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Abstract

Bergman showed that systems of projections of algebras in a variety will
satisfy a certain property if the variety has a near-unanimity term. The
converse of this theorem was left open. This paper investigates this open
question, and shows that in a locally finite variety, Bergman’s Condition
implies congruence modularity.
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1 Introduction

The motivation behind this thesis is an open question posed by George
Bergman in a 1977 paper (see [3]). In this paper, he took the celebrated
theorem of Baker and Pixley on the existence of near-unanimity terms, and
considered a related condition in terms of systems of projections. He showed
that if a variety satisfies the equivalent conditions of the Baker-Pixley theo-
rem, any system of projections of algebras in the variety will satisfy a certain
condition. His speculation as to whether the converse was true lead to the
work in this thesis.

While investigating possible counterexamples to the converse of Bergman’s
Theorem, we found that Bergman’s condition concerning systems of pro-
jections ties into the property of congruence modularity. We present one
construction that shows that if a variety satisfies Bergman’s condition for
systems of 2-fold projections over 4 coordinates, the variety will be congru-
ence modular. Then, if we further suppose that our variety is locally finite,
we are able to present a different construction that shows the same result
for systems of k-fold projections. This gives partial verification of Bergman’s
original problem, because the existence of a near-unanimity term implies con-
gruence modularity. For both of these results, we assume that our variety
is idempotent. In fact, Bergman’s condition is a feature of the idempotent
reduct of a variety, and so this restriction is not essential.

The necessary background material in universal algebra can be found in
[5] or [14], but we will include several basic definitions here.

Definition 1. A type of algebras is a set F of function symbols such that
each f ∈ F is assigned a nonnegative integer n. We call n the arity of f .

Definition 2. An algebra A of type F is an ordered pair 〈A,F 〉 where
A is a nonempty set and F is a family of finitary operations on A (called
the basic operations of A) indexed by F such that corresponding to each
n-ary function symbol f ∈ F , there is an n-ary operation fA on A. The
term operations of A are those operations on A that can be obtained via
composition from the basic operations of A and the projection operations
on A. A nonempty class of algebras of the same type that is closed under
subalgebras, homomorphic images, and direct products is called a variety.

Definition 3. Let θ be an equivalence relation on an algebra A. We call
θ a congruence if, for each n-ary function f ∈ F , ai, bi ∈ A, the following
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holds: If aiθbi for all 1 ≤ i ≤ n, then f(a1, . . . , an)θf(b1, . . . , bn). The set of
congruences of an algebra forms a lattice under inclusion and is called the
congruence lattice of the algebra.

The relational product of two congruences θ1 and θ2 is the relation

θ1 ◦ θ2 = {(x, y) | ∃z((x, z) ∈ θ1 and (z, y) ∈ θ2)}.

Definition 4. An algebra A is congruence modular if the congruence lattice
of A is modular, i.e., for any congruences θ1, θ2, and θ3 of A,

θ1 ⊆ θ2 ⇒ θ1 ∨ (θ2 ∧ θ3) = θ2 ∧ (θ1 ∨ θ3).

Definition 5. An identity of type F over X, for X a set of variables, is an
expression of the form

p ≈ q

for terms p, q over X. An algebra A of type F satisfies an identity

p(x1, . . . , xn) ≈ q(x1, . . . , xn)

for xi ∈ X if for any a1, . . . , an ∈ A we have

pA(a1, . . . , an) = qA(a1, . . . , an).

Definition 6. (This was first described in [15], along with other intersection
properties.) Let r > 0 and Ai be algebras of the same type for 1 ≤ i ≤ r.
For k > 0 and B,C ≤

∏r
i=1 Ai, we say that B and C are k-equal, and write

B =k C, if for every I ⊆ {1, 2, . . . , r}, |I| ≤ k, the projections of B and C
onto the coordinates I are equal. If B =k

∏r
i=1 Ai, then we say that B is

k-complete with respect to
∏r

i=1 Ai.

We will write projIB to indicate the projection of B onto the coordinates
I.

Definition 7. An operation t on a set A is idempotent if, for all x ∈ A, we
have t(x, x, . . . , x) = x. An algebra is idempotent if all of its operations are.
The idempotent reduct of an algebra A is the algebra with universe A whose
basic operations consist of all of the idempotent term operations of A. We
define the idempotent reduct of a variety V to be the variety generated by
the idempotent reduct of the V-free algebra on countably many generators.
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2 The Baker-Pixley Theorem and Bergman’s

Condition

The work in this thesis was motivated by a result of Bergman, which, in
turn, was motivated by the Baker-Pixley theorem mentioned earlier. This
result, Theorem 2.1 in [1], is as follows:

Baker-Pixley Theorem. For a variety V and integer k ≥ 2, the following
conditions are equivalent:

(i) V has a (k+1)-variable term operation m(x0, . . . , xk) satisfying the
“near-unanimity” identities; i.e. m(x, . . . , x, y, x, . . . , x) = x for all
positions of y.

(ii) In V, if A is a subalgebra of a direct product A1×· · ·×Ar, k ≤ r <∞,
then A is uniquely determined by its images under the projections of
A1 × · · · × Ar on all products

∏
I Ai with I ⊆ {1, . . . , r}, |I| = k.

(iii) In any algebra A ∈ V , if r congruences x ≡ ai mod θi, 1 ≤ i ≤ r(k ≤ r),
are solvable k at a time, then they are solvable simultaneously.

(iv) For any algebra A ∈ V , integer n ≥ 1, and finite partial function
f : An → A, if the restriction of f to each subset of its domain with k
or fewer elements has an interpolating term operation, then so does f
itself.

(v) f, as given in (iv), has an interpolating term operation if and only if all
subalgebras of Ak are closed under f (where defined).

Let V be a variety, k ≤ r positive integers, and A1, . . . ,Ar be algebras
in V . For each I ⊆ {1, . . . , r} with |I| = k, suppose we are given a k-fold
projection SI ≤

∏
I Ai. For every J with |J | ≥ k, let SJ ≤

∏
J Aj be the

intersection, over all I ⊆ J, |I| = k, of the inverse image of SI under the
natural map

∏
J Aj →

∏
I Ai.

Definition 8. We call the given system of subalgebras (SI)|I|=k consistent
on J if for every k-element subset I ⊆ J , the projection of SJ in

∏
I Ai is all

of SI . This means that for every I ⊆ J , each k-tuple in SI can be extended
to a |J |-tuple in

∏
J Aj, each sub-k-tuple of which belongs to the appropriate

subalgebra SI′ , I
′ ⊆ J .
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We write C(e, f) if (SJ)|J |=e is consistent on all K of cardinality f , i.e.,
if each e-tuple can be extended to a consistent f -tuple.

Note that consistency in this sense is transitive: if C(d, e) and C(e, f)
hold, then C(d, f) holds.

Bergman’s Theorem (Theorem 1 in [3]). Let V be a variety, and k a
positive integer, satisfying the equivalent conditions of the Baker-Pixley Theo-
rem. For r ≥ k, let A1, . . . , Ar ∈ V , and for every subset I ⊆ {1, . . . , r}, |I| =
k, let SI be a subalgebra of

∏
I Si. Then there exists a subalgebra S ⊆

A1 × · · · × Ar whose projection in each
∏

I Si, |I| = k is SI (i.e., the given
system is consistent on {1, . . . , r}) if and only if the given system (SI)|I|=k is
consistent on every J with |J | = k + 1.

Bergman’s Condition. In other words, this theorem states that if a variety
V satisfies the equivalent conditions of the Baker-Pixley Theorem, then for
any r and any system of k-fold projections over r members of V , the system
will satisfy C(k, r) for all r ≥ k if and only if it satisfies C(k, k + 1), i.e.,

C(k, r)⇔ C(k, k + 1).

Now, if C(k, r) holds, then certainly C(k, k+1) will hold as well. To prove
the other direction, that C(k, k + 1) ⇒ C(k, r), Bergman showed that in a
variety satisfying the right conditions, C(e−1, e)⇒ C(e, e+ 1) for all e > k.
Using the transitivity property from above, this gives C(k, k+ 1)⇒ C(k, r).
Accordingly, we will call

C(k, k + 1)⇒ C(k, r) for all r > k

Bergman’s Condition for k. Now Bergman’s Theorem above states that
any variety satisfying the equivalent conditions of the Baker-Pixley Theo-
rem will also satisfy Bergman’s Condition for k. Bergman poses the question
of whether the converse of the theorem above is true, i.e., whether Bergman’s
Condition for k implies the existence of a (k + 1)-ary near-unanimity term.

3 Congruence Modular Varieties

Our key result relates Bergman’s Condition to congruence modularity.
In order to prove it, we will need several known results about congruence
modular varieties. First, we need the following theorem, 2.2 in [9]. This result
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first appeared in Day’s McMaster Masters thesis and was also published in
[7].

Theorem 1. A variety V is congruence modular if and only if for some n
there are terms m0(x, y, z, u), . . . ,mn(x, y, z, u) such that V satisfies

(i) m0(x, y, z, u) ≈ x,mn(x, y, z, u) ≈ u

(ii) mi(x, y, y, x) ≈ x, i ≤ n

(iii) mi(x, x, y, y) ≈ mi+1(x, x, y, y), for all even i < n

(iv) mi(x, y, y, z) ≈ mi+1(x, y, y, z), for all odd i < n.

Terms satisfying these requirements are called Day terms.

These equations imply that Day terms are idempotent. Hence, congru-
ence modularity is a feature of the idempotent reduct of a variety.

Consider the following condition on an algebra A with α, β, γ ∈ Con(A):

(∗) Let a, b, c, d ∈ A, (a, b), (c, d) ∈ β,
(a, c), (b, d) ∈ γ, and γ ∧ β ⊆ α.

Then (a, b) ∈ α⇒ (c, d) ∈ α. , i.e.,

a
γ

β α

c

b d

implies

a
γ

β α

c

b d

(where parallel lines are assumed to have the same label).

The Shifting Lemma (2.4 in [9]). For a variety, condition (*) is equiva-
lent to congruence modularity.

5
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Proof. Sufficiency. Suppose A is congruence modular. Then

β ∧ (γ ∨ (β ∧ α)) = (β ∧ γ) ∨ (β ∧ α).

Since cγa(β ∧ α)bγd and β ∧ α ⊆ α,

(c, d) ∈ β ∧ (γ ∨ (β ∧ α))

⇒ (c, d) ∈ (β ∧ γ) ∨ (β ∧ α) ⊆ α.

Necessity. Suppose (*) holds in a variety V . Let FV(x, y, z, u) be the free
V-algebra generated by {x, y, z, u} and let

β′ = Cg(x, u) ∨ Cg(y, z),

γ′ = Cg(x, y) ∨ Cg(z, u),

α′ = Cg(y, z).

By (*), (x, u) ∈ α′, so (x, u) ∈ α′ ∨ (β′ ∧ γ′). Now we show that our variety
has Day terms m0(x, y, z, u), . . . ,mn(x, y, z, u).

The fact that (x, u) is in α′ ∨ (β′ ∧ γ′) implies that, for some n, there are
elements

wo = x,w1, . . . , wn = u ∈ FV(x, y, z, u)

such that wi(β
′ ∧ γ′)wi+1 if i is even and wi(α

′)wi+1 if i is odd. Let x =
m0(x, y, z, u),m1(x, y, z, u), . . . ,mn(x, y, z, u) = u be the terms representing
w0, w1, . . . , wn, i.e. wi = mF

i (x, y, z, u). Clearly, condition (i) above is satis-
fied. Now, since α′ ⊆ β′, all the wi’s are in the same β′ class. So we have
xβ′mF

i (x, y, z, u)β′mF
i (x, y, y, x), and since β′ restricted to the subalgebra

generated by x and y is trivial, x = mF
i (x, y, y, x). Hence, x ≈ mi(x, y, y, x)

holds in V , and so (ii) is satisfied. Similarly, (iii) and (iv) hold in V .

4 Bergman’s Condition and The Idempotent

Reduct of a Variety

We will establish that Bergman’s Condition for k is a feature of the
idempotent reduct of a variety. The following theorem is an extension of

6
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Bergman’s observation in the final section of [3], which involved the case
where k = 2.

Theorem 2. Let V̂ be the idempotent reduct of a variety V. Then V̂ satisfies
Bergman’s Condition for k (i.e. C(k, k + 1) ⇒ C(k, r) for all r > k) if and
only if V does.

Proof. One direction is immediate: if V̂ satisfies Bergman’s Condition for k,
then V will as well, because any system of k-fold projections in V can be
realized by one in V̂ .

Suppose V satisfies Bergman’s Condition for k and let Âi ∈ V̂ for i ∈
{1, . . . , r}. Let ŜI , I ⊂ {1, . . . , r}, |I| = k be a system of projections over the
Âi’s that satisfies C(k, k + 1). We will show that it satisfies C(k, r).

Let Fi = FV(Âi), the free algebra in V generated by Âi, and let SI =
SgQ

i∈I Fi
(ŜI), the subalgebra of

∏
i∈I Fi generated by ŜI .

First, we will show that SI satisfies C(k, k + 1):

Let ~v ∈ SI for I = {1, . . . , k}. Then there exist a term t and vectors
~s1, ~s2, . . . , ~sm ∈ ŜI such that ~v = t(~s1, . . . , ~sm). Since ŜI satisfies C(k, k+ 1),
each of these ~sj’s can be extended consistently to any other coordinate, in

particular, to k+ 1. For each j, let ~sj
′ ∈ Ŝ{1,...,k+1} be an extension of ~sj that

is consistent with our system and let ~v ′ = t(~s1
′, . . . , ~sm

′). Then ~v ′ extends ~v
appropriately, i.e., ~v ′ ∈ SJ , for J = {1, 2, . . . , k + 1}. By symmetry, for any
I ⊂ J ⊂ {1, . . . , r}, |I| = k, |J | = k + 1, we can extend ~v ∈ SI to a ~v ′ ∈ SJ .
Hence, SI satisfies C(k, k + 1). By assumption, SI also satisfies C(k, r).

Let ~x ∈ ŜI , I = {1, . . . , k}, and let ~x ′ ∈ S{1,...,r} extend ~x to an r-tuple.
For all J ⊂ {1, . . . , r}, |J | = k, let ~xJ

′ be the projection of ~x ′ onto the coordi-
nates J . For each such J , there exists, for some m = mJ , ~sJ

1, . . . , ~sJ
m ∈ ŜJ

and a term tJ such that

~xJ
′ = tJ(~sJ

1, . . . , ~sJ
m).

Note that for J = I, ~xJ
′ = ~x, and we can take tJ to be the term ~x.

For all J,K ⊂ {1, . . . , r}, |J |, |K| = k, if j ∈ J ∩K, we have

tJ(~sJ
1, . . . , ~sJ

m)(j) = ~x ′(j)

= tK(~sK
1, . . . , ~sK

n)(j),

7
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where m = mJ and n = mK . We will call this condition ∗j,J,K .

If tJ and tK are idempotent, then this condition will also hold in V̂ , the
idempotent reduct of V . Then, we can use these terms to extend any k-
tuple in ŜI to a consistent r-tuple, and we’ll be done. Now, if j ∈ J and
j ∈ {1, . . . , k}, then ∗j,J,{1,...,k} gives

tJ(~sJ
1, . . . , ~sJ

m)(j) = ~x(j).

Since the ~sJ
i(j)’s are free variables, this gives that

tJ(x, x, . . . , x) = x

in V , and so tJ is idempotent. Now, for an arbitrary J , we can find a K with
K ∩{1, 2, . . . , k} nonempty and some j ∈ J ∩K. Since tK is idempotent and
∗j,J,K gives

tJ(~sJ
1, . . . , ~sJ

m)(j) = tK(~sK
1, . . . , ~sK

n)(j)

⇒ tJ(x, . . . , x) = tK(x, . . . , x)

= x

then tJ is idempotent as well.

5 Results

We will first describe a result concerning Bergman’s Condition for the
case k = 2, and then use a different construction to obtain a more general
result.

Lemma 1. In any idempotent variety V that is not congruence modular,
there is an algebra A = B × C, where B is generated by elements 0 and
1 ∈ B, and C is generated by elements 0 and 1 ∈ C, with congruences α, β,
and γ satisfying

(i) β and γ are the projection kernels of A onto B and C, respectively

(ii) α = CgA((a, b)), β = CgA((a, b), (c, d)), and γ = CgA((a, c), (b, d)),
where a = (0, 0), b = (0, 1), c = (1, 0), and d = (1, 1)

8
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(iii) γ ◦ β = 1A

(iv) ((1, 0), (1, 1)) /∈ α and ((0, i), (0, j)) ∈ α for all i, j ∈ C.

Proof. Suppose that V is not congruence modular. By the Shifting Lemma,
for some A ∈ V we can find a, b, c, d ∈ A and α, β, γ ∈ Con(A) such that
(a, b), (c, d) ∈ β, (a, c), (b, d) ∈ γ, γ ∧ β ⊆ α, (a, b) ∈ α and (c, d) /∈ α. Since
(a, b) ∈ α∧β and (c, d) /∈ α∧β, we can assume α ⊂ β. Furthermore, we can
assume that γ ∧ β = 0A by taking a suitable quotient of A. So we have:

•

α

β
~~~~~~~

•
γ

0A

@@@@@@@ •

~~~~~~~

•

We may replace A by SgA({a, b, c, d}), and α, β, and γ by CgA((a, b)),
CgA((a, b), (c, d)), and CgA((a, c), (b, d)), respectively, since we will have the
same configuration. Because (c, d) ∈ γ ∨ α, we must have β ⊆ γ ∨ α. Hence,
γ ∨ β = γ ∨ α. Now, since a/(γ ∨ β) contains {a, b, c, d} (and, in fact, a, b, c,
and d are all γ ◦ β-related to each other), a/(γ ∨ β) = A (since A is idem-
potent). Therefore, β ∨ γ = 1A. So in an idempotent variety, we have an
algebra A generated by a, b, c, d with congruences α, β, and γ as pictured in
Figure 1.

•1A

NNNNNNNNNNNNN

�����������������

•

α

β

•
γ

0A

=================

•

ppppppppppppp

•

Figure 1: α, β, and γ
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Claim 1. γ ◦ β = 1A.

Proof. Let x, y ∈ A. Then x = t1(a, b, c, d) and y = t2(a, b, c, d) for some
terms t1, t2 of A. It was noted that a, b, c, and d are all (γ ◦ β)-related to
a, and so, x = t1(a, b, c, d)(γ ◦ β)t1(a, a, a, a) = a. By symmetry, x is also
(γ ◦ β)-related to b, c, and d. Hence, x = t2(x, x, x, x)(γ ◦ β)t2(a, b, c, d) = y.
Hence, γ ◦ β = 1A.

It follows that β◦γ = 1A, and so β and γ are a pair of factor congruences.
Hence, by Theorem 7.5 in [5], A ∼= B×C, for B = A/β,C = A/γ. We can
assume that A = B×C.

If we consider the projection of B×C onto B or C, then, viewing β and
γ as kernels of the corresponding projection maps, we obtain

β = {(a, b) ∈ A2 | π1(a) = π1(b)}
= {((q, r), (s, t)) ∈ (B × C)2 | q = s}
= {((u, v), (u,w)) | u ∈ B and v, w ∈ C}.

Similarly, γ = {((u, v), (x, v)) | u, x ∈ B and v ∈ C}. We have assumed that
A = B×C for sets B and C, and so we can represent a, b, c, and d as ordered
pairs.

Taking B = µ and C = ν for (possibly infinite) cardinals µ, ν, we may
assume that a = (0, 0), b = (0, 1), c = (1, 0), and d = (1, 1). Since A is
generated by a, b, c, d, if we consider its projection onto its first or second
coordinates, we must have that B is generated by {0, 1} and C is generated by
{0, 1}. It follows that, since (a, b) = ((0, 0), (0, 1)) ∈ α, (0, 0)/α = (0, 0)/β =
{(0, j) | j ∈ C}.

We also have that γ ◦ α ◦ γ = 1A: For any (x1, x2), (y1, y2) ∈ A,

(x1, x2)γ(0, x2)α(0, y2)γ(y1, y2).

Also note that ((1, 0), (1, 1)) /∈ α ◦ γ ◦α: If ((1, 0), (1, 1)) ∈ α ◦ γ ◦α, then
there exist (x, y), (z, u) ∈ A such that

(1, 0)α(x, y)γ(z, u)α(1, 1).

This gives y = u and x = z = 1. Hence, we have

(1, 0)α(1, u)γ(1, u)α(1, 1),

10
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which implies (1, 1) and (1, 0) are in the same α-class as (1, u), and, thus,
α-related to each other. This is a contradiction.

To obtain the following result, we used java programs developed by Barry
Dewitt during his summer research term with Dr. Matthew Valeriote at Mc-
Master University. His software enabled us to find various counterexamples
for Bergman’s Condition for k in specific algebras that are not congruence
modular, which we were then able to extend to a more general setting.

Theorem 3. Le V be a variety. If Bergman’s Condition holds for k = 2 (in
particular, if C(2, 3)⇒ C(2, 4)), then V is congruence modular.

Proof. We will prove the contrapositive. Suppose V is not congruence mod-
ular. By Theorems 1 and 2, we may assume that V is idempotent. Then, we
have the situation presented in the previous lemma. Since sets defined by
primitive positive formulas using α, β, and γ are subalgebras of subpowers of
A, we can use them to build a system of projections (SI)|I|=2 over A4 that
is consistent on every 3-element subset of {1, 2, 3, 4}, but not consistent over
all four elements.

Let S{1,2} = S{3,4} = β, S{1,3} = α ◦ γ, S{1,4} = γ ◦ α, S{2,3} = 1A, and
S{2,4} = γ.

First we will show that if ((a1, b1), (a2, b2)) ∈ S{1,2} = β, then there exist
(a3, b3) and (a4, b4) such that all of the 2-fold projections of ((a1, b1), (a2, b2),
(a3, b3)) and ((a1, b1), (a2, b2), (a4, b4)) belong to the appropriate subsystem.
Because elements that are β-related must have the same first coordinate,
a1 = a2.

We can take (a3, b3) = (a1, b1) and (a4, b4) = (0, b2). Then ((a1, b1),(a1, b1))
∈ S{1,3} = α ◦ γ and ((a2, b2), (a1, b1)) ∈ S{2,3} = 1A. (a1, b1)γ(0, b1)α(0, b2),
so ((a1, b1), (0, b2)) ∈ γ ◦ α = S{1,4}.

Also, ((a2, b2), (a4, b4)) = ((a1, b2), (0, b2)) ∈ γ = S{2,4} because elements
with the same second coordinate are γ-related.

Next, if we are given ((a2, b2), (a3, b3)) ∈ S{2,3} = 1A, we can extend to
elements (a1, b1) and (a4, b4). Take (a1, b1) = (a2, b3) and (a4, b4) = (a3, b2).
Then

((a2, b3), (a2, b2)) ∈ β = S{1,2},

((a2, b3), (a3, b3)) ∈ γ ⊆ α ◦ γ = S{1,3},

((a2, b2), (a3, b2)) ∈ γ = S{2,4}, and

((a3, b3), (a3, b2)) ∈ β = S{3,4}.

11
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Continuing in this fashion, given

• ((a1, b1), (a3, b3)) ∈ S{1,3}, take (a2, b2) = (a1, b1) and (a4, b4) = (a3, b1);

• ((a1, b1), (a4, b4)) ∈ S{1,4}, take (a2, b2) = (a1, b4) and (a3, b3) = (a4, b1);

• ((a2, b2), (a4, b4)) ∈ S{2,4}, take (a1, b1) = (a2, b4) and (a3, b3) = (a4, b4);

• ((a3, b3), (a4, b4)) ∈ S{3,4}, take (a1, b1) = (0, b4) and (a2, b2) = (a4, b4).

Next, we show that (SI)|I|=2 is not consistent on {1, 2, 3, 4}. Consider
the element ((1, 0), (1, 1)) ∈ S{2,3} = 1A. We’ll show that there aren’t ele-
ments (x1, x2), (y1, y2) ∈ A such that ((x1, x2), (1, 0), (1, 1), (y1, y2)) projects
correctly. If such elements exist, then

((x1, x2), (1, 0)) ∈ S{1,2} = β

⇒ x1 = 1 and

((1, x2), (1, 1)) ∈ S{1,3} = α ◦ γ
⇒ (1, x2)α(1, z2)γ(1, 1) for some z2 ∈ C
⇒ (1, x2)α(1, 1).

Next,

((1, 0), (y1, y2)) ∈ S{2,4} = γ

⇒ y2 = 0 and

((1, 1), (y1, 0)) ∈ S{3,4} = β

⇒ y1 = 1.

So we must have

((1, x2), (1, 0)) ∈ S{1,4} = γ ◦ α, where x2 6= 0

⇒ (1, x2)γ(z1, x2)α(1, 0) for some z1 ∈ B
⇒ z1 = 1, so (1, x2)α(1, 0)

⇒ (1, 1)α(1, 0),

a contradiction. Hence, (SI)|I|=2 satisfies C(2, 3) but not C(2, 4).

Using a different construction, we are able to generalize this result for
any natural number k > 1, but only under a stronger hypothesis. In an

12
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idempotent variety, we know we can find an algebra A and congruences α, β,
and γ satisfying the properties listed in Lemma 1. For V locally finite, we
can take this one step further and assume that the α-classes are “uniform,”
in the following sense. Recalling that A = B × C, we can partition B into
sets P and Q such that for all p ∈ P, (p, c)α(p, d) for all c, d ∈ C, and for
all q ∈ Q, there are c and d in C with ((q, c), (q, d)) /∈ α. By the properties
listed in Lemma 1, we know that both P and Q are nonempty (since 0 ∈ P
and 1 ∈ Q).

Lemma 2. Assume V is locally finite. Then we may assume that for all
q1, q2 ∈ Q, and c1, c2 ∈ C,

(q1, c1)α(q1, c2)⇔ (q2, c1)α(q2, c2). (1)

Pictorially, we have a situation as in Figure 2.

c1

c2

...

p1 . . . q1 . . .

γ

β

α-classes

hhQQQQQQQQQ

��������������oo^^^^^^^^^^^^^^^^^

Figure 2: (P ∪Q)× C

Here, each box represents a different pair in B × C, where B = P ∪ Q,
and pi ∈ P, qi ∈ Q, and ci ∈ C for all i. The vertical partitions are β-classes,
the horizontal partitions are γ-classes, and the α-classes are subsets of the
β-classes.

Proof. Now, we obviously have at least one element, 0 ∈ B, in our set P .
We need to show that we can reduce to a situation in which Q satisfies (1),
such that B = P ∪Q.

Suppose we have elements q1, q2 ∈ Q and c1, c2 ∈ C such that (q1, c1)α(q1, c2)
and ((q2, c1), (q2, c2)) /∈ α. Consider A′ = {(a, b) | (a, b)(α ◦ γ)(q1, c1)}.

13
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c1

c2

q1 q2

•

•

•

• A′

}}zzzzzz

Figure 3: Reducing to a uniform α

Since A is idempotent, A′ is a subuniverse of A, and the restrictions of
α, β, and γ to A′ satisfy the same properties that were assumed to hold in
A.

Furthermore, our new algebra is the direct product of two algebras B and
C′, and if we consider P and Q defined relative to A′, we now have q1 ∈ P ,
and at least one element (namely, q2) in Q. We can repeat this process as
necessary until we have an algebra A with underlying set A = (P ∪Q)× C
and with the desired uniformity for α.

Note that this is the only point in our argument where we use the local
finiteness of V . It is likely that in the infinite case, we will still be able
to establish this sort of uniformity for α. If so, our result would extend to
non-locally finite varieties, and Theorems 3 and 4 would apply to all varieties.

Since (q1, c)α(q1, d) iff (q2, c)α(q2, d) for all q1, q2 ∈ Q, we will say that
c(αQ)d, or (c, d) ∈ αQ, if (q, c)α(q, d) for any q ∈ Q.

In obtaining the following result, the Universal Algebra Calculator com-
puter software ([8]) was used in order to test certain hypotheses for small
values of k.

Theorem 4. Let V be a locally finite variety. If Bergman’s Condition holds
for some k > 1, then V is congruence modular.

14
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Proof. By Theorems 1 and 2, we may assume that V is idempotent. Suppose
that V is not congruence modular. As established before, we have an algebra
A, with A = (P ∪Q)× C, satisfying (1) above.

Define T ⊆ Ak+1 to be the following union:

{((x1, y1), . . . , (xk+1, yk+1)) | xi ∈ P for some i, 1 < i < k + 1}
∪ {((x1, y1), . . . , (xk+1, yk+1)) | xi ∈ Q for all i, 1 < i < k + 1,

(y1, yk+1) ∈ αQ,
and x1 or xk+1 ∈ P}

∪ {((x1, y1), . . . , (xk+1, yk+1)) | xi ∈ Q for all i

and (yi, yj) ∈ αQ for all i, j}

We will refer to the first set above as X, the second as Y , and the third as
Z.

Claim 2. T is a subuniverse of Ak+1.

Proof. It will suffice to show that T is closed under any operation that
preserves α, β, and γ, since α, β, and γ are congruences of A. Let f be an
n-ary operation that preserves α, β, and γ. Since A = B×C, we can consider
f as a pair (f1, f2), where

f((a1, b1), . . . , (an, bn)) = (f1((a1, b1), . . . , (an, bn)), f2((a1, b1), . . . , (an, bn)))

for (ai, bi) ∈ A.

We can translate the preservation of α, β, and γ into conditions placed
on f1 and f2. Because (ai, bi)β(ai, ci) for all ai ∈ B, bi, ci ∈ C, f preserves β

⇔ f((a1, b1), . . . , (an, bn))βf((a1, c1), . . . (an, cn))

⇔ (f1((a1, b1), . . . , (an, bn)), f2((a1, b1), . . . , (an, bn)))

β(f1((a1, c1), . . . , (an, cn)), f2((a1, c1), . . . , (an, cn)))

⇔ f1((a1, b1), . . . , (an, bn)) = f1((a1, c1), . . . , (an, cn)).

Hence, f1 only depends on the first coordinates of a given tuple, so we
can simply write f1(a1, . . . , an) for ai ∈ B. Similarly, preserving γ implies

15
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that f2 only depends on the second coordinates. We can conclude that

f((a1, b1), . . . , (an, bn)) = (f1(a1, . . . , an), f2(b1, . . . , bn)).

Next, we see what it means for f to preserve α. Now, if (ai, bi)α(ai, b
′
i),

then we have

f((a1, b1), . . . , (an, bn))αf((a1, b
′
1), . . . , (an, b

′
n)).

If f1(a1, . . . , an) = q for some q ∈ Q, then, if we have (bi, b
′
i) ∈ αQ for all

ai ∈ Q,

f2(b1, . . . , bn)(αQ)f2(b
′
1, . . . , b

′
n)

(i.e., if ai ∈ P, bi and b′i can be anything). Hence, if f1(a1, . . . , an) ∈ Q, f2

does not depend (modulo αQ) on its variables yi with ai ∈ P .

For 1 ≤ i ≤ n, let ti be a member of T . We would like to show that
f(t1, . . . , tn) ∈ T . Without loss of generality, we may assume that there are
l < m ≤ n such that ti ∈ X if 1 ≤ i ≤ l, ti ∈ Y if l < i ≤ m and ti ∈ Z if
m < i.

For each i, we write ti as ((xi1, y
i
1), . . . , (x

i
k+1, y

i
k+1)). If f1(x

1
i , x

2
i , . . . , x

n
i ) ∈

P for some i with 1 < i < k + 1, then

f(t1, t2, . . . , tn) ∈ X ⊆ T.

Suppose f1(x
1
i , x

2
i , . . . , x

n
i ) ∈ Q for all i with 1 < i < k + 1. Since ti ∈ X for

1 ≤ i ≤ l, we have that, for each i, there exists a ji, 1 < ji < k + 1 such that
xiji ∈ P . So, for some p1, p2, . . . , pl ∈ P , we have

f1(p1, x
2
j1
, x3

j1
, . . . , xnj1) ∈ Q,

f1(x
1
j2
, p2, x

2
j2
, . . . , xnj2) ∈ Q,

f1(x
1
j3
, x2

j3
, p3, . . . , x

n
j3

) ∈ Q,
...

f1(. . . , x
l−1
jl
, pl, x

l+1
jl
, . . .) ∈ Q.

Hence, f2 does not depend on its first l coordinates, modulo αQ, and so
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(f2(y
1
1, y

2
1, . . . , y

n
1 ), f2(y

1
k+1, y

2
k+1, . . . , y

n
k+1)) ∈ αQ.

If f1(x
1
1, . . . , x

n
1 ) or f1(x

1
k+1, . . . , x

n
k+1) ∈ P , then our resulting k+ 1-tuple

is in Y and we are done. If both of these elements are in Q, then we will
show our resulting k + 1-tuple must be in Z. To do this, we only need to
show that (f2(y

1
i , . . . , y

n
i ), f2(y

1
j , . . . , y

n
j )) ∈ αQ for all i, j.

¿From above, we know that, modulo αQ, f2 does not depend on its first
l coordinates. Next, we will show that f2 also does not depend on any of its
coordinates, modulo αQ, between l + 1 and m, inclusive:

Since for each i, l + 1 ≤ i ≤ m, ti ∈ Y , we have xi1 or xik+1 ∈ P . Also,
both f1(x

1
1, . . . , x

n
1 ) and f1(x

1
k+1, . . . , x

n
k+1) ∈ Q. Hence, because f preserves

α, f2 does not depend on its first m coordinates, modulo αQ.
Now, for m+ 1 ≤ i ≤ n, (yij1 , y

i
j2

) ∈ αQ for all j1, j2. Hence, we have that
(f2(y

1
i , . . . , y

n
i ), f2(y

1
j , . . . , y

n
j )) ∈ αQ for all i, j, and so our element must lie

in Z. This proves our first claim.

Claim 3. T is k-complete with respect to Ak+1.

Proof. We need to show that T =k Ak+1. Since T ≤ Ak+1, for every
I ⊆ {1, 2, . . . , k + 1} with |I| ≤ k, the projection of any t ∈ T onto the
coordinates I will belong to

∏
i∈I Ai (i.e. projIT ⊆ projIA

k+1). Suppose
I = {1, 2, . . . , k}. Then, for any a = ((a1, b1), . . . , (ak, bk)) ∈ Ak, consider
the element t = ((a1, b1), . . . , (ak, bk), (p, b1)), where p is any element in P .
Then t ∈ T, and so a ∈ projIT.

If I = {1, . . . , j− 1, j+ 1, . . . , k+ 1} for some j between 1 and k+ 1, and
we’re given

a = ((a1, b1), . . . , (aj−1, bj−1), (aj+1, bj+1), . . . , (ak+1, bk+1)) ∈ Ak,

we can consider

t = ((a1, b1), . . . , (aj−1, bj−1), (p, b1), (aj+1, bj+1), . . . , (ak+1, bk+1)) ∈ T,

where, again, p ∈ P . Finally, for I = {2, . . . , k + 1} and

a = ((a2, b2), . . . , (ak+1, bk+1)) ∈ Ak,

we can consider

t = ((p, bk+1), (a2, b2), . . . , (ak+1, bk+1)) ∈ T.
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This shows that projIA
k+1 ⊆ projIT, for all I ⊆ {1, 2, . . . , k + 1} with

|I| ≤ k and so T =k Ak+1.
We will now define a system of projections over Tk+2 that satisfies C(k, k+

1) but not C(k, k + 2). This construction was first used by Valeriote in [16]
and is based on Bergman’s counterexample for the variety of abelian groups,
found in section 2 of [3].

Let (SI) be the system of k-fold projections of
∏k+2

i=1 Ti, where Ti = T
for all i, defined as follows: for I ⊆ {1, 2, . . . , k + 2}, |I| = k, take SI to be
the set of k-tuples (~vi | i ∈ I) from

∏
i∈I Ti such that

~vi(j) = ~vj(i) if i, j < k + 2 and i, j ∈ I and

~vi(i) = ~vk+2(i) if i < k + 2 and i, k + 2 ∈ I.

For any I, the set SI is a nonempty subuniverse of
∏

i∈I Ti.

Claim 4. The system (SI)|I|=k of k-fold projections is consistent on every
(k + 1)-element subset J of {1, 2, . . . , k + 2}, i.e., it satisfies C(k, k + 1).

Proof. To show this, we need to show that any k-tuple (~vi | i ∈ I) ∈ SI can
be extended to a (k + 1)-tuple that projects as necessary.

Suppose J = {1, 2, . . . , k+1} and I = {1, 2, . . . , k}. Let (~v1, . . . , ~vk) ∈ SI .
We need to find a ~vk+1 ∈ T such that the projection of (~v1, . . . , ~vk, ~vk+1) onto
any k-element set of coordinates I ′ ⊂ {1, 2, . . . , k + 1} belongs to SI′ .

Now, for some a ∈ A, (~v1(k + 1), . . . , ~vk(k + 1), a) ∈ T, since T is k-
complete with respect to Ak+1. Taking this vector as ~vk+1 gives us what we
need, as for any I ′ ⊂ {1, 2, . . . , k+1}, |I ′| = k, the projection of (~v1, . . . , ~vk, ~vk+1)
onto I ′ is in SI′ . This procedure will work for any I ⊂ J ⊂ {1, 2, . . . , k +
2}, |J | = k + 1 and |I| = k, and so the system satisfies C(k, k + 1).

Claim 5. The system (SI)|I|=k of k-fold projections of
∏k+2

i=1 Ti is not con-
sistent on {1, 2, . . . , k + 2}, i.e., it fails C(k, k + 2).

Proof. Choose elements c, d ∈ C such that (c, d) /∈ αQ. Suppose q ∈ Q and
p ∈ P . For 1 ≤ i ≤ k, let ~vi be the (k+1)-tuple with ~vi(i) = (q, d), ~vi(k+1) =
(q, c) and ~vi(j) = (p, c) otherwise. So, we have

~v1 = ((q, d), (p, c), (p, c), . . . , (p, c), (q, c)),

~v2 = ((p, c), (q, d), (p, c), . . . , (p, c), (q, c)),
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~v3 = ((p, c), (p, c), (q, d), . . . , (p, c), (q, c)),
...

~vk = ((p, c), (p, c), (p, c), . . . , (q, d), (q, c)).

We have ~vi ∈ T for all i, and (~v1, . . . , ~vk) ∈ SI , for I = {1, 2, . . . , k}. We will
show that this k-tuple cannot be extended to a (k + 2)-tuple that projects
appropriately onto each sub-k-tuple.

Any extension must have ~vk+1(i) = (q, c) and ~vk+2(i) = (q, d) for all
i, 1 ≤ i ≤ k. We also must have ~vk+1(k + 1) = ~vk+2(k + 1). Hence, for some
x ∈ B, y ∈ C, we have

~vk+1 = ((q, c), (q, c), . . . , (q, c), (x, y)),

~vk+2 = ((q, d), (q, d), . . . , (q, d), (x, y)).

But in order for these vectors to be in T, we must have (c, y) ∈ αQ and
(d, y) ∈ αQ, which contradicts (c, d) /∈ αQ. Hence, this system is not consis-
tent over k + 2 coordinates.

We can now put all this together to prove the theorem. We have shown
that in any locally finite, idempotent variety that is not congruence modular,
we can find a system of k-fold projections that satisfies C(k, k + 1) but not
C(k, k + 2), for k > 1. Hence, the variety will fail Bergman’s Condition for
any k > 1. Therefore, if a locally finite variety satisfies Bergman’s Condition
for some k > 1, it must be congruence modular.

6 Connections with the Constraint Satisfac-

tion Problem

Definition 9. An instance of the Constraint Satisfaction Problem (CSP) is
of the form P = (A, C), where

• A = (A1, A2, . . . , An) is a sequence of finite, nonempty sets, called the
domains of P , and

• C is a set of constraints {C1, . . . , Cq} where each Ci is a pair (Si, Ri)
with
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– Si a nonempty subset of {1, 2, . . . , n} called the scope of Ci, and

– Ri an |Si|-ary relation over (Aj | j ∈ Si), called the constraint
relation of Ci.

A solution to P is an n-tuple ~x over the sequence (Ai | 1 ≤ i ≤ n) such that
projSj

(~x) ∈ Rj for each 1 ≤ j ≤ q.
If V is a variety and the Aj’s are universes of algebras from V such that

each of the constraint relations Ri is the universe of a subalgebra of the
corresponding product of the Aj’s, then we say that P is an instance of the
CSP from V .

Note that this is a generalization of the typical one-sorted definition of
the Constraint Satisfaction Problem (see, for example, definition 2.2 in [4]) .
Each standard instance of the CSP can equivalently be expressed in the way
we’ve defined it here. The entire collection of Constraint Satisfaction Prob-
lems forms an NP-complete class of problems, but there are many tractable
subclasses. Finding such subclasses is an area of active research. For exam-
ples of this, see [4, 11, 12, 13].

Definition 10. For I ⊂ {1, . . . , n}, a partial solution of P over I is a tuple
~a = (ai | i ∈ I, ai ∈ Ai) such that for all Ci = (Si, Ri) ∈ C, projI∩Si

(~a) ∈
projI∩Si

(Ri).

Definition 11. An instance P satisfies the k-extendability property if: every
partial solution of P over k variables can be extended to a solution of P if
and only if every partial solution of P over k variables can be extended to a
partial solution over every other variable of P .

We can consider CSPs in algebraic terms, and translate Bergman’s Condi-
tion accordingly. Given a variety V and A1, . . . , An ∈ V , all finite, and given
a system S of k-fold projections over the Ai’s, S determines the following
instance of the CSP from V :

PS = ((A1, . . . , An), {CI | I ⊆ {1, . . . , n}, |I| = k}),

where CI = (I, SI). If V satisfies Bergman’s Condition for k, then, for the
above set-up, if for every I ⊆ {1, . . . , n}, |I| = k, j /∈ I, and ~a a partial
solution of PS over I, ~a can be extended to a partial solution of PS over
I ∪ {j}, then every partial solution of PS over a k-element set of coordinates
can be extended to a solution of PS. (Note that solutions of PS are exactly
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those n-tuples that are consistent with S, and partial solutions of PS over
some subset J correspond to members of SJ .) So, if V satisfies Bergman’s
Condition for k, then an instance P of the CSP from V will satisfy the
k-extendability property.

In fact, if we consider constraint relations with some bound k, there is no
loss of generality by considering instances of the form PS. Given P = (A, C)
such that the size of the scopes of the constraints in C are bounded by k,
for each I with |I| = k, let SI be the set of partial solutions of P over I.
For fixed k, finding SI is a polynomial-time problem, and so the instance PS
can be constructed from P in polynomial time. Note that if P is an instance
from a variety V , then PS will be as well.

Claim 6. P and PS have the same set of solutions.

Proof. Let ~x be a solution of P . Then, since projI~x ∈ SI , ~x is consistent
over S, and is a solution of PS. Next, suppose ~x is a solution of PS. Then,
projI~x is a partial solution of P over I, for all I, |I| = k, and so x will satisfy
all of the constraints of P , since each constraint has scope contained in some
I with |I| = k. Hence, ~x is a solution of P .

So now, our earlier result becomes:

Theorem 5. Let V be a locally finite variety and let k > 1. If all instances
of the CSP from V whose constraint scopes all have size at most k satisfy the
k-extendability property, then V is congruence modular.

7 Conclusion

The converse of Bergman’s Theorem was left open in [3]. Bergman’s
question was, essentially, whether Bergman’s Condition for k implies the
existence of a (k + 1)-ary near-unanimity term in a variety V . This work
does not settle that question, but it does show that Bergman’s Condition for
k implies congruence modularity. This would be consistent with a positive
answer to Bergman’s question.

In fact, our result has some further implications. In terms of tame con-
gruence theory (see [6] for an overview), Valeriote ([17]) showed that if a
locally finite variety satisfies Bergman’s Condition, it omits types 1,2, and
5. Combined with the result of this thesis, it then follows that if V is locally
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finite, then Bergman’s Condition for k implies congruence distributivity (see
[10]).

In work related to the Constraint Satisfaction Problem, Barto and Kozik
([2]) have claimed that in a locally finite variety with a 4-ary near-unanimity
term, C(2, 3)⇒ C(2, r) always holds for r > 2. If correct, this would give a
negative answer to Bergman’s question, as it implies that the two examples
posed in the final section of [3] by Bergman are, indeed, counterexamples to
the converse of Bergman’s Theorem.

It is not known whether the congruence distributivity of a variety V im-
plies that Bergman’s Condition holds in V for some k, which would indicate
that Bergman’s Condition characterizes congruence distributivity. It may be
possible to find examples of congruence distributive varieties with no near-
unanimity terms in which Bergman’s Condition for k is satisfied.

In terms of the Constraint Satisfaction Problem, and the extendability of
partial solutions, we can pose the following open question: in a congruence
distributive variety, is there some k for which this extendability property
holds?
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