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Abstract

We study the expression complexity of two basic problems involving the comparison of primitive positive formulas:
equivalence and containment. In particular, we study the complexity of these problems relative to finite relational
structures. We present two generic hardness results for the studied problems, and discuss evidence that they are
optimal and yield, for each of the problems, a complexity trichotomy.
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1. Introduction

Overview. A primitive positive (pp) formula is a first-order formula defined from atomic formulas and equality of
variables using conjunction and existential quantification. The class of primitive positive formulas includes, and
is essentially equivalent to, the class of conjunctive queries, which is well-established in relational database theory
as a pertinent and useful class of queries, and which has been studied complexity-theoretically from a number of
perspectives; see for example [1, 2, 3]. In this paper, we study the complexity of the following fundamental problems,
each of which involves the comparison of two pp-formulas φ, φ′ having the same free variables, over a relational
structure.

• Equivalence: are the formulas φ, φ′ equivalent–that is, do they have the same satisfying assignments–over the
structure?

• Containment: are the satisfying assignments of φ contained in those of φ′, over the structure?

We study the complexity of these computational problems with respect to various fixed structures. That is, we
parameterize each of these problems with respect to the structure to obtain a family of problems, containing one
member for each structure, and study the resulting families of problems. To employ the terminology of Vardi [4],
we study the expression complexity of the presented comparison tasks. The suggestion here is that various relational
structures–which may represent databases or knowledge bases, according to use–may possess structural characteristics
that affect the complexity of the resulting problems, and our interest is in understanding this interplay. The present
work focuses on relational structures that are finite (that is, have finite universe), and we assume that the structures
under discussion are finite.

In this paper, we present two general expression hardness results on the problems of interest. In particular, each of
our two main results provides a sufficient condition on a structure so that the problems are hard for certain complexity
classes. Furthermore, we give evidence that our results are optimal, in that the conditions that they involve in fact
describe dichotomies in the complexity of the studied problems; put together, our results indicate, for each of the
studied problems, a complexity trichotomy.
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Our study utilizes universal-algebraic tools that aid in understanding the set of primitive positively definable
relations over a given structure. It is known that, relative to a structure, the set of relations that are definable by a
primitive positive formula forms a robust algebraic object known as a relational clone; a known Galois correspondence
associates, in a bijective manner, each such relational clone with a clone, a set of operations with certain closure
properties. This correspondence provides a way to pass from a relational structure B to an algebra AB whose set of
operations is the mentioned clone, in such a way that two structures having the same algebra have the same complexity
(for each of the mentioned problems). In a previous paper by the present authors [5], we developed this correspondence
and presented some basic complexity results for the problems at hand, including a classification of the complexity of
the problems on all two-element structures.

Our hardness results. Our first hardness result (Section 3) yields that for any structure B whose associated algebra
AB gives rise to a variety V(AB) that admits the unary type, both the equivalence and containment problems are
Π

p
2 -hard. Note that this is the maximal complexity possible for these problems, as the problems are contained in the

class Π
p
2 . The condition of admitting the unary type originates from tame congruence theory, a theory developed to

understand the structure of finite algebras [6]. We observe that this result implies a dichotomy in the complexity of the
studied problems under the G-set conjecture for the constraint satisfaction problem (CSP), a conjecture put forth by
Bulatov, Jeavons, and Krokhin [7] which predicts exactly where the tractability/intractability dichotomy lies for the
CSP. (Recall that the CSP can be formulated as the problem of deciding, given a structure B and a primitive positive
sentence φ, whether or not φ holds on B.) In particular, under the G-set conjecture, the structures not obeying the
described condition have equivalence and containment problems in coNP. The resolution of the G-set conjecture, on
which there has been focused and steady progress over the past decade [8, 9, 10, 11], would thus, in combination with
our hardness result, yield a coNP/Π

p
2 -complete dichotomy for the equivalence and containment problems. In fact,

our hardness result already unconditionally implies dichotomies for our problems for all classes of structures where
the G-set conjecture has already been established, including the class of three-element structures [8], and the class of
conservative structures [12].

One formulation of the G-set conjecture is that, for a structure B whose associated algebra AB is idempotent, the
absence of the unary type in the variety generated by AB implies that the CSP over B is polynomial-time tractable.
The presence of the unary type is a known sufficient condition for intractability in the idempotent case [7, 10], and
this conjecture predicts exactly where the tractability/intractability dichotomy lies for the CSP. It should be noted,
however, that the boundary that is suggested by our hardness result for the equivalence and containment problems is
not the same as the boundary suggested by the G-set conjecture for the CSP. The G-set conjecture, which is typically
phrased on idempotent algebras, yields a prediction on the CSP complexity of all structures via a theorem [7] showing
that each structure B has the same CSP complexity as a structure B′ whose associated algebra is idempotent. The
mapping from B to B′ does not preserve the complexity of the problems studied here, and indeed, there are examples
of two-element structures B such that our hardness result applies to B–the equivalence and containment problems on
B are Π

p
2 -complete–but B′ does not admit the unary type and indeed has a polynomial-time tractable CSP [5]. Our

new result requires establishing a deeper understanding of the identified algebras’ structure, some of which admit a
tractable CSP, in order to obtain hardness.

Our second hardness result (Section 4) shows that for any structure B, if the variety V(AB) is not congruence
modular, then the equivalence and containment problems are coNP-hard. Previous work identified one most gen-
eral condition for the tractability of the equivalence and containment problems: if the algebra has few subpowers–a
combinatorial condition [13, 9] involving the number of subalgebras of powers of an algebra–then these problems
are polynomial-time tractable [5, Theorem 7]. This second hardness result appears to perfectly complement this
tractability result: there are no known examples of algebras AB (of structures B having finitely many relations) that
are not covered by one of these results, and in fact the Edinburgh conjecture predicts that none exist, stating that every
such algebra AB that generates a congruence modular variety also has few subpowers. Concerning this conjecture, it
should be pointed out that the resolution of the Zadóri conjecture, a closely related conjecture of which the Edinburgh
conjecture is a generalization, was recently announced by Libor Barto [14]. The Edinburgh conjecture is of current
interest, with recent work presented by Ralph McKenzie and colleagues. We also point out that this conjecture (as
with the Zadóri conjecture) is purely algebraic, making no references to notions of computation.

In summary, up to polynomial-time computation, we completely resolve the complexity of the studied problems
on all finite structures, showing a P/coNP-complete/Πp

2 -complete trichotomy–modulo two conjectures; one is
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computational and one is algebraic, and for each there is both highly non-trivial supporting evidence and current
investigation. The coNP/Π

p
2 -complete dichotomy is presented in Section 3 (see Theorems 4 and 5) and the P/coNP-

hard dichotomy is presented in Section 4 (see Theorems 7 and 8).

2. Preliminaries

Here, a signature is a set of relation symbols, each having an associated arity; we assume that all signatures are of
finite size. A relational structure over a signature σ consists of a universe B and, for each relation symbol R ∈ σ, a
relation RB ⊆ Bk where k is the arity of R. We assume that all relational structures under discussion have universes of
finite size. A primitive positive formula (pp-formula) on σ is a first-order formula formed using equalities on variables
(x = x′), atomic formulas R(x1, . . . , xk) over σ, conjunction (∧), and existential quantification (∃).

We now define the problems that will be studied.

Definition 1. We define the following computational problems; in each, an instance consists of a relational structure
B and a pair (φ, φ′) of pp-formulas over the signature of B having the same set of free variables X.

• PPEQ: decide if φ and φ′ are equivalent, that is, whether for all f : X → B, it holds that B, f |= φ iff B, f |= φ′.

• PPCON: decide if φ is contained in φ′, that is, whether for all f : X → B, it holds that B, f |= φ implies
B, f |= φ′.

For every relational structure B, we define PPEQ(B) to be the problem PPEQ where the structure is fixed to be B;
hence, an instance of PPEQ(B) is just a pair (φ, φ′) of pp-formulas. We define the family of problems PPCON(B)
analogously.

We now identify some basic complexity properties of these problems. First, the PPEQ and PPCON problems
are contained in Π

p
2 ; this is straightforward to verify. Next, there is a direct reduction from PPCON(B) to PPEQ(B).

Throughout the paper, the notion of reduction used is polynomial-time many-one reducibility.

Proposition 1. For each structure B, the problem PPCON(B) reduces to the problem PPEQ(B).

Proof. The reduction, given an instance (φ, φ′) of PPCON(B), outputs the instance (φ, φ ∧ φ′) of PPEQ(B).

We now review the relevant algebraic concepts to be used. An algebra is a pair A = (A, F) such that A is a
nonempty set, called the domain or universe of the algebra, and F is a set of finitary operations on A. Let A = (A, F)
be an algebra; a term operation of A is a finitary operation obtained by composition of (1) operations in F and (2)
projections on A, and a polynomial operation is a finitary operation obtained by composition of (1) operations in F,
(2) projections on A and (3) constants from A. An operation f (x1, . . . , xn) on A is said to be idempotent if the equality
f (a, a, . . . , a) = a holds for all a ∈ A. An algebra A is idempotent if all of its term operations are.

Let B be a nonempty set, let f be an n-ary operation on B, and let R be a k-ary relation on B. We say that f
preserves R (or f is a polymorphism of R), if for every length n sequence of tuples t1, . . . , tn ∈ R, denoting the tuple ti
by (ti,1, . . . , ti,k), it holds that the tuple

f (t1, . . . , tn) = ( f (t1,1, . . . , tn,1), . . . , f (t1,k, . . . , tn,k))

is in R. We say that a relation R is compatible with a set of operations if it is preserved by all of the operations. We
extend this terminology to relational structures: an operation f is a polymorphism of a relational structure B if f is a
polymorphism of every relation of B. We use Pol(B) to denote the set of all polymorphisms of a relational structure
B, and use AB to denote the algebra (B,Pol(B)). Dually, for an operation f , we use Inv( f ) to denote the set of all
relations that are preserved by f , and for a set of operations F, we define Inv(F) as

⋂
f∈F Inv( f ). We will make use of

the following result connecting the Pol(·) and Inv(·) operators to pp-definability.

Theorem 1. (Geiger [15]/Bodcharnuk et al. [16]) Let B be a finite relational structure. The set of relations Inv(Pol(B))
is equal to the set of relations that are pp-definable over B.
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We associate to each algebra A = (A, F) a set of problems PPEQ(A), namely, the set containing all problems
PPEQ(B) where B has universe A and F ⊆ Pol(B). We define PPCON(A) similarly. For a complexity class C, we say
that the problem PPEQ(A) is C-hard if PPEQ(A) contains a problem PPEQ(B) that is C-hard. We define C-hardness
similarly for PPCON(A).

Theorem 2. Let B be a finite relational structure, and let C be a complexity class closed under polynomial-time
many-one reductions. The problem PPEQ(B) is C-hard if and only if PPEQ(AB) is C-hard. The same result holds for
PPCON(·).

Proof. The proof of [5, Theorem 2] applies to each of the problems.

The notion of a variety is typically defined on indexed algebras; a variety is a class of similar algebras that is
closed under the formation of homomorphic images, subalgebras, and products. For our purposes here, however, we
may note that the variety generated by an algebra A, denoted by V(A), is known to be equal to HS P({A}), where
the operator H (for instance) is the set of algebras derivable by taking homomorphic images of algebras in the given
argument set.

Theorem 3. Suppose that B ∈ V(A). Then, for every problem PPEQ(B) ∈ PPEQ(B), there exists a problem
PPEQ(B′) ∈ PPEQ(A) such that PPEQ(B) reduces to PPEQ(B′), and likewise for PPCON(·).

Proof. We first treat powers; suppose B = Ak. Consider a problem PPEQ(B) ∈ PPEQ(B), and let σ denote
the signature of B. Let σ′ be the signature that has the same symbols as σ, but where the arity of a symbol of
R ∈ σ′ is km, where m is the arity of R ∈ σ. Define B′ to be the structure whose relation RB′ contains the tuple
(a1

1, . . . , a
k
1, . . . , a

1
m, . . . , a

k
m) if and only if the tuple ((a1

1, . . . , a
k
1), . . . , (a1

m, . . . , a
k
m)) belongs to the relation RB. Clearly,

we have PPEQ(B′) ∈ PPEQ(A). To reduce an instance (φ, φ′) of PPEQ(B) to PPEQ(B′), we simply replace, in
each of φ, φ′, each variable v with a sequence of k variables v1, . . . , vk. It is straightforward to verify that the original
instance (φ, φ′) was a yes instance if and only if the new formulas are. The same reduction applies to PPCON(·).

In the case that B is a subalgebra or homomorphic image of A, the result is proved in [5, Proposition 4] for
PPEQ(·), and from the argumentation there it is clear that exactly the same reduction works for PPCON(·).

3. Unary Type

In this section, we present the first hardness result described in the introduction.
Our proof makes use of the detailed information on tame congruence theory provided in [6] and [17]. This theory

associates a typeset to a non-trivial finite algebra, which contains one or more of five types: (1) the unary type, (2) the
affine type, (3) the boolean type, (4) the lattice type, and (5) the semilattice type. By extension, a typeset is associated
to each variety, namely, the union of all typesets of finite algebras contained in the variety. A variety is said to admit
a type if the type is contained in its typeset, and is otherwise said to omit the type.

Theorem 4. Let B be a finite relational structure. If V(AB) admits the unary type, then PPEQ(B) and PPCON(B)
are Π

p
2 -hard.

As we now show, modulo the G-Set conjecture, the previous theorem implies a coNP/Π
p
2 -complete dichotomy for

the equivalence and containment problems.

Theorem 5. Let B be a finite relational structure over a finite signature. If the G-Set conjecture holds and V(AB)
omits the unary type, then both PPEQ(B) and PPCON(B) are contained in coNP.

Proof. Let B∗ be obtained from B by adding to it all relations of the form {b} for b ∈ B. If B is a finite relational
structure such that the variety generated by AB omits the unary type, then the variety generated by AB∗ also omits
the unary type. This follows from the fact that B∗ and B have the same set of idempotent polymorphisms (indeed,
the polymorphisms of B∗ are precisely the idempotent polymorphisms of B) and that whether or not a finite algebra
generates a variety that omits the unary type is determined by the idempotent term operations of the algebra (see
Theorem 9.6 (2) from [6]). Thus, since V(AB) omits the unary type, then so does V(A∗B) and so by the G-Set
conjecture, CSP(B∗) is in P. From this it follows that PPEQ(B) and PPCON(B) are in coNP: this is because deciding
if B, f |= φ for a pp-formula φ can be viewed as an instance of CSP(B∗) when the free variables of φ are fixed to
constants according to f .
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In order to prove Theorem 4, we will first embark on a study of varieties omitting the unary type (Section 3.1), and
establish the key algebraic lemma (Lemma 1). Then (Section 3.2), we establish the desired hardness result by reducing
from the containment problem over a boolean structure having constant polymorphisms, known to be Π

p
2 -complete

[5], to the containment problem of interest (Theorem 4).

3.1. Algebra

The following algebraic lemma is the key to the hardness result under consideration.

Lemma 1. Let B be a finite relational structure such thatV(AB) admits the unary type, and let C = ({0, 1}, {C1, . . . ,Cl})
be a relational structure whose relations contain the constant tuples. Then, there is a finite algebra A ∈ V(AB) and a
finite set

R = {D1, . . . ,Dl} ∪ {E1, . . . , Ek}

of finitary relations over A (where k = |A| and relation Ei has arity i), compatible with the operations of A, satisfying
the following.

Let A = (A,R). Let φ(x1, . . . , xm) be a pp-formula on C with quantified variables xm+1, . . . , xn. Define the pp-
formula φ′(x1, . . . , xm) over A by replacing each atomic formula Ci(z1, . . . , zr) in φ by Di(z1, . . . , zr), and conjoining
En(x1, . . . , xn) if n ≤ k, and ∧

1≤i1<···<ik≤n

Ek(xi1 , . . . , xik ), (1)

otherwise (n > k). Then,
(φ, ψ) ∈ PPCON(C) if and only if (φ′, ψ′) ∈ PPCON(A). (2)

Proof. The proof requires a certain amount of the theory of tame congruences and multitraces; for further background,
we refer the reader to [6] and [17] respectively.

If V = V(AB) admits the unary type, then by [6, Theorem 6.17 and Lemma 6.18] there exists a finite algebra A
inV and a congruence α on A such that: α covers 0A in Con (A); the type of the congruence pair (0A, α) is unary; and
the (0A, α)-traces are all polynomially equivalent to two-element sets. Fix such an algebra A and such a congruence α
on A, and choose some (0A, α)-minimal set U, and some (0A, α)-trace N = {0, 1} contained in U. In the sequel, n > 0.

For an n-ary relation R ⊆ Nn that contains the constant tuples, following [6, Definition 6.13], we define the n-ary
relation A(R) ⊆ An to be the universe of the subalgebra of An generated by R ∪ {(a, a, . . . , a) | a ∈ A}. We record the
following [6, Lemma 6.14(2) and Corollary 5.2(2)].

Fact 1. If M = {a, b} is a (0A, α)-trace and p(x) is a polynomial of A with p(0) = a and p(1) = b, then A(R) ∩ Mn =

p(R). Moreover, if (a1, . . . , an) ∈ A(R), then (ai, a j) ∈ α for all 1 ≤ i ≤ j ≤ n and if q(x) is a unary polynomial of A,
then (q(a1), . . . , q(an)) ∈ A(R).

Notice that in particular A(R) ∩ Nn = R. We define

En = A(Nn),

and we claim the following.

Fact 2. Let n > k. Then (a1, . . . , an) ∈ En iff (ai1 , . . . , aik ) ∈ Ek for all 1 ≤ i1 < · · · < ik ≤ n.

To see this, note that the projection of the relation En onto any k coordinates is equal to the relation Ek, and so
one direction of this claim can be seen to be true. In the other direction, since k = |A|, we can choose some sequence
1 ≤ ii < i2 < · · · < ik ≤ n such that for all 1 ≤ j ≤ n, a j = aim for some m ≤ k. If (ai1 , . . . , aik ) ∈ Ek then there is some
polynomial t(x1, . . . , xm) of A and k-tuples ~ui = (u1

i , . . . , u
k
i ) ∈ Nk, for 1 ≤ i ≤ m such that (ai1 , . . . , aik ) = t(~u1, . . . , ~um)

(with the operation t applied coordinate-wise to the ~ui). By the choice of the coordinates i j, the k-tuples ~ui can be
extended to n-tuples ~vi from Nn so that (a1, . . . , an) = t(~v1, . . . ,~vm), thereby showing that (a1, . . . , an) is in En.

Thus, for every n > k, the formula (1) is a pp-definition over A of the relation En ⊆ An.
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Now let C = ({0, 1}, {C1, . . . ,Cl}) be a relational structure whose relations contain the constant tuples. Let Di =

A(Ci) for i = 1, . . . , l and let
R = {D1, . . . ,Dl} ∪ {E1, . . . , Ek}.

Clearly, R is a finite set of finitary relations over A compatible with the operations of A. Finally, statement (2) follows
immediately from Proposition 2, ending the proof of this Lemma.

Our proof of the following Proposition appeals to the theory of multitraces [17] and to Facts 1 and 2. A multitrace
is a subset T of A of the form f (N,N, . . . ,N), where f is some polynomial of A and N is the (0A, α)-trace from the
Lemma. We record some relevant facts about multitraces in the following Theorem.

Theorem 6. (follows from [17, Theorem 3.10]) Let T be a multitrace, say T = f (N,N, . . . ,N) for some m-ary
polynomial f of A. There is a p-ary polynomial f ′(x̄) of A for some p ≤ m and some unary polynomials (called
coordinate maps) gi(x) of A, for 1 ≤ i ≤ p, such that

• T = f ′(N,N, . . . ,N) and gi(T ) ⊆ N for all i,

• for all x j ∈ N, and all i, gi( f ′(x1, . . . , xp)) = xi,

• for all x ∈ T, x = f ′(g1(x), . . . , gp(x)),

• the set N p is in bijective correspondence with T via the map that takes a p-tuple (n1, . . . , np) to f ′(n1, . . . , np).

Proposition 2. If φ(x1, . . . , xm) is a pp-formula over C, and φ′(x1, . . . , xm) is the pp-formula over A as in the statement,
then, where X = {x1, . . . , xm}: For every g : X → {0, 1},

C, g |= φ iff A, g |= φ′;

and, for every g : X → A,
A, g |= φ′ iff g ∈ A({g′ | C, g′ |= φ}).

Proof. Suppose that Y = {xm+1, . . . , xn} is the set of quantified variables of φ. For the first equivalence, if g : X →
{0, 1} and C, g |= φ is witnessed by the elements b j ∈ {0, 1}, m + 1 ≤ j ≤ n, then all of these elements are in
N and so (g(x1), . . . , g(xm), bm+1, . . . , bn) ∈ En. If some clause Ci(z1, . . . , zr) of φ holds for g and the b j’s, then by
construction Di(z1, . . . , zr) also holds for these elements. From this it follows that A, g |= φ′, using the same witnesses
b j, m + 1 ≤ j ≤ n.

Conversely, suppose that g : X → {0, 1} and A, g |= φ′ is witnessed by the elements b j ∈ A, m+1 ≤ j ≤ n. We make
use of a unary polynomial e(x) of A provided by Tame Congruence Theory with the properties that e(e(x)) = e(x)
holds on A, the range of e contains 0 and 1, and if a is any element of A that is α-related to 0 then e(a) ∈ {0, 1}. Since
each relation Di that appears as a clause in φ′ is closed under the unary operation e(x), applied coordinatewise (see
Fact 1), it follows that the elements e(b j), m + 1 ≤ j ≤ n also witness that A, g |= φ′. Here we use that since the
tuple (g(x1), . . . , g(xm), bm+1, . . . , bn) belongs to En, then so does the tuple (g(x1), . . . , g(xm), e(bm+1), . . . , e(bn)). We
also note that this implies that the e(b j)’s are all α-related to 0 and so belong to {0, 1}.

Finally, Fact 1 provides that Di ∩ {0, 1}p = Ci, where p is the arity of Ci, and from this it follows that the elements
e(b j), m + 1 ≤ j ≤ n, also witness that C, g |= φ. Thus the first equivalence has been established.

For the second equivalence, we can apply the first equivalence to conclude that for any g : X → A, g belongs to
A({g′ : X → {0, 1} | C, g′ |= φ}) if and only if it belongs to A({g′ : X → {0, 1} | A, g′ |= φ′}). So it will suffice to prove
that

A({g′ : X → {0, 1} | A, g′ |= φ′}) = {g : X → A | A, g |= φ′}.

to complete the proof.
The containment of the left hand side of this derived equality in the set {g : X → A | A, g |= φ′} follows after noting

that both sets in the equality are subuniverses of Am and that all of the generators of the subuniverse on the left hand
side are contained in the subuniverse on the right hand side. Here we use the fact that each relation Di of A contains
all constant tuples and so every constant m-tuple over A is a member of the subuniverse on the right hand side.
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For the remaining containment, assume that g : X → A is such that A, g |= φ′ and suppose that the elements bi ∈ A,
m + 1 ≤ i ≤ n witness this. Since (g(x1), . . . , g(xm), bm+1, . . . , bn) ∈ En then there is some multitrace T of A that
contains all of these elements. By Theorem 6, it follows that for some p > 0, there is some p-ary polynomial f ′ and
coordinate maps gi(x), 1 ≤ i ≤ p, that satisfy the properties stated in that theorem. In particular, T = f ′(N,N, . . . ,N)
and for all c ∈ T , c = f ′(g1(c), . . . , gp(c)).

From Fact 1 it follows that for any relation Di of A, with Di of arity q, if c j ∈ T , for 1 ≤ j ≤ q, and (c1, . . . , cq) ∈ Di,
then

(g j(c1), . . . , g j(cq)) ∈ (Di ∩ {0, 1}q) = Ci,

for any j. This is because for each coordinate map g j, we have that g j(T ) ⊆ {0, 1}. Extending this to our pp-formula
φ′, it follows that not only is (g j(g(x1)), . . . , g j(g(xm))) a solution, witnessed by g j(bl), m + 1 ≤ l ≤ n, but it is also a
member of {0, 1}m. So, each of g j ◦ g belongs to the generating set of the relation A({g′ : X → {0, 1} | A, g′ |= φ′}).

Since for each j, g(x j) = f ′(g1(g(x j)), . . . , gp(g(x j))) and A({g′ : X → {0, 1} | A, g′ |= φ′}) is closed under f ′,
applied coordinatewise, we conclude that g is also a member of this relation, as required.

3.2. Reduction
We now prove Theorem 4.

Theorem 4. By Theorem 4 and Lemma 4 from [5] it follows that there exists a Boolean relational structure C =

({0, 1}, {C1, . . . ,Cl}), whose relations contain the constant tuples, such that PPCON(C) is Π
p
2 -complete. Let A =

(A, {D1, . . . ,Dl, E1, . . . , Ek}) be the finite relational structure defined in terms of Lemma 1 over the universe A of
the finite algebra A ∈ V(AB). We describe a reduction from PPCON(C) to PPCON(A). Notice that A is such
that PPCON(A) ∈ PPCON(A), thus PPCON(B) is Π

p
2 -hard by Theorem 3; Π

p
2 -hardness of PPEQ(B) follows from

Proposition 1.
The reduction, given an instance (φ, ψ) of PPCON(C), returns an instance (φ′, ψ′) of PPCON(A), where φ′ and

ψ′ are defined from φ and ψ as in Lemma 1. The reduction is therefore correct, and polynomial-time since the
pp-definition of En over the relations in {E1, . . . , Ek} has size polynomial in n for every n ≥ 1.

4. Non-Congruence Modularity

In this section, we present the second hardness result described in the introduction.
An algebra A is said to be congruence modular, if its lattice of congruences satisfies the modular law:

∀x∀y∀z
[
x ≤ y→ x ∨ (y ∧ z) = y ∧ (x ∨ z)

]
.

A variety is said to be congruence modular if all of its members are congruence modular.

Theorem 7. Let B be a finite relational structure. IfV(AB) is not congruence modular, then PPEQ(B) and PPCON(B)
are coNP-hard.

The previous theorem implies, modulo the Edinburgh conjecture, a P/coNP-hard dichotomy for the equivalence
and containment problems.

Theorem 8. Let B be a finite relational structure over a finite signature. If the Edinburgh conjecture holds andV(AB)
is congruence modular, then PPEQ(B) and PPCON(B) are in P.

Proof. By the Edinburgh conjecture, the congruence modularity ofV(AB) implies that AB has few subpowers. Then,
we have from [5, Theorem 7] that PPEQ(B) and PPCON(B) are in P.

In order to prove Theorem 7, we will first embark on a study of varieties that fail to be congruence modular
(Section 4.1), and establish the key algebraic lemma (Lemma 2). We will then give a sequence of reductions to
establish the desired hardness result (Section 4.2): we first reduce from the problem of deciding whether a DNF is a
tautology, a known coNP-complete problem, to a certain comparison problem over lattices; we then reduce to a certain
entailment problem on 2-sorted relational structures derived from structures which we call “pentagons”; finally, we
reduce from this entailment problem to the containment problem.
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4.1. Algebra

Let A be a set. For binary relations θ, θ′ on A, the relational product θ ◦ θ′ is the binary relation defined by
{(a, b) | ∃c.(a, c) ∈ θ, (c, b) ∈ θ′}. We use θk to denote the k-fold relational product of θ with itself. We let Eq(A) denote
the complete lattice of equivalence relations on A, and we let 0A = {(a, a) | a ∈ A} and 1A = A2 denote the bottom and
top elements of Eq(A), respectively.

Proposition 3. Let A be a set such that |A| = m. Let θ1, . . . , θk ∈ Eq(A). It holds that θ1 ∨ · · · ∨ θk = (θ1 ◦ · · · ◦ θk)m.

Proof. It is immediate that (θ1 ◦ · · · ◦ θk)m ⊆ θ1 ∨ · · · ∨ θk.
If (a, b) ∈ θ1 ∨ · · · ∨ θk, then there exist e0, . . . , el ∈ A with l ≤ m such that e0 = a, (ei−1, ei) ∈ θ j for some

j ∈ {1, . . . , k}, and el = b. By the reflexivity of the θi, for all j ∈ {1, . . . , k} and c, d ∈ A, if (c, d) ∈ θ j, then
(c, d) ∈ θ1 ◦ · · · ◦ θk. Thus, (a, b) ∈ (θ1 ◦ · · · ◦ θk)l ⊆ (θ1 ◦ · · · ◦ θk)m.

A pentagon is a structure P over the signature {α, β, γ} containing three binary relation symbols such that αP, βP,
and γP are equivalence relations on P, and the following conditions hold in Eq(P):

• αP ≤ βP,

• βP ∧ γP = 0P,

• βP ◦ γP = 1P, and

• αP ∨ γP = 1P.

We remark that in the sequence of reductions that we give, we do not make explicit use of the last item in the definition
of a pentagon.

A pentagon P = (P, αP, βP, γP) can be naturally decomposed as a direct product P = B × C in such a way that βP

and γP are the kernels of the projections of P onto B and C, respectively. Each element b ∈ B induces, via αP, an
equivalence relation αb on C, namely

αb = {(c, c′) | ((b, c), (b, c′)) ∈ αP} ∈ Eq(C). (3)

In associating together two elements b, b′ ∈ B when αb = αb′ , one naturally obtains a partition of B into l ≥ 1 non-
empty blocks B1, . . . , Bl and equivalence relations α1, . . . , αl on C such that for all b ∈ B, it holds that αi = αb if and
only if b ∈ Bi. We say that a pentagon is interesting if the sequence α1, . . . , αl contains equivalence relations α j and
αk such that α j < αk holds in Eq(C); we say that a set of pentagons is interesting if it contains an interesting pentagon.

Let B be a finite relational structure. IfV = V(AB) is not congruence modular, then this can be witnessed in the
congruence lattice of the 4-generated free algebra inV. More precisely, let F4 be theV-free algebra freely generated
by a, b, c, and d and let α∗, β, and γ be the congruences of F4 generated by {(a,b)}, {(a,b), (c,d)}, and {(a, c), (b,d)}
respectively. If we set α = α∗ ∨ (β ∧ γ) then it follows ([18]) thatV will fail to be congruence modular if and only if
α < β and that in this case, the three congruences α, β, and γ provide a witness to the failure of the modular law in the
congruence lattice of F4.

By working over a suitable quotient of the algebra F4, we establish the following Lemma.

Lemma 2. Let B be a finite relational structure such thatV(AB) is not congruence modular. There is a finite algebra
A ∈ V(AB) having congruences α, β, and γ such that α < β, γ∧ β = 0A, and α∨ γ = β∨ γ. Furthermore, there exists
a finite interesting set of pentagons P, and a finite setD of finitary relations over A compatible with the operations of
A such that:

(i) If P = (P, αP, βP, γP) ∈ P, then P ⊆ A and αP = α ∩ P2, βP = β ∩ P2, and γP = γ ∩ P2.
(ii) For every k ≥ 1, there exists a k-ary relation Dk on A, such that Dk has a pp-definition over the relations in D

with size polynomial in k, and such that for all a1, . . . , ak ∈ A, (a1, . . . , ak) ∈ Dk, if and only if a1, . . . , ak ∈ P for
some P = (P, αP, βP, γP) ∈ P.
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Proof. As noted earlier in this subsection, since V = V(AB) is not congruence modular, then the congruences α, β,
and γ of F4 provide a witness to this. In general, β ∧ γ will be some non-trivial congruence of F4 and so we will
eventually take the quotient of F4 by β ∧ γ to obtain the desired algebra A and we will replace α, β, and γ by the
congruences α/(β ∧ γ), β/(β ∧ γ), and γ/(β ∧ γ) in the congruence lattice of A.

Let δ = β ∨ γ, a congruence of F4, and for each u ∈ F4, let [u] denote the δ-class that contains u.

Claim 1. 1. For each term t(x1, . . . , xm) of F4, the set t([a]m) is contained in a single δ-class, namely the class that
contains the element t(a, . . . , a) and each δ-class [u] is a union of sets of this form.

2. For each u ∈ F4, there is a unary term tu(x) such that [u] = [tu(a)]. The term tu is unique up to equality in V.
Consequently (u, v) ∈ δ if and only if the equation tu(x) = tv(x) holds inV.

3. The class [a] is equal to the set of all elements of the form t(a,b, c,d) where t is an idempotent term of V. If
u = t(a,b, c,d) is in [a] then t is an idempotent term.

Proof of Claim 1. For the first part of this claim, let t(x1, . . . , xm) be a term of F4. Since all elements of the set [a] are
δ-related and t is compatible with δ, then any two elements from t([a]m) are δ-related, and in fact are δ-related to the
element t(a, . . . , a). On the other hand, if u ∈ F4, then for some term t, u = t(a,b, c,d), since {a,b, c,d} generates F4,
and so u is contained in the set t([a]4).

For second part, if u ∈ F4 then it is equal to t(a,b, c,d) for some term t(x, y, z,w). Let tu(x) be the unary term
t(x, x, x, x). Since the free generators of F4 are all δ-related, it follows that the element tu(a) is δ-related to u and so
[u] = [tu(a)]. If (u, v) ∈ δ then tu(a) is δ-related to tv(a) and it follows from Lemma 3.6 of [19] that in fact tu(a) = tv(a)
and so the equation tu(x) = tv(x) holds inV.

The third part of this claim also follows directly from Lemma 3.6 of [19].

For a term t(x1, . . . , xm) of F4, let Ŝ [t] = t([a]m) and for any congruence θ of F4, let θt = θ∩ (Ŝ [t])2, the restriction
of θ to the set Ŝ [t].

Claim 2. Let t(x1, . . . , xm) be a term of F4 and let S = Ŝ [t].

1. If t is idempotent, then S = [a] and αt < βt. In general, S will be a proper subset of the δ-class that contains it.
2. αt ∨ γt = 1S ,
3. βt and γt permute,
4. at least one αt class is equal to a βt class,

Proof of Claim 2. If t is idempotent and u ∈ [a] then u = t(u, u, . . . , u) ∈ S . On the other hand, any element of the
form t(u1, u2, . . . , um) with ui ∈ [a] is δ-related to t(u1, u1, . . . , u1) = u1 ∈ [a] and so belongs to [a]. Since the pair
(c,d) ∈ β \ α (otherwise α = β) it follows that αt < βt when t is idempotent.

If u, v ∈ S then for some ui and vi from [a] we have u = t(u1, u2, . . . , um) and v = t(v1, v2, . . . , vm). Since
(ui, vi) ∈ δ = α ∨ γ for 1 ≤ i ≤ m it follows that (u, v) ∈ αt ∨ γt, i.e., αt ∨ γt = 1S .

We first show that βt and γt permute when t is x (or equivalently, when S = [a]). It is immediate, that if x,
y ∈ {a,b, c,d} then (x, y) ∈ βt ◦ γt. From this we can conclude that if u = s(a,b, c,d) is in [a] for some (idempotent)
term s, then (u, y) ∈ βt ◦ γt for any y ∈ {a,b, c,d}. If v = s′(a,b, c,d), for some idempotent term s′, is any other
member of S then

u = s′(u, u, u, u)(βt ◦ γt)s′(a,b, c,d) = v,

thereby showing that βt ◦ γt = 1S , or that βt and γt permute, in this case. For an arbitrary t the same conclusion can be
reached by noting that if u, v ∈ S , say u = t(u1, u2, . . . , um) and v = t(v1, v2, . . . , vm) for some ui, vi ∈ [a], then since
(ui, vi) ∈ βx ◦ γx, it follows that (u, v) ∈ βt ◦ γt.

We claim that the α class that contains a is equal to the β class that contains a. It will suffice to show that if
(a, u) ∈ β, then (a, u) ∈ α∗ ∨ (β∧γ). Since u ∈ [a] then there is some idempotent term s such that u = s(a,b, c,d). The
element s(a,b, a,b) is γ-related to u and α∗-related to a and hence is also β-related to u (since α∗ < β and (a, u) ∈ β).
But then we have that aα∗s(a,b, a,b)(β ∧ γ)u, as required.

For arbitrary t, let u = t(a, a, . . . , a) ∈ S . We claim that every element v of S that is βt-related to u is actually
αt-related to u. If v = t(v1, v2, . . . , vm) for some vi ∈ [a] then from the previous argument, we can find, for each i,
elements wi ∈ [a] such that (a,wi) ∈ α and (wi, vi) ∈ γ (since βx ◦ γx = 1[a]). The element w = t(w1,w2, . . . ,wm) is
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in S and is αt-related to u. We also have that (v,w) ∈ γt and so in fact (v,w) ∈ βt ∧ γt ≤ αt. Thus (u, v) ∈ αt, as
claimed.

For each k ≥ 1, let D̂k be the subuniverse of Fk
4 generated by [a]k. We establish the following for this set of

relations over F4. Let N = |F4|.

Claim 3. 1. For k > N, the relation D̂k(x1, . . . , xk) is equal to⋂
1≤i1<i2<···<iN≤k

D̂N(xi1 , . . . , xiN ).

Thus, D̂k has a pp-definition over D̂N of size polynomial in k.
2. For all k and all a1, . . . , ak ∈ F4, (a1, . . . , ak) ∈ D̂k if and only if {a1, . . . , ak} ⊆ Ŝ [t] for some term t of F4.

Proof of Claim 3. The first part of this claim can be proved in essentially the same manner that was used to prove
Fact 2 in Section 3.1. For the second part, a k-tuple (a1, . . . , ak) will be in D̂k if and only if it can be written as
t(~v1, . . . ,~vm) for some term t of F4 and some k-tuples ~vi from [a]k (since D̂k is the subuniverse of Fk

4 generated by [a]k)
if and only if {a1, . . . , ak} is a subset of t([a]m) for some term t if and only if {a1, . . . , ak} ⊆ Ŝ [t] for some term t.

Using the three previous claims we are in a position to conclude the proof of this Lemma. Since the set F4 is
finite, then we can select a finite number of terms ti of F4, 1 ≤ i ≤ p, with t1 = x, so that for any term t of F4, we have
Ŝ [t] = Ŝ [ti] for some i ≤ p. For each i ≤ p, let P̂i be the structure with universe Ŝ [ti] and relations αti , βti , and γti .

If we consider the natural map from F4 to A = F4/(β ∧ γ), then each of the relations D̂k maps to a relation Dk and
each of the structures P̂i maps to a structure Pi over A. If we use α, β, and γ to denote the congruences α/(β ∧ γ),
β/(β ∧ γ), and γ/(β ∧ γ), respectively, over A, then the Lemma follows, where P is the set of Pi, 1 ≤ i ≤ p, and D
is the set of relations Dk for 1 ≤ k ≤ N. We note that the pentagon P1 is interesting, since, by the second claim, the
α-class that contains a is equal to the β-class that contains a, and the α-class that contains c is a proper subset of the
β-class that contains this element.

4.2. Reductions

We now give a sequence of coNP-hardness results which ultimately culminate in our establishing Theorem 7.
In particular, we give two intermediate coNP-hardness results and then prove the desired theorem; for each of these
intermediate results, we explicitly describe the image of the respective reduction, as this facilitates our giving the next
reduction in the sequence.

From DNF-TAUTOLOGY to Lattice Inequality. A propositional formula is in disjunctive normal form (DNF) if it is
a finitary disjunction (∨) of finitary conjunctions (∧) of literals; a literal is a variable, x, or the negation of a variable,
x̄. The following problem is well-known to be coNP-complete.

Problem: DNF-TAUTOLOGY

Instance: A propositional formula φ in DNF.

Question: Is φ a tautology?

A lattice term t is an algebraic term over finitary joins and meets. The depth of t is the height of its syntactic tree.
Let L = (L,∧,∨) be a lattice. We say that L is nontrivial if |L| > 1. Let S ⊆ L. Relative to a set of variables X, an
S -assignment is a map f : X → S .

For a set of lattices L, we define the following computational problem.

Problem: DEPTH-4-TERM-INEQ(L)

Instance: A pair (t, t′) of lattice terms of depth ≤ 4.

Question: Does t ≤ t′ hold in all lattices L ∈ L?
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Hunt, Rosenkrantz, and Bloniarz [20] established the following coNP-hardness result for this problem.

Theorem 9. [20] Let L be a finite set of finite lattices containing a nontrivial lattice. Then, it holds that the problem
DEPTH-4-TERM-INEQ(L) is coNP-hard via a polynomial-time many-one reduction f from DNF-TAUTOLOGY sat-
isfying the condition: if (t, t′) is a no instance in the image of f , then for any lattice K ∈ L having elements a, a′ ∈ K
with a < a′, there is an {a, a′}-assignment witnessing t � t′ in K.

From Lattice Inequality to Pentagon Entailment. To each pentagon P, we associate a 2-sorted structure P2 having B
and C as first and second universe, respectively, where P = B × C according to the decomposition of P provided by
the equivalence relations βP and γP. The structure P2 is over signature {R} and has

RP2 = {(b, c, c′) ∈ B ×C ×C | b ∈ Bi ⇒ (c, c′) ∈ αi}. (4)

We will be interested in sorted pp-formulas over the signature {R}. Such formulas are required to have a sort (1 or
2) associated with each variable; the permitted atomic formulas are equality between variables of the same sort and
predicate applications having the form R(x, y, y′) where x has sort 1, and y and y′ have sort 2. We define the following
computational problem for each set P of pentagons.

Problem: 2-PENTAGON-ENTAILMENT(P)

Instance: A pair (φ, ψ) of sorted pp-formulas over the signature {R} having the same free variables for each sort.

Question: Does φ |= ψ over all structures P2 with P ∈ P?

Theorem 10. Let P be a finite set of finite pentagons containing an interesting pentagon. Then, the problem
2-PENTAGON-ENTAILMENT(P) is coNP-hard via a polynomial-time reduction f from DNF-TAUTOLOGY satis-
fying the condition: if (φ, ψ) is a no instance in the image of f , then φ 6|= ψ is witnessed over P2 for any interesting
pentagon P ∈ P.

Proof. For a pentagon P ∈ P, let P = B × C be its decomposition, and let α1, . . . , αl be the equivalence relations
on C associated to P. Let KP denote the sublattice of Eq(C) generated by α1, . . . , αl. We define L = {KP | P ∈
P}. Notice that L contains a nontrivial lattice, since there exists an interesting pentagon in P. Hence, the problem
DEPTH-4-TERM-INEQ(L) is coNP-hard by Theorem 9; let r denote the reduction given by this theorem.

Let t(x) be a lattice term of depth less than or equal to 4 with x = (x1, . . . , xn). By induction on the structure of t,
we show how to construct a pp-formula φt(x, y, y′), where the variables of x are of sort 1 and the variables y, y′ are of
sort 2. This translation has the property (*): for all b1, . . . , bn ∈ B and for all c, c′ ∈ C, φt(b1, . . . , bn, c, c′) holds in P2
if and only if (c, c′) is in the equivalence relation given by tKP (αb1 , . . . , αbn ).

• If t = xi, then φt(x, y1, y2) = R(xi, y1, y2). In this case, property (*) is straightforwardly verified from the
definition of RP2 .

• If t = t1∧· · ·∧ tk, then φt(x, y1, y2) = φt1 (x, y1, y2)∧· · ·∧φtk (x, y1, y2). In this case, property (*) is straightforward
to verify.

• If t = t1 ∨ · · · ∨ tk, we reason as follows. Let

m = max{|C| | P ∈ P, P = B ×C}. (5)

Let z0,k and zi,1, . . . , zi,k for i = 1, . . . ,m be variables such that z0,k = y1, zm,k = y2, and zi, j is a fresh variable of
sort 2 otherwise. Then, φt(x, y1, y2) is the pp-formula obtained by existentially quantifying the fresh variables
zi, j before the following formula:

m∧
i=1

φt1 (x, zi−1,k, zi,1) ∧
k∧

j=2

(
φt j (x, zi, j−1, zi, j)

) .

In this case, property (*) follows from Proposition 3.
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The desired reduction is the composition of the reduction r given by Theorem 9 with the mapping (t, t′)→ (φt, φt′ ).
We verify that the reduction is correct. Suppose that (t, t′) is a yes instance in the image of r. Then, t ≤ t′ holds in
all lattices KP with P ∈ P. It follows immediately from property (*) that φt |= φt′ over all pentagons P2 with P ∈ P.
Suppose now that (t(x1, . . . , xn), t′(x1, . . . , xn)) is a no instance in the image of r. Let P ∈ P be an interesting pentagon.
There exist b1, b2 ∈ B with αb1 < αb2 in KP. By Theorem 9, there exists an {αb1 , αb2 }-assignment g defined on
{x1, . . . , xn} such that t(g) � t′(g) in KP. Let h be the {b1, b2}-assignment on {x1, . . . , xn} naturally induced by g, and
let (c, c′) ∈ C × C be such that (c, c′) ∈ t(g) \ t′(g). From property (*), we have that φt 6|= φt′ is witnessed over P2 by
the assignment h, (c, c′).

It remains to show that the translation t → φt can be computed in polynomial time. Let s(t) denote the size |φt | of
a term t. We prove that for a bounded-depth term t, the size s(t) is polynomial in |t|, the size of t, which suffices. By
inspection of the translation t → φt, there exist natural numbers L, B, E that are polynomial in |t| such that

• for a term t = xi, it holds that s(t) ≤ L.

• for a term t = t1 ∧ · · · ∧ tk or a term t = t1 ∨ · · · ∨ tk, it holds that s(t) ≤ B(s(t1) + · · · + s(tk)) + E.

Now, we define the function u recursively as follows:

• u(0, n) = Ln.

• u(d + 1, n) = Bnu(d, n) + E.

We prove the following claim: for all terms t, it holds that s(t) ≤ u(d, n), where d is the depth of t and n is the
number of leaves (that is, the number of variable occurrences) of t. This suffices, as for each fixed d, the function u
can be viewed as a polynomial in L, B, E, and n.

For a term t = xi, we have d = 0 and n = 1, and that the claim holds is clear from our choice of L. Now, we
assume that the claim is true for a depth d ≥ 0, and we consider a term t = t1 ∧ · · · ∧ tk or a term t = t1 ∨ · · · ∨ tk having
depth d + 1. Let ni denote the number of leaves of ti, and let di denote the depth of ti; for each i, we have di ≤ d. Also
note that since each ti contains at least one leaf of t, we have k ≤ n. We have

s(t) ≤ B(s(t1) + · · · + s(tk)) + E

≤ B(u(d1, n1) + · · · + u(dk, nk)) + E

≤ B(u(d, n1) + · · · + u(d, nk)) + E

≤ Bnu(d, n) + E

= u(d + 1, n).

From Pentagon Entailment to Containment of pp-Formulas. We now prove Theorem 7.

Proof of Theorem 7. Let A = (A, α, β, γ,D) be the finite relational structure defined by the finite algebra A ∈ V(AB)
with universe A, the congruences α, β, γ ∈ Con (A), and the finite set of relations D from Lemma 2. Notice that A
is such that PPCON(A) ∈ PPCON(A). We claim that PPCON(A) is coNP-hard, which implies that PPCON(B) is
coNP-hard by Theorem 3. The coNP-hardness of PPEQ(B) follows from Proposition 1.

Let P = {P1, . . . ,P|P|} be the finite interesting family of pentagons in Lemma 2. We assume that P1 is the pentagon
whose universe is [a]/(β ∧ γ), the δ-class that contains the free generator a of F4, modulo the congruence (β ∧ γ).

Let φ be a sorted pp-formula, and let {x1, . . . , xn} and {y1, . . . , ym} be the variables of first and second sort in φ,
respectively. We let {x1, . . . , xn′ } and {y1, . . . , ym′ } be the free variables of first and second sort in φ, respectively, where
n′ ≤ n and m′ ≤ m. We construct a pp-formula φ′ on A, as follows. For each variable z in φ, we introduce a fresh
variable z′; z′ is existentially quantified in φ′ if and only if z is existentially quantified in φ. If φ contains the constraint
xi = x j for some 1 ≤ i, j ≤ n, then φ′ contains the conjunct β(x′i , x

′
j); if φ contains the constraint yi = y j for some

1 ≤ i, j ≤ m, then φ′ contains the conjunct γ(y′i , y
′
j); if φ contains the constraint R(xi, y j, yk) for some 1 ≤ i ≤ n and

1 ≤ j, k ≤ m, then φ′ contains the conjunct

(∃w′1)(∃w′2)(β(w′1, x
′
i ) ∧ β(w′2, x

′
i ) ∧ γ(w′1, y

′
j) ∧ γ(w′2, y

′
k) ∧ α(w′1,w

′
2)), (6)

12



where w′1 and w′2 are fresh variables; finally, φ′ contains the conjunct

∆n+m+k(x′1, . . . , x
′
n, y
′
1, . . . , y

′
m,w

′
1, . . . ,w

′
k), (7)

where ∆n+m+k is the pp-definition on A of the relation Dn+m+k as in Lemma 2 and {w′1, . . . ,w
′
k} is the set of fresh

variables introduced in conjuncts of type (6). We arrange φ′ so that the existential quantifiers introduced in conjuncts
of type (6) appear at the start of φ′.

The desired reduction is the composition of the reduction r given by Theorem 10 and the mapping (φ, ψ) 7→
(φ′, ψ′). The construction is feasible in polynomial time by Lemma 2. We show that the reduction is correct.

Let Pl be a pentagon in P specified as usual, so that Pl = Bl × Cl and Pl ⊆ A. Let f be a sorted assignment of
variables x1, . . . , xn′ in Bl and y1, . . . , ym′ in Cl, and let g be an assignment of variables x′1, . . . , x

′
n′ and y′1, . . . , y

′
m′ on

A. Say that f and g match (on Pl) if: g is an assignment in Pl = Bl × Cl; f (xi) = b if and only if g(x′i ) = (b, ·); and,
f (yi) = c if and only if g(y′i) = (·, c).

Claim 4. If g satisfies φ′ over A then there is some Pl ∈ P such that g is an assignment over Pl and such that if f is
the sorted assignment over Bl and Cl that matches g, then f satisfies φ over (Pl)2. Conversely, if Pl ∈ P and f is a
sorted assignment that satisfies φ over (Pl)2 and if g is any assignment over A that matches f , then g satisfies φ′ over
A.

Proof of Claim 4. (⇒) Suppose that g satisfies φ′ over A and let g′ be an extension of g to the quantified variables of
φ′ that satisfies each conjunct in φ′. In particular, the sequence of elements given by g′ satisfies the conjunct ∆n+m+k

and so belongs to the relation Dn+m+k. From Lemma 2 it follows that there is some l such that the elements of g′ all
lie in Pl. Let f be the sorted assignment matching g on Pl = Bl × Cl and let f ′ be the extension of f to the quantified
variables {xi, y j | 1 ≤ i ≤ n, 1 ≤ j ≤ m} in φ defined by f ′(xi) = b ∈ Bl if and only if g′(x′i ) = (b, ·), and f ′(y j) = c ∈ Cl

if and only if g′(y′j) = (·, c). We prove that f satisfies φ over (Pl)2, by checking that f ′ satisfies each conjunct of φ
over (Pl)2.

If g′ satisfies a conjunct β(x′i , x
′
j) in φ′, we want to show that f ′ satisfies the counterpart xi = x j in φ over (Pl)2.

By Lemma 2, βl = β ∩ (Pl)2, therefore, (g′(x′i ), g
′(x′j)) ∈ βl, say, g′(x′i ) = (b, ·) and g′(x′j) = (b, ·) for some b ∈ Bl. But

then f ′(xi) = f ′(x j) = b by the definition of f ′, and so f ′ satisfies xi = x j in φ over (Pl)2. The case of conjuncts of
the form γ(y′i , y

′
j) in φ′ is similar. If g′ satisfies a conjunct of the form in (6) in φ′, we want to show that f ′ satisfies

the counterpart R(xi, y j, yk) in φ over (Pl)2. Along the above lines, by direct inspection of (6), the following holds:
g′(x′i ) = (b, ·), g′(w′1) = (b, ·), and g′(w′2) = (b, ·) for some b ∈ Bl; g′(y′j) = (·, c1) and g′(w′1) = (·, c1) for some c1 ∈ Cl;
g′(y′k) = (·, c2) and g′(w′2) = (·, c2) for some c2 ∈ Cl; and, ((b, c1), (b, c2)) ∈ αl. This implies that, if b is in the rth block
of the partition of Bl defined as in (3), then (c1, c2) is in the rth congruence induced by αl. But then, by (4), f ′(xi) = b,
f ′(y j) = c1, and f ′(yk) = c2 imply ( f ′(xi), f ′(y j), f ′(yk)) ∈ R(Pl)2 , that is, f ′ satisfies R(xi, y j, yk) over (Pl)2.

(⇐) Conversely, suppose that the sorted assignment f satisfies φ over (Pl)2. Let g be any assignment on A
matching f on Pl, so that by definition, g(x′i ) = (b, ·) if and only if f (xi) = b ∈ Bl, and g(y′i) = (·, c) if and only if
f (yi) = c ∈ Cl. Let f ′ be an extension of f to the quantified variables of φ that satisfies each constraint in φ over
(Pl)2. Let g′ be an extension of g to the quantified variables x′n′+1, . . . , x

′
n, y
′
m′+1, . . . , y

′
m in φ′ on Pl = Bl ×Cl such that

g′(x′i ) = (b, ·) if and only if f ′(xi) = b and g′(y′i) = (·, c) if and only if f ′(yi) = c. Note that g′ does not assign values
to the fresh variables w′1’s and w′2’s arising by (6). Below we check that a suitable extension of g′ to such variables
satisfies each conjunct of φ′ over A, thus concluding that g satisfies φ′ over A.

Hence, we consider the other conjuncts in φ′, that correspond to constraints in φ by construction. If f ′ satisfies
the constraint xi = x j in φ, that is, f ′(xi) = f ′(x j) = b for some b ∈ Bl, then g′ satisfies the counterpart β(x′i , x

′
j) in φ′,

because g′(x′i ) = (b, ·) and g′(x′j) = (b, ·) by definition of g′ and βl = β∩ (Pl)2 by Lemma 2. The case of constraints of
the form yi = y j in φ is similar. If f ′ satisfies a constraint of the form R(xi, y j, yk) in φ, then by (4), if f (xi) = b is in
the rth block in the partition of Bl induced by αl, then ( f ′(y j), f ′(yk)) = (c1, c2) is in the rth congruence induced by αl.
Consider the conjunct ζ of the form in (6) occurring in φ′ by construction. We extend g′ to the existentially quantified
variables w′1 and w′2 in φ′ by letting g′(w′1) = (b, c1) and g′(w′2) = (b, c2). By direct inspection, this extension of g′

satisfies ζ. Finally, since all of the elements in the assignment g′ (extended to the variables w′i) lie in the subset Pl,
then by Lemma 2, the conjunct (7) is satisfied.

The claim is settled.
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Claim 5. If (φ, ψ) ∈ 2-PENTAGON-ENTAILMENT(P) then (φ′, ψ′) ∈ PPCON(A), and if (φ, ψ) is a no instance of
2-PENTAGON-ENTAILMENT(P) in the range of the reduction given by Theorem 10, then (φ′, ψ′) is a no instance of
PPCON(A)

Proof of Claim 5. Suppose that (φ, ψ) ∈ 2-PENTAGON-ENTAILMENT(P) and let g be any assignment of {x′i , y
′
j | 1 ≤

i ≤ n′, 1 ≤ j ≤ m′} that satisfies φ′ over A. By the previous claim, it follows that there is some Pl ∈ P such that g
is an assignment over Pl = Bl × Cl and such that if f is the sorted assignment over Bl and Cl that matches g, then f
satisfies φ over (Pl)2. Since (φ, ψ) is in 2-PENTAGON-ENTAILMENT(P) then f also satisfies ψ over (Pl)2 and then
by the claim, g must also satisfy ψ′ over A (since g matches f ). Thus (φ′, ψ′) ∈ PPCON(A).

Now suppose that (φ, ψ) is a no instance of 2-PENTAGON-ENTAILMENT(P) that lies in the range of the reduction
given by Theorem 10. Then, by the Theorem, φ 6|= ψ is witnessed over any interesting pentagon P ∈ P, and in particular
by the pentagon P1 and by some sorted assignment f over (P1)2. So, over (P1)2, f satisfies φ and does not satisfy ψ.
Let g be any assignment over A that matches f . By the previous claim, we conclude that g satisfies φ′ over A. We
argue by contradiction to show that g fails to satisfy ψ′. Under the assumption that g satisfies ψ′ over A, the previous
claim establishes that there is some pentagon Pl ∈ P such that g is an assignment over Pl and such that if f is the
sorted assignment over Bl and Cl that matches g, then f satisfies ψ over (Pl)2.

We claim that l = 1: Since f is a sorted assignment over (P1)2 and g matches f , then the elements of g lie in
[a]/(β∧γ), the universe of P1. The pentagon Pl provided by the previous claim has the property that the elements of g
all lie in Pl, and since P1 is the unique pentagon from P that contains elements from [a]/(β ∧ γ), it follows that l = 1.

Thus, f satisfies ψ over (P1)2, a contradiction, and so we conclude that g does not satisfy ψ′ over A, establishing
that (φ′, ψ′) is a no instance of PPCON(A).

Using Theorem 10, we conclude that PPCON(A) is coNP-hard, and the proof is complete.
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