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Abstract
Bergman showed that systems of projections of algebras in a variety will satisfy

a certain consistency condition if the variety has a near-unanimity term. The
converse of this theorem was left open. This paper investigates this open question,
and whether the Bergman Condition is equivalent to having a near-unanimity term
whose arity is a function on an integer k.

iii



Acknowledgments
I would like to thank Dr. Matthew Valeriote for his guidance, support, and

infinite patience (which was greatly tested). The completion on this paper was
due, in no small part, to his kindness and empathy. I am very fortunate to have
had such a wonderful supervisor.

Thank you to my parents, Nico and Lynda Verwer, for their love and constant
support. Thank you to Nurefsan for always believing in me, and being a pillar of
strength in moments of weakness.

iv



Contents
1 Introduction 1

2 Near Unanimity Terms 4

3 Baker-Pixley Theorem and Bergman(k) 5

4 Known Results 7

5 Computational Attempts 9

6 Direct Approach 10
6.1 Constructing the System of Projections . . . . . . . . . . . . . . . . 11
6.2 Proving Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Conclusion 15

8 Figures & Tables 16

v



M.Sc. – Michael Verwer; McMaster University– Department of Mathematics

1 Introduction
This paper was motivated by the result of George Bergman in his 1977 paper

[3]. In 1975 Baker and Pixley [1] showed an equivalence between varieties which
contain a (k + 1)-ary near unanimity term and varieties in which any subalgebra
of a direct product of algebras in V can be uniquely determined by its projections
on each k-fold subproduct. In his paper, Bergman furthered this with an exis-
tence result. Namely, that if a variety satisfied the conditions of the theorem of
Baker-Pixley, and for a collection of n algebras, a system of k-fold subproducts is
given; this system of k-fold subproducts is the system of projections of a single
n-fold product if and only if these subproducts are suitably "consistent" with each
other. Bergman(k) is the property that if a system is suitably consistent then it
is the projection of an n-fold product. The work in this paper is concerned with
strengthening this result; both whether it can be strengthened, and by how much.

For a detailed introduction to Universal Algebra, see [4], but here we will include
some necessary background and basic definitions.

Definition 1.1. A type of algebras is a set F of function symbols such that each
f ∈ F is assigned a nonnegative integer n, called the arity of f .

Definition 1.2. An algebra A of type F is an ordered pair 〈A,F 〉, where A is a
nonempty set called the universe of A, and F is a collection of finitary operations
of A (called the basic operations of A) indexed by F such that corresponding
to each n-ary function symbol f in F there is an n-ary operation fA on A. A
term operation, or simply term, of A is any operation on A which is built from the
composition of basic operations of A.

For example, a ring is an algebra 〈R,+, ·,−, 0〉 where the set of symbols {+, ·,−, 0}
is the type. Notice that 0 is in the type, this is because constants are considered
as nullary operations.

Definition 1.3. Let A and B be algebras of the same type. B is a subalgebra of A,
written B ≤ A, if B ⊆ A and every fundamental operation of B is the restriction
to B of the corresponding operation of A.

Definition 1.4. Given an algebra A define, for every X ⊆ A,

Sg
A

(X) =
⋂
{B | X ⊆ B and B is a subuniverse of A}.

We read Sg
A

(X) as “the subuniverse of A generated by X”.

Definition 1.5. A homomorphism of algebras of the same type, F , is a map
which preserves the fundamental operations of F . Direct products of algebras of
the same type are formed in the natural way. A variety, V , is a class of algebras
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that is closed under subalgebras, homomorphisms, and direct products. If A is an
algebra, we call V = HSP(A) the variety generated by A.

A common example of a variety is that of groups, HSP(G), whereG = 〈G, ·,−1 , 1〉.
It is interesting to note that the variety of abelian groups does not satisfy Bergman(k)
for any k as illustrated in [3].

Definition 1.6. Let A be an algebra of type F , and let θ be an equivalence
relation on A. Then θ is a congruence on A if θ satisfies the following compatibility
property:

For each n-ary function symbol f ∈ F and elements ai, bi ∈ A, if aiθbi, holds
for all 1 ≤ i ≤ n then

fA(a1, . . . , an)θfA(b1, . . . , bn)

holds as well.

The notion of congruences allow us to unify and generalize the notions of Normal
Subgroups in Group Theory and Ideals in Ring Theory via the following definition.

Definition 1.7. If θ is a congruence onA, then we can form the quotient algebra of
A by θ, written A/θ, as the algebra whose universe is A/θ and whose fundemental
operations satisfy

fA/θ (a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ

where a1, . . . , an ∈ A and f is an n-ary function symbol in F .

Indeed, if G is a group, θ a congruence on G, and N a normal subgroup of G
then we have the following construction:

1. 1/θ is the universe of a normal subgroup of G, and for a, b ∈ G we have
〈a, b〉 ∈ θ iff a · b−1 ∈ 1/θ.

2. If N is a normal subgroup of G, then the binary relation defined on G by

〈a, b〉 ∈ θ iff a · b−1 ∈ N

is a congruence on G with 1/θ = N .

A similar construction can easily be produced for congruences over rings, and
ideals.

2
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Definition 1.8. An identity of type F over X, for a set of variables X, is an
expression of the form

p ≈ q

where p and q are terms over X. An algebra A of type F satisfies an identity,

p(x1, . . . , xn) ≈ q(x1, . . . , xn)

for xi ∈ X if, for all a1, . . . , an ∈ A we have

p(a1, . . . , an) ≈ q(a1, . . . , an).

Identities are what allows Universal Algebra to describe any mathematical
structure precisely. Observe that for all of the algebras with the type {·,−1 , 1},
only those which satisfy the identities:

G1: x · (y · z) ≈ (x · y) · z

G2: x · 1 ≈ 1 · x ≈ x

G3: x · x−1 ≈ x−1 · x ≈ 1

are called groups. A class of algebras defined by the use of identities is called an
equational class, and a theorem by Birkhoff shows that being an equational class
is a necessary and sufficient condition for being a variety.

It will also be prudent to provide a basic introduction to lattices since the work
in this paper relies heavily on varieties with lattice operations. See (Burris &
Sankappanavar) for a more detailed introduction.

Definition 1.9. A non empty set L together with two binary operation ∧ and ∨
(read meet and join respectively) on L is called a lattice if it satisfies the following
identies:

L1: (a) x ∧ y ≈ y ∧ x
(b) x ∨ y ≈ y ∨ x (commutative laws)

L2: (a) x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z
(b) x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z (associative laws)

L3: (a) x ∧ x ≈ x
(b) x ∨ x ≈ x (idempotent laws)

3
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L4: (a) x ∧ (x ∨ y) ≈ x
(b) x ∨ (x ∧ y) ≈ x (absorption laws)

Example: Let L be the set of propositions, let ∨ as the logical connective OR,
and ∧ as the logical connective AND. Then L1 to L4 are well know properties of
propositional logic modulo logical equivalence.

Example: Let L = N, let ∨ denote the least common multiple, let ∧ denote
the greatest common divisor. Then L1 to L4 are easily verifiable.

There is an alternative definition of a lattice which uses the notion of posets
with ≤ as a partial order.

Definition 1.10. A poset L is a lattice iff for every a, b in L both sup{a, b} and
inf{a, b} exist in L.

If L is a lattice by Definition 1.9, we can convert it to a lattice by Definition 1.10,
and vice versa using the following two constructions.

1. If L is a lattice by the first definition, then define ≤ on L by a ≤ b iff
a = a ∧ b;

2. If L is a lattice by the second definition, then define the operations ∨ and ∧
by a ∨ b = sup{a, b} and a ∧ b = inf{a, b}.

Universal Algebra and Lattice theory share many connections. For example,
the set of congruences of an algebra, Con(A), form a lattice under inclusion, called
the congruence lattice of A. Furthermore, any algebra with a meet and (or) join
operation is a lattice (or semilattice), and can be visualized as such by using
construction 2 above. In the case of a join-semilattice, the partial order can be
induced by defining a ≤ b whenever a ∨ b = b. We will utilize this in a later
section.

2 Near Unanimity Terms
Definition 2.1. A near unanimity term is any term t(x1, . . . , xn) which satisfies
the following identities,

t(y, x, x, . . . , x) ≈ x

t(x, y, x, . . . , x) ≈ x

4
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. . .

t(x, x, . . . , x, y) ≈ x

NU terms define a Mal’cev condition for a variety, meaning we can discern
information about the structure of a variety simply by knowing it satisfies the
identities of an NU term. For example, if a variety V has a ternary NU term then
V is congruence-distributive [4, Theorem 12.3]. NU terms arise in many algebras.
For example, in lattices

m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

is an NU term. In general, for any variety with lattice operations, the n + 1-ary
term,

h(x0 . . . , xn) =
n∨
i=0

∧
j 6=i

xj

will always be a near unanimity term.

3 Baker-Pixley Theorem and Bergman(k)
For a variety of algebras, V , and Ai ∈ V, i ∈ {i, . . . , n}, let B ≤ ∏n

1 Ai be
a subalgebra. For I ⊆ {1, . . . , n} let πI : ∏n

1 Ai →
∏
i∈I Ai denote the natural

projection map so that πI ((a1, . . . , an)) = (ai | i ∈ I) and πI(B) = {πI(b̄) | b̄ ∈ B}.
For the sake of brevity, we will write πI(B) = BI when the context is clear.

Let

ΓB(k) = {πI(B) | I ⊆ {1, . . . , n}, |I| = k} .

We will say that Γ is a k-fold system of projections over Ai, 1 ≤ i ≤ n if,
for every subset I ⊆ {1, . . . , n}, |I| = k, Γ contains a unique set πI(S) for some
S ≤ ∏Ai.

ΓI will denote the set πI(S)

The natural question then is, under what conditions will Γ be of the form
ΓB(k) for some B ≤ ∏n

1 Ai? The Baker-Pixley Theorem provides us with part of
an answer. We will restate this theorem from [1] here:

Theorem 1 (Baker-Pixley Theorem). For a variety V and integer k ≥ 2, the
following conditions are equivalent:
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(i) V has a (k+1)-variable near unanimity term m(x0, . . . , xk).

(ii) In V, if A is a subalgebra of a direct product A1×. . .×Ar, k ≤ r <∞, then
A is uniquely determined by its images under the projections of A1× . . .×Ar
on all products ∏I Ai with I ⊆ {1, . . . r}, |I| = k.

(iii) In any algebra A ∈ V , if r congruences x ≡ aimodθi, 1 ≤ i ≤ r(k ≤ r),
are solvable k at a time, then they are solvable simultaneously.

(iv) For any algebra A ∈ V , integer n ≥ 1, and finite partial function f :
An → A, if the restriction of f to each subset of its domain with k or fewer
elements has an interpolating term operation, then so does f itself.

(v) f, as given in (iv), has an interpolating term operation if and only if all
subalgebras of Ak are closed under f (where defined).

Items (i) and (ii) of Theorem 1 provide us with a hint on how to approach
our previous question. Namely, in V and in the presence of a (k + 1)-ary near
unanimity term, B is uniquely determined by ΓB(k).

To see an application of the Baker-Pixley Theorem, we look to the algebra
〈Z,+〉. Consider the subalgebra

Sn =
{

(a1, . . . , an) |
∑

ai = 0
}
� Z

n.

Observe that for I = {1, . . . , n−1}, πI(Sn) = Z
n−1 since for any ā = (a1, . . . , an−1) ∈

Z
n−1, let an = −∑n−1

1 ai, then

ā′ =
(
a1, . . . , an−1,−

n−1∑
1
ai

)
∈ Sn.

However, for any J ⊆ {1, . . . , n} with |J | = n − 1, we have πJ(Zn) = πJ(Sn) =
Z
n−1. Thus we have found two distinct subalgebras of Zn which have the same

(n − 1)-fold projections, then by the Theorem of Baker-Pixley, we can conclude
that 〈Z,+〉 has no near-unanimity term of any arity.

Definition 3.1 (Consistency). Let Γ be a k-fold system of projections overAi, 1 ≤
i ≤ n. For J ⊆ {1, . . . , n}, Γ is consistent on J if for all I ⊆ J |I| = k and ā ∈ ΓI , ā
can be extended to some ā′ ∈ ∏i∈J Ai such that for all L ⊆ J, |L| = k, πL(ā′) ∈ ΓL.

For r ≥ k, Γ is r-consistent if Γ is consistent on J for all J ⊆ {1, . . . , n}, |J | = r.

If Γ is an r-consistent, k-fold system of projections as above, we will say that
Γ is C(k, r) or Γ |= C(k, r).
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This means that a k-fold system, Γ, over A1, . . . ,An, is said to be C(k, r) if
every k-tuple in Γ can be extended to an r-tuple that is “consistent” with each
k-fold projection.

Definition 3.2 (Bergman(k)). For k > 2, a variety V satisfies the Bergman(k)
condition if whenever Γ, a k-fold system of projections over algebras A1, . . . ,An ∈
V , is C(k, k + 1) then it is C(k, r) for all k < r ≤ n as well. We will sometimes
denote this as

C(k, k + 1) =⇒ C(k, n).

We are now ready to return to our previous question; under what conditions
will a k-fold system of projections, Γ, be of the form ΓB(k) for some B ≤ ∏n

1 Ai?

Claim. A k-fold system of projections, Γ, is C(k, n) if and only if Γ = ΓB(k) for
some B ≤ ∏n

1 Ai.

Proof. If Γ is C(k, n) then let

B = {ā = (a1, . . . , an) | πI(ā) ∈ ΓI ∀ I ⊆ {1, . . . , n}, |I| = k}

=
⋂
|I|=k

π−1
I (ΓI).

Clearly, πI(B) ⊆ ΓI for each I ⊆ {1, . . . , n}, |I| = k by definition.

Conversely, since Γ is C(k, n), then for each I ⊆ {1, . . . , n}, with |I| = k and
each ā′ ∈ ΓI , π−1

I (ā′) ⊆ B. So πI(B) ⊇ ΓI . Thus ΓB(k) = Γ. �

4 Known Results
In his paper, Bergman showed that if a variety, V , has a (k + 1)-ary NU term,

then any k-fold system of projections over n algebras from V is n-consistent so
long as it is (k + 1)-consistent. This means it satisfies Bergman(k). Notationally,
we will write this as:

(k + 1)-ary NU =⇒ Bergman(k). (1)

Below is a rephrased statement of Bergman’s Theorem from [3].

Theorem 2 (Bergman). For a variety, V , which has a (k + 1)-ary NU term,
A1, . . . ,An ∈ V , and when Γ is a k-fold system of projections over the Ai, and
positive integer k; Γ is n-consistent if and only if it is (k + 1)-consistent.
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Since Bergman first posed the converse to his theorem in [3], much work has
been done in the area. In his paper he showed that in the case of k = 2

[C(2, 3) =⇒ C(2, 4)] 6=⇒ ternary NU.

This leaves open the possibility that the stronger condition, Bergman(2), may be
enough to satisfy the converse of (1).

We wish to better understand which varieties satisfy Bergman(k). To that end,
this paper will explore whether there is a function, f(k), such that

Bergman(k) ⇐⇒ (f(k))-ary NU. (2)

In [2], Barto, Kozik, Tan, and Valeriote have shown that

Bergman(k) =⇒ [C(k, k + 1) =⇒ C(k, k + 2)] =⇒ (2k)-ary NU, (3)

A natural question is whether the converse

(2k)-ary NU =⇒ Bergman(k) (4)

is true in V as well.

[2] also complemented this in the locally finite case by showing

(k + 2)-ary NU =⇒ Bergman(k). (5)

So for the case k = 2 we have that

(4)-ary NU ⇐⇒ Bergman(2), (6)

However, the result in (6) agrees with both f(k) = k + 2 and f(k) = 2k.

To help settle whether f(k) = k + 2 or 2k we will look at the case k = 3.
We will try to show that (4) does not hold, thus eliminating f(k) = 2k as a
potential candidate. To accomplish this, we need a variety of algebras which has
a 6-ary NU term, but no 5-ary NU term, and which does not satisfy Bergman(3);
in particular, fails C(3, 4) =⇒ C(3, 5). We had two strategies to accomplish this
goal. The first was to computationally construct a system of projections with the
necessary properties, ensuring they would be C(3, 4), then use software to test if
the system were C(3, 5). The second was a direct, algebraic approach. For the
sake of simplicity and without loss of generality, from this point forward we will
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assume that for any P = A1 × . . . × An, A1 = . . . = An = A so that P = A
n,

unless stated otherwise.

5 Computational Attempts
The main engine of our computational attempts was UACalc, a universal al-

gebra calculator; see [6] for more information on that software. Beginning with
a candidate algebra, A, the four generated free algebra would be constructed,
FA({a, b, c, d}); where {a, b, c, d} is a set of free generators. In order to build a sys-
tem of 3-fold projections over A5 that is guaranteed to be C(3, 4), we built copies
of the subpower of the cube of FA({a, b, c, d}) generated by, X that consists of all
triples of distinct members of {a, b, c, d}. See Lemma 1 for a proof that this will
indeed create a system that is C(3, 4). The proof lifts very simply to the general
case. With this system of projections in hand, we now use software developed by
Valeriote to test if the system is C(3, 5). It is important to note that an algebra
with many, or high arity, basic operations will result in a large free algebra.

We then spent time and effort to search for candidate algebras to apply the
above construction to. Each step in the above construction drastically increases
the size of the resulting algebra, so we needed to be judicious in our choice of
candidates. To keep things as simple as possible, we looked for algebras with
the smallest universe possible while having as few basic operations as necessary.
This led us to 2-element algebras. Luckily, the class of 2-element algebras has
been completely categorized. Emil Post compiled a complete list of all 2-element
algebras and their finite bases in what is now called, Post’s Lattice. Figure 2
below shows Post’s Lattice while Table 1 contains the descriptions and bases of
each 2-element algebra, up to equivalence. Looking through this list we see that
the family of algebras Sn10 = 〈{0, 1}, x ∧ (y ∨ z), hn〉, S5

10 in particular, suits our
needs.

We can also construct algebras with NU terms of a specific arity by using the
findings in [5]. They show that if V0 = HSP(A) and V1 = HSP(B) are idempotent
varieties of the same type; where V0 and V1 have m and n-ary NU terms respec-
tively, then V = HSP(A× B) will have an (m+ n− 1)-ary NU term. Using this,
we constructed the following candidate algebras:

1. A = A0 ×A1 where;

A0 = 〈{0, 1}, x ∧ y ∧ z ∧ w, maj(x, y, z)〉

A1 = 〈{0, 1}, maj(x, y, z, w), x ∧ y ∧ z〉

2. B = B0 ×B1 ×B2, where;
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B0 = 〈{0, 1}, maj(x, y, z), x ∨ y ∨ z, x ∧ y〉

B1 = 〈{0, 1}, x ∨ y ∨ z, maj(x, y, z), x ∨ y〉

B2 = 〈{0, 1}, x ∨ y ∨ z, x ∨ y ∨ z, x ∧ y〉

3. C = C0 × C1 × C2 × C3, where;

C0 = 〈{0, 1}, x ∧ y, x ∨ y, x ∨ y, x ∨ y〉

C1 = 〈{0, 1}, x ∨ y, x ∧ y, x ∨ y, x ∨ y〉

C2 = 〈{0, 1}, x ∨ y, x ∨ y, x ∧ y, x ∨ y〉

C0 = 〈{0, 1}, x ∨ y, x ∨ y, x ∨ y, x ∧ y〉

By the results in [5], each of these algebras has a 6-ary NU term and we verified that
they all had no 5-ary NU term. Unfortunately each time the direct product of two
algebras is taken, the universe of the resulting algebra increases multiplicatively
in the sizes of the factors. For example, |C| = 24 = 16.

For all of the candidate algebras that were considered, the systems generated
by them using the generating set, X = {distinct triples of {a, b, c, d}}, were far
too large to be feasible. We then constructed a collection of C(3, 4) generating
sets, one for each 3-fold projection, which were far smaller. Even so, the results
were inconclusive. At this point, the computational route was abandoned.

6 Direct Approach
Since the computational approach did not yield fruitful results, we changed tactics
and attempted to directly show that

6-ary NU 6=⇒ Bergman(3) (7)

by finding an algebra that has a 6-ary NU term but does not satisfy Bergman(3).
However, before attempting to show (7), we have shown a simpler result that
we hope will lift to the more complicated case. Once again, we turn to Post’s
Lattice and the Sn10 family of algebras, to find our counter-example. Note that if
n > m, then Sn10 < Sm10 with S10 at the bottom of the chain. This means that term
operations of Sn10 are also term operations of Sm10. So, if we can show that S10 is
not C(3, 5), then we hope the proof will lift to S6

10.
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6.1 Constructing the System of Projections
Let S10 = ({0, 1}, x ∧ (y ∨ z)) be an algebra, V = HSP (S10) the variety

that it generates, and F10 = FV ({a, b, c, d}) the four generated free algebra on
V . See Figure 1 below for a sketch of F10, considered as a partially ordered
set. Let P = A1 × . . . × A5, where each Ai = F10 so that P = (F10)5. Let
X = {(x0, x1, x2) | xi ∈ {a, b, c, d} and i 6= j =⇒ xi 6= xj}. For every (i, j, k) ∈
{1, . . . , 5}3, i, j, k distinct, let Pijk = Sg

F103(X), and let Xijk = X. Now let
G = {Xijk}(i,j,k). Finally, let Γ = {Pijk}(i,j,k), so that Γ is a system of 3-fold
projections over P.

a b c d

a ∧ b ∧ c ∧ d
Figure 1: Sketch of F10

Lemma 1. Γ is C(3, 4)

Proof. By construction, any 3-tuple inG is of the form (gi, gj, gk) with gi 6= gj 6= gk.
It is then easy to see that a 4-tuple which extends this 3-tuple is (gi, gj, gk, gl) where
gl is the generator which did not appear in {gi, gj, gk}. So clearly, on the level of
sets, G is C(3, 4).

By symmetry, to show that Γ is C(3, 4), it is enough to consider only the
coordinates 1,2,3,4.

Let (α, β, γ) ∈ P123. We must show there is a δ ∈ A4 with:

(α, β, δ) ∈ P124 (8)
(α, γ, δ) ∈ P134 (9)
(β, γ, δ) ∈ P234 (10)
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There exists a term, t123(x̄1, . . . , x̄k) and generators ḡ1, . . . , ḡk, where x̄i and ḡi are
3-tuples, with αβ

γ

 = t123

g11, . . . , gk1
g12, . . . , gk2
g13, . . . , gk3

 (11)

Since G is C(3, 4), there is ui ∈ A4, i = 1, . . . , k, such that (ḡi, ui) is consistent
with G. Let d = t123(u1, . . . , uk), so that

α
β
γ
δ

 = t123


g11, . . . , gk1
g12, . . . , gk2
g13, . . . , gk3
u1 . . . uk

 (12)

,

(α, β, δ) ∈ P124 by t123

g11, . . . , gk1
g12, . . . , gk2
u1, . . . , uk

 (13)

(α, γ, δ) ∈ P124 by t123

g11, . . . , gk1
g13, . . . , gk3
u1, . . . , uk

 (14)

and

(β, γ, δ) ∈ P124 by t123

g12, . . . , gk2
g13, . . . , gk3
u1, . . . , uk

 (15)

and so (α, β, γ) has been consistently extended to a tuple over the coordinates
{1, 2, 3, 4}.

Theorem 3. Γ is not C(3, 5)

We will prove Theorem 3 by identifying a triple (α, β, γ) over A1 × A2 × A3
that can not be extended to a consistent 5-tuple. i.e. we will show that there are
no u ∈ A4, v ∈ A5 such that (α, β, γ, u, v) is consistent. To do this we will need
to prove two lemmas.

Lemma 2. For a fixed (i, j, k), if (x0, x1, x2) ∈ Pijk then ∃ generators, g0, g1, g2
distinct in {a, b, c, d} with each xi ≤ gi.
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Proof. Clearly, for any triple of distinct generators we have that (gi, gj, gk) ≤
(gi, gj, gk). Let T = {(x0, x1, x2) ∈ F10

3 | ∃ gi, distinct with xi ≤ gi, for i =
0, 1, 2}, note that (gi, gj, gk) belongs to T.

Recall that for algebras A,B; if B ≤ A and X ⊆ B, then Sg(X) ≤ B ≤ A.
Note that Xijk ⊆ T . So it is enough to show that T is a subalgebra of F10

3. Let

x0
x1
x2

 ,
y0
y1
y2

 ,
z0
z1
z2

 ∈ T (16)

with xi ≤ gi for distinct generators g0, g1, and g2. Thenx0
x1
x2

 ∧

y0
y1
y2

 ∨
z0
z1
z2


 ≤

x0
x1
x2

 (17)

≤

g0
g1
g2

 (18)

which shows that T is closed under the basic operations of F10 and so is a subal-
gebra of F3

10.

Lemma 3. Let (g0, g1, g2, g3) be a permutation of {a, b, c, d} and s, t ∈ F10. If
(g0, s, t) ∈ Pijk, then g1 ∧ g2 ∧ g3 ≤ s and g1 ∧ g2 ∧ g3 ≤ t.

Proof. We will, prove this by induction on the length of the shortest term that
produced (g0, s, t) from generators. For the base case, let ḡ be any triple of distinct
generators. By symmetry, suppose ḡ = (a, b, c). Clearly b ∧ c ∧ d ≤ b and b ∧ c ∧
d ≤ c. Now suppose

h̄ =

g0
s
t

 =

x0
x1
x2

 ∧

y0
y1
y2

 ∨
z0
z1
z2


 (19)

and assume that the result holds for triples that arise from shorter terms. Then
g0 = x0 ∧ (y0 ∨ z0) =⇒ x0 = g0 and either y0 = g0 or z0 = g0. By symmetry,
suppose y0 = g0. Then,

13

http://www.mcmaster.ca/
http://www.math.mcmaster.ca/


M.Sc. – Michael Verwer; McMaster University– Department of Mathematics

g0
s
t

 =

g0
x1
x2

 ∧

g0
y1
y2

 ∨
z0
z1
z2


 (20)

By induction, the hypothesis holds for (g0, x1, x2) and (g0, y1, y2). So

g1 ∧ g2 ∧ g3 ≤ x1 and g1 ∧ g2 ∧ g3 ≤ x2 (21)
and g1 ∧ g2 ∧ g3 ≤ y1 and g1 ∧ g2 ∧ g3 ≤ y2 (22)

=⇒ g1 ∧ g2 ∧ g3 ≤ x1 ∧ (y1 ∨ z1) = s (23)
g1 ∧ g2 ∧ g3 ≤ x2 ∧ (y2 ∨ z2) = t (24)

as required.

6.2 Proving Theorem 3
We now have what we need to prove Theorem 3. Suppose the triple (a, b, c)

over P123 can be extended consistently to (a, b, c, u, v). If we apply Lemma 2 to
(a, b, u) ∈ P124, (a, c, u) ∈ P134, and (b, c, u) ∈ P234 we see that either u ≤ d or
u ≤ a ∧ b ∧ c since,

(a, b, u) ∈ P124 =⇒ u ≤ c or u ≤ d (25)
(a, c, u) ∈ P134 =⇒ u ≤ b or u ≤ d (26)
(b, c, u) ∈ P234 =⇒ u ≤ a or u ≤ d (27)

Suppose u � d, then u ≤ a, u ≤ b, and u ≤ c =⇒ u ≤ a ∧ b ∧ c. So

u ≤ d or u ≤ a ∧ b ∧ c (28)

Similarly,

v ≤ d or v ≤ a ∧ b ∧ c (29)

We now apply Lemma 3 to (a, u, v), (b, u, v), and (c, u, v) from P145, P245, and
P345 respectively. From this we see that

u ≥ b ∧ c ∧ d and a ∧ c ∧ d and a ∧ b ∧ d (30)
v ≥ b ∧ c ∧ d and a ∧ c ∧ d and a ∧ b ∧ d (31)
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Combining (28) and (30) along with (29) and (31) we see that,

u ≤ d and u � a, b or c (32)
v ≤ d and v � a, b or c (33)

since, if u ≥ b ∧ c ∧ d and a ∧ c ∧ d and a ∧ b ∧ d then u � a ∧ b ∧ c. Similarly
for v.

Which means, in the lattice of F10, both u and v lie below d, but not below a,
b, or c. This means that both u and v can not be the meet or join of any generator
other than d, i.e. u = d and v = d. Then (a, b, c, u, v) = (a, b, c, d, d) which is
clearly not a 5-consistent tuple, since consistency would fail for any projection
involving A4 and A5.

7 Conclusion
Bergman left the converse of his theorem open in [3], namely: if a system of

projections over algebras in a variety V satisfies his consistency condition then
does V have a (k + 1)-ary NU term. This work does not settle that question,
however it does shed light on the possibility that the Bergman(k) condition is
equivalent to the existence of an NU term, the arity of which is based on k. The
goal of this work was to narrow down the potential list of functions, f(k) for which,

Bergman(k) ⇐⇒ (f(k))-ary NU.

A likely candidate for f was f(k) = 2k, since it agrees with known results from
[2]. Most of our efforts were focused on eliminating this function as a possibility,
which required us to examine the case k = 3. This necessitated finding a variety
which has a 6-ary, but no 5-ary, NU term and which does not satisfy Bergman(3).
To that end, this work shows a simpler result, the proof of which we hope will lift
to the more complicated case. We have found an algebra, S10, in which the variety
it generates does not satisfy Bergman(3). Note that S10 does not have a 6-ary NU
term, but the algebra S5

10 does, and the clone of S10 is contained in that of S5
10. To

further our result, all that would be required is to expand the proofs of Lemmas
1, 2, and, 3 to ensure that they agree on the 6-ary NU basic operation.
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8 Figures & Tables

Figure 2: Graph of all closed classes of Boolean functions.
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Table 1: List of all closed classes of all Boolean functions along
with bases. Here, hn :=

∨
i x1 ∧ . . . ∧ xi−1 ∧ xi+1 ∧ . . . ∧ xn+1.
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