say,

a0 ≺ a1 ≺ · · · ≺ am .

Here, m ≤ n. Let θ be any congruence of S. Then θ is generated by pairs (c, d)
where c ≺ d (i.e., d covers c). For each such (c, d), there is a unique i < m such that
the intervals d/c and ai+1/ai are perspective in S—in this situation, CgS(c, d) =
CgS(ai, ai+1). Thus θ is generated by some subset of the pairs (ai, ai+1). Now if
ai ≡ ai+1 ≡ ai+2 (mod θ) then CgS(ai, ai+1) ∨ CgS(ai+1, ai+2) = CgS(ai, ai+2).
This leads us to look for the maximal intervals in C consisting of θ-equivalent
elements. Assuming that θ 6= 0S , there are

x0 < y0 < x1 < y1 < · · · < xk−1 < yk−1

in C with (xi, yi) ∈ θ for 0 ≤ i ≤ k − 1, and (yi, xi+1) 6∈ θ for 0 ≤ i < k − 1, and
such that any (c, d) ∈ C2 belongs to θ iff there is some i < k with xi ≤ c, d ≤ yi.
Our analysis shows that θ is generated by {(xi, yi) : 0 ≤ i < k}. Obviously,
2k ≤ m+ 1 ≤ n+ 1 and so we conclude that

gcA(n) ≤ bn+ 1
2

c = dn
2
e .

To see that gcA(n) ≥ dn2 e, one can again consider an (n+1)-element subalgebra of
An that is linearly ordered, and a certain congruence on it that divides all but at
most one of the elements into 2-element equivalence classes (intervals).

Implication algebra. Now we consider the algebra A = 〈{0, 1},→〉. Like the
lattice, this 2-element algebra generates a congruence distributive variety. Whence
the same considerations as above show that cA(n) = icA(n) = n. This algebra
is interesting because, although it does generate a congruence distributive variety,
it has no near unanimity term or Maltsev term, and so by Theorem 4.4 fails to
have few subpowers. Before turning our attention to sA(n) we first show that
gcA(n) = dn2 e. Note that the argument we present is general enough to apply to
our previous example, the 2-element lattice.

We remark that x∨ y = (x→ y) → y, and the term operations of A are exactly
those operations f(x0, . . . , xm−1) for which there is some i, 0 ≤ i < m such that
for all a0, . . . , am−1 ∈ {0, 1}, f(a0, . . . , am−1) ≥ ai. (This fact is easily proved, and
implies, for example, that A has no near unanimity term or Maltsev term.)

Now let S ⊆ An and let θ be any congruence on S distinct from the equality
relation. If x, y ∈ S then x→ x = 1̄, so if (x, y) ∈ θ then (x→ y, 1̄), (y → x, 1̄) ∈ θ.
Conversely, if x→ y ≡ 1̄ ≡ y → x (mod θ) then

x = (x→ y) → x ≡θ (y → x) → x = y ∨ x ,

y = (y → x) → y ≡θ (x→ y) → y = x ∨ y = y ∨ x ;
and so x ≡ y (mod θ). Thus θ is generated by a set of pairs of the form (a, 1̄).

Let ηi = {(f, g) ∈ S2 : f(i) = g(i)} for 0 ≤ i < n. For any C ⊆ S2, put
NC = {i : C 6⊆ ηi} and EC = {i : C ⊆ ηi}. It follows from the congruence
distributivity of HSP(A) and the fact that |A| = 2 that θ =

⋂
{ηi : i ∈ Eθ}

and that θ is the smallest congruence ψ such that Nθ ⊆ Nψ. Furthermore, if
C ⊆ S2 then CgS(C) is the smallest congruence ψ with NC ⊆ Nψ. Consequently
θ = CgS(C) iff C ⊆ θ and NC ⊇ Nθ

Let us pick, for each i ∈ Nθ, ai ∈ S so that (ai, 1̄) ∈ θ and ai(i) = 0. We claim
that if {i, j} ⊆ Nθ, there is (c, d) ∈ θ such that {i, j} ⊆ N{(c,d)}. This is obvious
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if ai(j) = 0 (just take (c, d) = (ai, 1̄)) or if aj(i) = 0 (take (c, d) = (aj , 1̄)). So
suppose that ai(j) = 1 and aj(i) = 1. In this case, take (c, d) = (ai, aj). Clearly,
(ai, aj) ∈ θ, and (ai(i), aj(i)) = (0, 1) = (aj(j), ai(j)), so that {i, j} ⊆ N{(c,d)}.

Finally, where n̂ = dn2 e, we can write,

Nθ =
⋃
{{ir, jr} : 0 ≤ r < n̂}

for some ir, jr (where possibly ir = jr for some r). For 0 ≤ r < n̂, choose
(cr, dr) ∈ θ with {ir, jr} ⊆ N{(cr,dr)}. The set {(cr, dr) : 0 ≤ r < n̂} is now
guaranteed to generate θ.

We have proved that gcA(n) ≤ dn2 e. To show that this bound is exact, let S be
the subset of {0, 1}n consisting of all functions that take value 0 at most once. This
set of n+ 1 functions constitutes a subalgebra S of An. Let θ = S × S. Since any
pair of elements of S differ on at most two coordinates, it requires dn2 e pairs in S2

to generate θ.
We now consider the number of subalgebras of An. It follows from our char-

acterization of the term operations of A that every nonvoid order-filter in An is
a subalgebra of An; and that every nonvoid anti-chain in An is an independent
set and is the unique minimal generating set for the subalgebra it generates. The
number of nonvoid order-filters and the number of nonvoid anti-chains are both
equal to the cardinality of FD(n), the free distributive lattice on n generators. The
largest anti-chain in An is the set of functions f with |f−1({1})| = dn2 e, a set of
cardinality

(
n

dn
2 e

)
. Thus we have

sA(n) ≥ lg(|FD(n)|) ≥
(
n

dn2 e

)
≥ 2n

n
, iA(n) ≥

(
n

dn2 e

)
, gA(n) ≥

(
n

dn2 e

)
.

Note that these lower bounds also hold for the next example—the 2-element semi-
lattice. Theorem 3.2 of [7] can be used to establish these lower bounds as well.

Semilattice. Next, we consider the semilattice A = 〈{0, 1},∨〉. Since x ∨ y is a
term operation of the implication algebra, it is clear that all the numbers we seek
to calculate or bound will be not less for the semilattice than for the implication
algebra. In fact, we cannot improve the lower bounds we gave above for sA, iA,
gA. The congruence functions, on the other hand, grow much more rapidly for this
algebra.

Let Z be any nonvoid anti-chain in An, and Z≥ be the order-filter generated
by Z. Then Z is the set of minimal members of Z≥; and the equivalence relation
with one non-singleton class, namely, Z≥, is a congruence relation, θZ , of An. This
gives the lower bound for cA(n) figured in the table. The set {(z, 1̄) : z ∈ Z} is an
independent generating set of θZ . This gives the lower bound for icA(n) written
in the table. Now let X be any generating set for θZ . Clearly, we must have
Z ⊆

⋃
{{x, y} : (x, y) ∈ X}, thereby giving the lower bound for gcA(n) found in

the table.

G-set. Finally, consider the algebra 〈{0, 1}, π〉. For f ∈ An−1 let f0 ∈ An be the
function that extends f with f0(n− 1) = 0, and let f1 = π ◦ f0. The subuniverses
of An are the subsets X such that for all f ∈ An−1, f0 ∈ X ↔ f1 ∈ X. For any
subuniverse X, the minimal generating sets all have the same cardinality; they are
the sets Y ⊆ X such that for every f ∈ An−1 with f0 ∈ X, |{f0, f1} ∩ Y | = 1.
With these facts in hand, the reader can easily establish the first three entries in
our table, for this algebra.



28 BERMAN, IDZIAK, MARKOVIĆ, MCKENZIE, VALERIOTE, AND WILLARD

Of course, cA(n) ≤ lg(B(2n)) =Θ n2n. But also, it is easy to see that

(n− 1)2n−1 =Θ lg(B(2n−1)) ≤ cA(n) .

Thus, cA(n) =Θ n2n follows from the observation that (n − 1)2n−1 =Θ n2n. The
calculations for icA(n) and gcA(n) are straightforward; we leave them to the reader.

Finally, we note that for every k ≥ 2 there exists a finite algebra A with uni-
verse A = {0, 1} such that iA(n) =Θ sA(n) =Θ nk. Indeed, if k = 2, then we
can use the 2-element lattice as shown above, while if k ≥ 3, then we can use
the algebra A = 〈{0, 1}, Fk+1〉 where Fk+1 is the operation in k + 1 variables de-
fined by Fk+1(a0, . . . , ak) = 1 if ai = 1 for at least two i ∈ {0, 1, . . . , k}, and
Fk+1(a0, . . . , ak) = 0 otherwise. Fk+1 is a near unanimity term for A, and it is
known that A has no near unanimity term of arity ≤ k. Hence iA(n) =Θ sA(n) =Θ

nk by Corollary 4.6.
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