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Abstract

Varieties can be classified based on the congruence properties of
the algebras contained in them. Also, they can be characterized by
the existence of conditions satisfied by the terms of the variety. Such
conditions are known as Maltsev conditions. Many known congruence
properties of varieties are shown to be equivalent to Maltsev condi-
tions. For example congruence permutability, congruence distributiv-
ity and congruence modularity are equivalent to Maltsev conditions
[Ber11]. This paper gives a summary of the known Maltsev conditions
for six families of varieties in the locally finite and the non-locally fi-
nite cases. For some varieties there exists much nicer characterizations
while for others the known Maltsev conditions cannot be simplified any
further.

1 Introduction

The following definitions can be found in [Ber11]. For more on the subject
see [Ber11].

Definition 1.1. An algebra is a pair 〈A,F 〉 where A is a nonempty set and
F = {fi : i ∈ I} is a family of operations on the set A indexed by some set I.
The set A is called the universe of the algebra and the fi are called the basic
operations of the algebra.

Examples 1.2. • Group: 〈G,◦, −1, e〉.

• Vector space over some field F : 〈V,+,-,0, cf : f ∈ F 〉.
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• Lattice: 〈L, ∨,∧〉. A lattice is an algebra with two binary operations
∨,∧ such that the following set of identities hold: x∨x ≈ x, x∨(y∨z) ≈
(x ∨ y) ∨ z, x ∨ y ≈ y ∨ x and x ∨ (x ∧ y) ≈ x and the dual identities
obtained by interchanging ∨ and ∧.

Remark 1.3. • Normal subgroups of a group G form a lattice:
〈NmlG,N1 ∨N2 = N1N2, N1 ∧N2 = N1

⋂
N2〉.

• Subspaces of a vector space V form a lattice:
〈SubV,A ∨B = A

⊕
B,A ∧B = A

⋂
B〉.

Definition 1.4. Let A be an algebra and let θ be a binary relation on A.

1. We say θ has the substitution property if for every basic operation
f on A, with n=arity of f, we have
x1θy1 & x2θy2 & · · · & xnθyn ⇒ f(x1, x2, . . . , xn)θf(y1, y2, . . . , yn).

2. A congruence relation on A is an equivalence relation on A with
the substitution property.

Remark 1.5. [Ber11]

1. The collection of congruence relations on an algebra A naturally forms
a lattice, called the congruence lattice of A and is denoted Con (A).

2. For an algebra A let f : A → B be any homomorphism with domain
A. The kernel of the homomorphism, denoted ker(f), is an equivalence
relation on A and is defined as the set {(a,b) : f(a) = f(b)}. It can
be easily verified that it is a congruence relation on A. Conversely,
given any congruence relation θ on A we can define a homomorphism
f : A → A/θ where θ = Ker(f) and f(a) = a/θ, the θ-class that
contains a.

3. Given any congruence relation θ on a group G the quotient structure
G/θ is the same as the quotient group G/N , where N is the normal
subgroup consisting of all elements of G that are θ-related to e. There
is a bijective map between the congruences on a group G and the normal
subgroups of G. There is a similar correspondence between ring congru-
ences and ideals and between vector space congruences and subspaces.
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Definition 1.6. 1. A variety is a class of similar algebras that is closed
under the formation of homomorphic images, subalgebras and direct
products.

2. An algebra is called locally finite if every finitely generated subalgebra
is finite. A variety is locally finite if every member of the variety is
locally finite.

3. A variety is finitely generated if it is of the form V (K) for some
finite set of finite algebras K.

Remark 1.7. If K is a class of similar algebras then the variety generated
by K is the smallest variety containing K and is denoted V (K). Birkhoff’s
theorem shows that a class of algebras is a variety iff it can be defined by a set
of equations. For example groups and rings are defined by sets of equations.
For more on the subject see Theorem 4.41 in [Ber11].

Definition 1.8. [Val, KK09]

1. An operation f(~x) on a set A is idempotent if the equation
f(x, x, . . . , x) ≈ x holds. A term t(~x) of an algebra or variety is idem-
potent if the associated operation is, and we call an algebra or variety
idempotent if all of its terms are.

2. A term t(~x) of a variety V is a weak near unanimity term if it
is idempotent and V satisfies the following equations: t(y, x, . . . , x) ≈
t(x, y, x, . . . , x) ≈ · · · ≈ t(x, x, . . . , x, y).

Definition 1.9. [KK09, Val]

1. A Maltsev condition is a countably infinite disjunction
∨

i∈ω σi where
σi are strong Maltsev conditions. A strong Maltsev condition is a
first order sentence of the form:
∃
∧

(atomic sentence) in the language of clones of operations.

Remark 1.10. Informally a Maltsev condition refers to the existence
of special term operations that satisfy a set of equations. For example
a variety V is congruence permutable if the following Maltsev condition
holds: there exists a term p(x,y,z) in the variety V such that p(x, y, y) ≈
x ≈ p(y, y, x) holds.
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2. Let U and V be varieties and let {fi : i ∈ I} be the set of basic operations
of U. We say U is interpretable in V if for every i ∈ I there is a
V-term ti of the same arity as fi such that for all A ∈ V, the algebra
〈A, tAi (i ∈ I)〉 is a member of U.

Examples 1.11. The variety of groups is interpretable in the variety
of rings.

Remark 1.12. The concept of interpretability can be used to describe
Maltsev conditions as well. For example if we let V be the variety
that consists of one ternary operation q(x, y, z) s.t. q(x, y, y) ≈ x ≈
q(y, y, x) then any variety W is congruence permutable iff V is inter-
pretable in W.

3. If the variety U is finitely presented (i.e. has finitely many basic oper-
ation and is finitely axiomatized) then the class of all varieties V such
that U is interpretable in V is called the strong Maltsev class defined
by U.

4. If Ui : i > 0 is a decreasing sequence of finitely presented varieties,
relative to interpretability, then the class {V : Ui ≤ V for some i} is
called the Maltsev class defined by this sequence, and the associated
condition on varieties is called the Maltsev condition defined by this
sequence.

Lemma 1.13. [KK09] Any idempotent strong Maltsev condition is equivalent
to one of the form ∃F

∧
Σ where F = {h, k}, h is n-ary and k is n2-ary, and

Σ consists of identities:

1. h(x, x, . . . , x) ≈ x,

2. k(x11, . . . , xnn) ≈ h(h(x11, . . . , x1n), . . . , h(xn1, . . . , xnn)),

3. finitely many identities of the form k(variables)≈ k(variables).

Remark 1.14. In[HM88] Hobby and Mckenzie state that the local behaviour
of finite algebras can be divided into five types:

• Type 1 is Unary,

• Type 2 is Affine,
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• Type 3 is the 2-element Boolean algebra,

• Type 4 is the 2-element lattice and

• Type 5 is the 2-element semi-lattice.

An algebra omits a particular type if locally, that algebra does not allow
that type. Similarly we can define a variety to omit a particular type if every
algebra in that variety omits that type. Hobby and Mckenzie show that some
omitting type conditions for locally finite varieties can be characterized by
idempotent Maltsev conditions. Hobby and Mckenzie give six omitting type
conditions for locally finite varieties which are represented in the following
figure.

Taylor

Hobby-mckenzie

n-Permutability

Meet semidistributivity: SD(∧)

Join semidistributivity : SD(∨)

SD(∨) & n-Permutability

2 Taylor Term

Definition 2.1. A term f(~x) of a variety is Taylor if it is idempotent and
for each 1 ≤ i ≤ n, V satisfies an equation of the form: f(a1, . . . , an) ≈
f(b1, . . . , bn) , where the equations are in variables {x, y} and ai = x and
bi = y. The given set of equations can be represented by the following matrix
form.:

f


x

x
. . .

x

 = f


y

y
. . .

y
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All the entries in the matrix belong to the set {x, y}.

The following theorem follows from the results found in [KK09], lemma
9.4 of [HM88] and [Val].

Theorem 2.2. Let V be any variety. The following are equivalent:

1. V satisfies a nontrivial idempotent Maltsev condition (i.e. one that fails
in some variety).

2. V satisfies an idempotent Maltsev condition that fails in the variety of
sets.

3. V is not interpretable in the variety of sets.

4. For some n > 1, V has an idempotent n-ary Taylor term f(x1, . . . , xn).

Furthermore, if V is assumed to be locally finite, then the following are equiv-
alent to the above:

5. V omits the unary type.

6. For some n > 1 V has an n-ary weak near unanimity term.

7. V has a 4-ary idempotent term t such that V satisfies:

t(y,y,x,x)≈ t(x,y,y,x)≈ t(x,x,x,y)

8. V has two 3-ary idempotent terms p(x, y, z),q(x, y, z) such that V sat-
isfies:

p(x,x,y)≈ p(y,x,x) ≈ q(x,y,y) and
p(x,y,x)≈ q(x,y,x).

The following lemma establishes part of the above theorem namely 4⇒ 2.

Lemma 2.3. Let V be the variety of sets. Then V does not have a Taylor
term.
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Proof. Assume for contradiction that the variety of sets V has a Taylor term
f(x1, . . . , xn) for some n > 1. The only n-ary operations on sets are the n-ary
projection operations denoted πn

k where k ≤ n. Let f(x1, . . . , xn) = πn
k = xk

for some k ≤ n. The Taylor term f(x1, . . . , xn) satisfies a set of equations
of the form f(xi1, . . . , xin) = f(yi1, . . . , yin) where 1≤ i ≤ n and xij, yij ∈
{x, y} and xii = x, yii = y. The k-th equation in the given matrix form is
f(xk1, . . . , xkn) = f(yk1, . . . , ykn). The right hand side is equal to ykk and
the left hand side is equal to xkk. This forces x = y which contradicts the
definition of a Taylor term.

Examples 2.4. Groups have a Maltsev term p(x, y, z) = x ◦ y−1 ◦ z which
is also a Taylor term where the following set of equations satisfies the ma-
trix condition of the Taylor term : p(x,x,y)=p(y,y,y), p(y,x,x)=p(y,y,y) and
p(y,y,x)=p(x,y,y).

Remark 2.5. Any variety that satisfies a nontrivial idempotent Maltsev con-
dition has a Taylor term. For the locally finite case this class is the largest
non-trivial idempotent class and it can be characterized by a strong Maltsev
condition. The result due to Siggers shows that the Taylor term condition
can be represented by a 4-ary Taylor term i.e. it can be represented by a
4× 4 matrix. Also, this strong Maltsev condition cannot be described by any
term of smaller arity [Val].

3 Hobby-Mckenzie Term

Definition 3.1. A term f(~x) of a variety is Hobby-Mckenzie if it is idem-
potent and for each I ⊆ {1, . . . , n}, V satisfies an equation of the form:
f(a1, . . . , an) ≈ f(b1, . . . , bn) , where the equations are in variables {x, y}
and {ai : i ∈ I} 6= {bi : i ∈ I}. These set of equations are equivalent (after
possibly rearranging the variables in f) to the following matrix representation:

f


x
x x
...

...
. . .

x x . . . x

 = f


y

y
. . .

y


All the entries in the matrix belong to the set {x, y}.
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The following theorem follows from results found in theorem 2.16, 5.28,
8.13 of [KK09] and lemma 9.5 and theorem 9.8 of [HM88].

Theorem 3.2. Let V be any variety. The following are equivalent:

1. V satisfies a nontrivial congruence identity.

2. V satisfies an idempotent Maltsev condition that fails in the variety of
semi-lattices.

3. V is not interpretable in the variety of semi-lattices.

4. There is a positive integer k and ternary term d0, . . . , d2k+1 and e0, . . . , e2k+1

and p such that V satisfies the following equations:

(a) d0(x, y, z) ≈ p(x, y, z) ≈ e0(x, y, z)

(b) di(x, y, y) ≈ di+1(x, y, y) and ei(x, x, y) ≈ ei+1(x, x, y)
for even i.

(c) di(x, x, y) ≈ di+1(x, x, y),di(x, y, x) ≈ di+1(x, y, x) and
ei(x, y, y) ≈ ei+1(x, y, y),ei(x, y, x) ≈ ei+1(x, y, x) for odd
i.

(d) d2k+1(x, y, z) ≈ x and e2k+1(x, y, z) ≈ z.

5. V has a sequence of terms fi(x, y, u, v) where 0 ≤ i ≤ 2m+ 1 such that
V satisfies the following equations:

(a) f0(x, y, u, v) ≈ x.

(b) fi(x, y, y, y) ≈ fi+1(x, y, y, y) for even i.

(c) fi(x, x, y, y) ≈ fi+1(x, x, y, y) and fi(x, y, x, y) ≈ fi+1(x, y, x, y)
for odd i.

(d) f2m+1(x, y, u, v) ≈ v

6. For some n > 1, V has an n-ary Hobby-Mckenzie term f(x1, . . . , xn)
of V.

Furthermore, if V is assumed to be locally finite, then the following are equiv-
alent to the above:

7. V omits the unary and the semi-lattice type.

The following lemma establishes part of the theorem above namely 6⇒ 2.
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Lemma 3.3. Let V be the variety of semi-lattices. Then V does not have a
Hobby-Mckenzie term.

Proof. We need to show that there does not exist any n-ary term f(x1, . . . , xn)
of V such that it satisfies the following set of equations in matrix form:

f


x
x x
...

...
. . .

x x . . . x

 = f


y

y
. . .

y


All the entries in the matrix belong to the set {x, y}.

Assume that such a term f exists in the variety of semi-lattices, 〈S,∧〉.
Then f(x1, . . . , xn) = meet of some of the xi’s. Let k be the largest index
that f depends on. The equation from the k-th row of the matrix shows
f(x1, . . . , xk, . . . , xn) = f(. . . , y, . . .) where x1 = . . . = xk = x on the left
hand side and y is the k-th indexed variable on the right hand side of the
equation. Since k is the largest index that f depends on the left hand side
gives us f(x1, . . . , xk, . . . , xn) = x. The right hand side gives us f(. . . ,y,. . . )=
x ∧ y or just y, since all the entries in the matrix belong to the set {x, y}.
This gives us x = x∧y or x = y holds for all x,y in the variety of semi-lattices
which is a contradiction.

Remark 3.4. Congruence modularity is a stronger condition than having
a Hobby-Mckenzie term. According to a theorem in [Ber11] the congruence
lattice of a group is modular. The Maltsev term p(x, y, z) = x ◦ y−1 ◦ z of a
group defined earlier is also a Hobby-Mckenzie term. It satisfies the following
set of equations in matrix form:

f

x y y
x x y
x x x

 = f

y y x
y y y
x y y


4 Congruence Meet Semidistributivity

A variety is congruence meet semidistributive i.e. V |= SD(∧) if:

∀ algebra A ∈ V and all α,β,γ ∈ Con(A),
(α ∧ β)= (α ∧ γ)→ (α ∧ (β ∨ γ))= (α ∧ β).
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This is a weaker condition than distributivity.

Definition 4.1. A term f(~x) of a variety is a Barto-Kozik term if it is
idempotent and satisfies a system of equations represented by the following
matrices:

f


x
p2,1 x
p3,1 p3,2 x

...
...

. . . . . .

pn,1 pn,2 . . . pn,n−1 x

 = f


y
p2,1 y
p3,1 p3,2 y

...
...

. . . . . .

pn,1 pn,2 . . . pn,n−1 y


All the entries of the matrix belong to the set {x,y}.

The following theorem follows from results found in theorem 8.1 of [KK09],
theorem 9.1 of [HM88], [Val] and unpublished work of Barto and Kozik.

Theorem 4.2. Let V be any variety. The following are equivalent:

1. V is congruence meet semidistributive.

2. V satisfies a single idempotent Maltsev condition that fails in every
nontrivial variety of modules.

3. V is not interpretable in the variety of modules.

Furthermore, if V is assumed to be locally finite, then the following are equiv-
alent to the above:

4. V omits the unary and the affine type.

5. For all n > 2, V has an n-ary weak near unanimity term.

6. V has a 3-ary and a 4-ary weak near unanimity terms v(x,y,z) and
w(x,y,z,w) that satisfy the equation v(y, x, x) ≈ w(y, x, x, x).

7. For some n > 0 there exists an n-ary Barto-Kozik term f(x1, x2, . . . , xn)
of V.

Remark 4.3. It is not known whether the last condition of the above the-
orem holds in the non-locally finite case. For the locally-finite case there is
an even nicer characterization for congruence meet semidistributivity. The
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above condition can be represented by a 12-ary term, i.e. we can represent
this condition by a 12 × 12 matrix. The 12-ary term comes from the 3-ary
and 4-ary weak near unanimity terms described in the above theorem. Hence
for the locally finite case congruence meet semidistributivity can be described
by a strong Maltsev condition.

The following lemma establishes part of the theorem above namely 7⇒ 2.

Lemma 4.4. Let M be a nontrivial variety of modules. Then there does not
exist an n-ary Barto- Kozik term f(x1, . . . , xn) in M.

Proof. Let M be a variety of modules over the ring R and let f(x1, . . . , xn)
be a term of M. Then ∀i ≤ n ∃ri ∈ R such that f(x1, . . . , xn) = r1x1 +r2x2 +
· · ·+ rnxn. Assume for contradiction that f is a Barto-Kozik term. Since f is
idempotent we have f(x, . . . , x) = x. This means r1x+ r2x+ · · ·+ rnx = x.
This forces

∑i=n
i=1 ri = 1 in R. The last equation in the matrix representation

of the Barto-Kozik term gives us:

r1pn,1 + r2pn,2 + · · ·+ rnx = r1pn,1 + r2pn,2 + · · ·+ rny.
⇒ rnx = rny holds for ∀ x and y.
⇒ rn = 0

Using a similar argument the second last equation gives us rn−1 = 0. Induc-
tively we get ri = 0,∀i. Hence there does not exist such a term f(x1, . . . , xn)
in the variety of modules that satisfy the above set of equations.

5 Congruence join semidistributivity

A variety is congruence join semidistributive i.e. V |= SD(∨) if:

∀ algebra A ∈ V and all α, β, γ ∈ Con (A),
(α ∨ β)= (α ∨ γ)→ (α ∨ (β ∧ γ))= (α ∨ β).

Any congruence join-semidistributive variety is also congruence meet-semidistributive
[KK09].
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Definition 5.1. A term f(~x) of a variety is SD(∨) if it is idempotent and
satisfies a system of equations represented by the following matrices:

f


x
x x
...

...
. . .

x x . . . x

 = f


y
x y
...

. . . . . .

x . . . x y


All the entries in the matrix are in the variables {x,y}.

The following theorem follows from results found in theorem 8.14 of
[KK09], [Val] and theorem 9.11 of [HM88].

Theorem 5.2. Let V be any variety. The following are equivalent.

1. V is congruence join semidistributive.

2. V satisfies an idempotent Maltsev condition that fails in every non triv-
ial variety of modules and in the variety of semi-lattices.

3. V is not interpretable in any non trivial variety of modules and it is
not interpretable in the variety of semi-lattices.

4. V is congruence meet semidistributive and satisfies a nontrivial con-
gruence identity.

5. There is a positive integer k and ternary terms d0, . . . , dk such that V
satisfies the following equations:

(a) d0(x, y, x) ≈ x;

(b) di(x, y, y) ≈ di+1(x, y, y) and di(x, y, x) ≈ di+1(x, y, x);for
even i < k.

(c) di(x, x, y) ≈ di+1(x, x, y) for odd i < k;

(d) dk(x, y, z) ≈ z.

6. V has an SD(∨) term.

Furthermore, if V is assumed to be locally finite, then the following are equiv-
alent to the above:

7. V omits the unary, affine and semi-lattices type.
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Remark 5.3. The matrix condition of congruence join semidistributivity is
the combination of the matrix condition of congruence meet semidistributivity
and Hobby-Mckenzie term condition. Congruence distributivity is a stronger
condition than congruence join semidistributivity. Lattices have a majority
term M(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) which satisfies the following
equation: M(x, x, y) = M(x, y, x) = M(y, x, x) = x. This implies that the
congruence lattice of any lattice is distributive [Ber11]. The term M(x,y,z) is
also an SD(∨) term and the set of equations it satisfies can be represented
by the following matrix form:

f

x y x
x x y
x x x

 = f

y x x
x y x
x x y


6 n-Permutability

Definition 6.1. [HM88] A variety is called n-permutable iff for every A ∈ V
and α, β ∈ Con(A), we have α ◦n β = β ◦n α, where α ◦n β = α ◦ β ◦ α ◦ · · ·
with n− 1 occurrences of ◦.
Definition 6.2. [Ber11] A lattice is distributive iff it satisfies x ∧ (y ∨ z) ≈
(x ∧ y) ∨ (x ∧ z).

The following theorem follows from the results found in theorem 9.14
[HM88] and [Val].

Theorem 6.3. Let V be any variety. The following are equivalent:

1. V is n-permutable.

2. There are terms p1(x, y, z), . . . , pn−1(x, y, z) such that V satisfies:

x ≈ p1(x, y, y), pi(x, x, y) ≈ pi+1(x, y, y) for each i, pn−1(x, x, y) ≈
y

3. For some n ≥ 0,∃ an n-ary idempotent term f(x1, . . . , xn) of V such
that f satisfies a set of equations in two variables {x,y} of the form:

f


x
x x
...

...
. . .

x x . . . x

 = f


y y . . . y

y . . .
...

. . .
...
y
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All the entries in the matrix belong to the set {x,y}.

Furthermore, if V is assumed to be locally finite, then the following are equiv-
alent to the above:

4. V omits the unary, lattice and the semi-lattice type.

5. The variety V is not interpretable in the variety of distributive lattices.

Remark 6.4. • It is not known if condition 5 of the above theorem is
equivalent to the other conditions of the theorem for the non-locally
finite case.

• Any congruence n-permutable variety satisfies a nontrivial idempotent
Maltsev condition and hence has a Taylor term.

• Any congruence n-permutable variety satisfies a nontrivial congruence
identity and hence has a Hobby-Mckenzie term as well [KK09].

• A variety is congruence permutable if ∀A ∈ V and α, β ∈ Con(A), α ◦
β = β ◦α. Therefore, congruence permutability implies n-permutability
for all n [Ber11].

Examples 6.5. Any congruence permutable variety has a Maltsev term p(x, y, z)
such that p(x, y, y) ≈ p(y, y, x) ≈ x. For example the variety of vector spaces
and the variety of groups are congruence permutable and hence are also n-
permutable. The Maltsev term satisfies the following matrix condition of
n-permutability:

f

x x y
x x x
x x x

 = f

y y y
x y y
x y y


7 Congruence join semidistributivity and n-

Permutability

The following theorem follows from results found in theorem 9.15 of [HM88].

Theorem 7.1. Let V be a locally finite variety. The following are equivalent.
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1. V omits the unary type, affine type, lattice type, and the semi-lattice
type.

2. V is not interpretable in the variety of distributive lattices and V is not
interpretable in any nontrivial variety of modules.

3. V is n-permutable for some n and is congruence join semidistributive.

4. There are terms f0(x, y, z, u), . . . , fn(x, y, , z, u) ∈ V such that V satis-
fies:

(a) x ≈ f0(x, y, y, z),

(b) fi(x, x, y, x) ≈ fi+1(x, y, y, x) and fi(x, x, y, y) = fi+1(x, y, y, y)
∀i < n,

(c) fn(x, x, y, z) ≈ z

Lemma 7.2. Let V be a locally finite variety. Assume that for some n ≥
1,∃ an n-ary idempotent term f(x1, . . . , xn) of V , such that f satisfies the
following set of equations in two variables {x,y} represented by this matrix
form:

f


x
x x
...

...
. . .

x x . . . x

 = f


y y . . . y

x y . . .
...

...
. . . . . .

...
x . . . x y


Then V is congruence join semidistributive and n-permutable.

Proof. This follows immediately from the matrix representation of congru-
ence join semidistributivity and n-permutablility. The term f(x1, . . . , xn) of
V satisfies:

f


x
x x
...

...
. . .

x x . . . x

 = f


y y . . . y

y . . .
...

. . .
...
y


which is equivalent to n-permutability, and f(x1, . . . , xn) of V also satisfies:
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f


x
x x
...

...
. . .

x x . . . x

 = f


y
x y
...

. . . . . .

x . . . x y


which is equivalent to congruence join semidistributivity.

Remark 7.3. It is an open question whether the matrix condition given in
the lemma is equivalent to the conditions in theorem 7.

8 Conclusion

This report provided Maltsev conditions characterizing six special families
of varieties. The results stated in this report illustrates that for the locally
finite case these characterizations are even ”nicer”. It is seen that the Taylor
term condition and the congruence meet semidistributive condition can be
characterized by strong Maltsev conditions in the locally finite case. This
result also has applications in computational complexity. In some situations,
the presence of strong Maltsev conditions can lead to more efficient algo-
rithms for determining if a given property holds. Finding the complexity of
determining if a given finite algebra generates a variety that has a Maltsev
term or a majority term are one of the many open problems related to this
field [Val]. For the remaining four classes, it has been proven that for the
locally finite cases these conditions can not be described by strong Maltsev
conditions.

Also, there are a few open problems related to this report. It is to be
determined if all of the matrix term conditions stated in this report hold for
the non-locally finite cases. For example, it is not known if the Barto-Kozik
term condition is equivalent to congruence meet semidistributivity in the
general case. Also, it is not proven if the matrix condition given in lemma
7.2 is equivalent to congruence join semidistributivity and n-permutability
in the locally finite case [Val].
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