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Abstract

We describe a new way to construct large subdirectly irreducibles
within an equational class of algebras. We use this construction to
show that there are forbidden geometries of multitraces for finite al-
gebras in residually small equational classes. The construction is first
applied to show that minimal equational classes generated by simple
algebras of types 2, 3 or 4 are residually small if and only if they are
congruence modular. As a second application of the construction we
characterize residually small locally finite abelian equational classes.

1 Introduction

The Cartesian plane, considered as a geometry, is a system of points and
lines related by incidence. Or, one may define it without lines, as a set of
points with a given betweenness relation. This same object may be viewed
from an algebraic standpoint by taking the set of points as the universe
and equipping this set with all operations which preserve betweenness. The
resulting algebra can be identified with R2 considered as an M2(R)-module,
expanded by the constant operations.
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Having both geometric and algebraic standpoints provides multiple ways
to view basic geometric concepts, such as the concept of parallelism. For
example, a purely geometric way to say that lines ` and k are parallel is to
say that “` and k do not intersect”. An equivalent way to say this which
mixes both algebra and geometry is to say that “k is a translate of `”. A
purely algebraic way to say this is that “any unary algebraic operation which
is constant on ` is constant on k”.

This paper is about geometric properties of finite algebras. Our primary
interest is in “multitraces of type 2”, which are special definable subsets of
a finite algebra on which the induced structure is that of a vector space Fn

enriched to include the Mn(F)-module and constant operations. Here F can
be any finite field. Multitraces of type 2 abound in algebras with abelian
properties, and they “patch together” in ways that lead to complex behavior.

Within a single multitrace of type 2 all definitions of parallelness coincide,
since within a multitrace the situation is essentially the same as the one
discussed in the first paragraph. However, it makes sense to ask if a line from
one multitrace is parallel to a line in a different multitrace. Here we discover
that different definitions of parallelness describe different concepts. If ` is a
line in one multitrace and k is a line in any other multitrace, we will call ` and
k quasi-parallel if any unary polynomial function which is constant on ` is also
constant on k, and conversely. We reserve the word parallel for the situation
where k can be obtained from ` through a sequence of translations, possibly
travelling through many multitraces en route. It turns out that under the
right centrality hypothesis, which will hold in all applications of this paper,
parallelism implies quasi-parallelism. One of the more significant facts proved
in this paper (Theorem 5.6) is that in a residually small equational class the
converse implication holds.

One consequence of the fact that residual smallness forces parallelism and
quasi-parallelism to coincide is that there are forbidden geometries of mul-
titraces in residually small equational classes. One such forbidden geometry
appears in Figure 1. Here we assume that the algebra is simple of type 2. It
has seven elements, depicted as points of the geometry, and it has four mul-
titraces, each depicted as a three-element line. There are many inequivalent
simple algebras of type 2 which have the geometry pictured in Figure 1, but
all generate residually large equational classes. The reason for this is that the
geometry of Figure 1 forces the lines N and N ′ to be quasi-parallel, but not
parallel. Please consult the end of Section 5 for an explanation of this fact.
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With some effort, one can find such an algebra which in addition generates
an abelian equational class.
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Figure 1: A forbidden geometry.

The paper is structured as follows. Section 2 explains the construction of
large irreducibles on which the applications are based. Section 3 contains an
immediate application: minimal equational classes generated by simple alge-
bras of types 2, 3 or 4 are residually small if and only if they are congruence
modular. Section 4 develops the basic properties of multitraces. Although
our eventual interest will be in multitraces of type 2, the arguments here
work equally well for multitraces of type 3 so we include them. Section 5
develops the notions of quasi-parallelism and parallelism for multitraces. Fi-
nally, in Section 6 we use the machinery developed to characterize residually
small abelian equational classes.

Throughout the paper we use tame congruence theory. The reader can
find the necessary background in [2] and [6]. One point of divergence between
this paper and those works is that we use the term irreducible in place of (the
more usual) subdirectly irreducible. We will make use of the following notation
throughout the paper. Let A be a set and κ a cardinal. If u ∈ A, then û
denotes the function in Aκ which is constant with value u. The set of these
elements, where u runs over A is called the diagonal of Aκ. Now let x be a
k-tuple in A (the i-th coordinate of such a tuple will usually be denoted by
xi). For a k-ary operation f(x) on A we let f̂ denote the k-ary operation
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on Aκ which acts coordinatewise like f . Note that when f happens to be
a polynomial of an algebra A, then the operation f̂ will be a polynomial
operation of any subalgebra of Aκ which contains the diagonal.

Acknowledgements. The first and second authors are greatly indebted
to Matthew Valeriote for inviting them to Hamilton to work on the topic of
this paper. Some of the results of this paper were completed during the Al-
gebraic Model Theory Program at The Fields Institute in 1996/97. All three
authors would like to express our appreciation to the staff and directorate
of the Fields Institute for providing an excellent and stimulating working
environment.

2 Constructing Large Irreducibles

Rather than directly constructing large irreducibles, it is easier to construct
algebras which have a homomorphism onto a large irreducible. The following
lemma tells us when an algebra has a homomorphism onto an irreducible of
cardinality ≥ κ.

LEMMA 2.1 ([3], Lemma 2.1) An algebra B has an irreducible homomor-
phic image of cardinality ≥ κ if and only if there is a 4-tuple (a, b, X, γ)
satisfying the following conditions.

(1) a, b ∈ B, X ⊆ B,

(2) γ ∈ Con B and (a, b) 6∈ γ,

(3) for every ψ ∈ Con B with ψ ≥ γ the following implication holds:

|X/(ψ|X)| < κ =⇒ (a, b) ∈ ψ .

We put Lemma 2.1 to use in the proof of the next theorem, which de-
scribes the construction on which all later results in this paper depend.

THEOREM 2.2 Let A be any algebra and assume that

(1) (1, 0) is a 1-snag of A, that is, 0, 1 ∈ A and there exists a binary
polynomial s of A satisfying s(0, 0) = 0, s(0, 1) = s(1, 0) = 1;

4



(2) f is a unary polynomial of A such that f(0) = 0 and 1′ def
= f(1) 6= 1;

(3) in the subalgebra T of A2 generated by the diagonal and {0, 1}2, (1, 1)
is in a singleton block of the congruence τ = CgT((0, 1), (0, 1′)).

Then V(A) is residually large.

Proof. Let κ ≥ 2 be a cardinal and denote {0, 1} by N . Let B be the
subalgebra of Aκ generated by the diagonal and the set X = Nκ. Let

G =
{
(x, f̂(x)) ∈ B2 | x ∈ Nκ − {1̂}

}
,

and denote by γ the congruence of B generated by the set G. We now show
that (1̂, 1̂′, X, γ) is a 4-tuple witnessing the fact that B has an irreducible
homomorphic image of cardinality ≥ κ.

It is clear that 1̂, 1̂′ ∈ B, X ⊆ B and γ ∈ Con B. First we prove
that (1̂, 1̂′) 6∈ γ. We will actually show that 1̂ is in a singleton block of γ.
Since γ is the join of the congruences γx = CgB(x, f̂(x)), where x runs over
Nκ − {1̂}, it is sufficient to prove that 1̂ is in a singleton block for each of
these congruences.

For i, j < κ, i 6= j define τij by u τij v iff (ui, uj) τ (vi, vj). This is
a congruence of B, because u 7→ (ui, uj) is a (surjective) homomorphism

from B to T. Now let x ∈ Nκ − {1̂} and set x′ = f̂(x). Then the set
I = {i < κ | xi = 0} is non-empty. Let J be the complement of I in κ.
If J is empty, then x = x′, so γx = 0B and we are done. Otherwise, let
i ∈ I and j ∈ J be arbitrary. Then x τij x′, because (xi, xj) = (0, 1) and
(x′i, x

′
j) = (0, 1′). Thus γx ⊆ τij for every such i and j. By (3) therefore we

have that if 1̂ γx z for some z, then zi = zj = 1. This implies that z = 1̂.
Thus we have proved that the pair (1̂, 1̂′) is not in γ.

Finally we must show that if ψ ≥ γ and |X/(ψ|X)| < κ, then (1̂, 1̂′) ∈ ψ.
For any ordinal λ < κ define xλ ∈ Nκ by xλ

i = 1 if i < λ and xλ
i = 0

otherwise. Y = {xλ|λ < κ} is a subset of X and |Y | = κ. Assume that
ψ ≥ γ and that |X/(ψ|X)| < κ. Then we can find ordinals µ < ν < κ such
that (xµ,xν) ∈ ψ. Let yν be the complement of xν in Nκ, and let s be
the polynomial in (1). Then ŝ(xν ,yν) = 1̂, and the element x = ŝ(xµ,yν)
satisfies xi = 1 if i < µ or i ≥ ν while xi = 0 if µ ≤ i < ν. In particular,
x ∈ Nκ − {1̂}. Further,

1̂ = ŝ(xν ,yν) ψ ŝ(xµ,yν) = x .
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Setting x′ = f̂(x) we obtain

1̂′ = f̂(1̂) ψ f̂(x) = x′ .

Finally, by the definition of γ, we have (x,x′) ∈ γ ≤ ψ. Hence

1̂ ψ x ψ x′ ψ 1̂′ .

This shows that Lemma 2.1 (3) holds proving that V(A) is indeed residually
large.

Definition 2.3 A pair (1, 0) along with a polynomial f(x) in an algebra A
are said to constitute a Residually Large Configuration (or just RL configu-
ration for short) if they satisfy the conditions of Theorem 2.2. In this case
we say that the RL configuration occurs in A.

We now provide ways to ensure that condition (3) of Theorem 2.2 is
satisfied. First we translate it to the language of polynomials.

LEMMA 2.4 Let A be any algebra and 0, 1, 1′ ∈ A. Let T be the subalge-
bra of A2 generated by the diagonal and {0, 1}2. Suppose that (0, 1′) ∈ T .
Then condition (3) of Theorem 2.2 is equivalent to the following:

(3′) For every ternary polynomial p of A satisfying p(0, 0, 1) = 1 we have

p(1, 1, 0) = 1 ⇐⇒ p(1′, 1, 0) = 1 .

Assume further that A has unary polynomials e and c satisfying e(0) = 0,
e(1′) = e(1) = 1, c(0) = 1 and c(1) = 0. Then (3′) is equivalent to

(3′′) For every unary polynomial p of A satisfying p(0) = 1 we have

p(1) = 1 ⇐⇒ p(1′) = 1 .

Proof. As T is generated by the diagonal of A2 and {0, 1}2, every
unary polynomial of T is of the form p̂(x, (0, 1), (1, 0)), where p is a ternary
polynomial of A. By Mal’tsev’s Lemma, (1, 1) is in a singleton τ -class iff for
every unary polynomial r of T we have r(0, 1) = (1, 1) ⇐⇒ r(0, 1′) = (1, 1).
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Condition (3′) formulates this property, taking into consideration the form
of the unary polynomials of T. Thus, (3) ⇐⇒ (3′) is proved.

Clearly, (3′′) is weaker than (3′), since we can deem p to be a ternary
polynomial which does not depend on its second and third variables. If A
satisfies the additional hypotheses, then (3′′) implies (3′). Indeed, let p be
a ternary polynomial of A and let q(x) = p(x, e(x), c(e(x))). Clearly, (3′′)
applied to q implies (3′) for p.

There is another way to ensure that (3) of Theorem 2.2 is satisfied. Both
of the main applications in the paper will use the following corollary. It
suggests that if the congruence lattice of an algebra contains a pentagon
then there is some chance of applying Theorem 2.2.

COROLLARY 2.5 Let C be an algebra, ρ, σ congruences of C such that
ρ < σ and R a tolerance of C such that σ ∩ R ⊆ ρ. Suppose that C has
elements 0̃, 1̃, 0̃′, 1̃′ such that 0̃ R 1̃, 0̃′ R 1̃′, 0̃ ρ 0̃′, 1̃ σ 1̃′:

0̃ ρ 0̃′

R R
1̃ σ 1̃′ .

Then the elements 0 = 0̃/ρ = 0̃′/ρ, 1 = 1̃/ρ and 1′ = 1̃′/ρ of A = C/ρ satisfy
(3) of Theorem 2.2 for the subalgebra T generated by the diagonal, {0, 1}2

and (0, 1′).

Proof. Let T′ be the subalgebra {(x/ρ, y/ρ) | x R y} of A2, and let
τ ′ be the restriction of the congruence 0A × (σ/ρ) to T ′. Since T ′ contains
the diagonal and the pairs (0, 1), (1, 0), and (0, 1′) (since 0̃ R 1̃ and 0̃′ R 1̃′),
and τ ′ contains CgT′((0, 1), (0, 1′)) (since 0̃ ρ 0̃′ and 1̃ σ 1̃′), it is sufficient to
prove that (1, 1) is in a singleton τ ′-class.

So suppose that (1, 1) τ ′ (a, b) for some elements a, b ∈ A. Then 1 = a,
1 σ/ρ b, and (a, b) ∈ T ′. This latter condition implies that a = x/ρ and
b = y/ρ for some x, y ∈ C, where x R y. Now x ρ 1̃ and y σ 1̃, so by
transitivity and ρ ≤ σ we have x σ y. Thus R ∩ σ ⊆ ρ implies that x ρ y.
Hence b = a = 1, proving the statement. The reader is encouraged to give
another proof, based on (3′) instead of (3).

As an aid to the reader, we describe why it is ‘natural’ to want to prove
a result like Theorem 2.2. When trying to apply tame congruence theory
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to the study of residually small equational classes (or to any other problem
concerning finite algebras), one eventually wants to investigate the interac-
tion between minimal sets for different quotients. In particular, it is com-
mon to need to compare the relationship between 〈0, α〉-minimal sets and
〈α, β〉-minimal sets where 0 ≺ α ≺ β in Con A, I[0, β] = {0, α, β}, and
typ(0, α) 6= typ(α, β).

Choose U ∈ MA(0, α) and V ∈ MA(α, β). If (a, b) ∈ α|U − 0A and
(0, 1) ∈ β|V −α, then (a, b) ∈ Cg(0, 1), so there is a Mal’tsev chain connecting
a to b with polynomial images of {0, 1}. The polynomials involved can be
assumed to have range in U . If the Mal’tsev chain has no trivial links and
some polynomial p(x) used in the creation of this chain satisfies p(β|V ) ⊆ α,
then p maps the trace of V which contains {0, 1} into a trace of U without
identifying 0 and 1.

This is a somewhat strange situation; for then p is a nonconstant function
from the minimal algebra A|N , where N ⊆ V is the 〈α, β〉-trace containing
{0, 1}, to the minimal algebra A|T , where T is a trace of U . What makes
this a little strange is that A|N and A|T have different types. This does not
immediately force the algebra A to generate a residually large equational
class, but it often does. Therefore, when A generates a residually small
equational class, it should not be uncommon in the scenario described above
for each polynomial p which was used to create the Mal’tsev chain to satisfy
p(β|V ) 6⊆ α. Hence, each polynomial maps V to a polynomially equivalent
set contained in U . Since a is connected to b by polynomial images of {0, 1},
this implies that any two elements of a 〈0, α〉-trace of U are connected by a
chain of overlapping 〈α, β〉-traces contained in U .

A simple way that this could occur is depicted in Figure 2. A different
possibility is depicted in Figure 3. In these figures, U has four elements, two
of which reside in the unique 〈0, α〉-trace. The lines drawn between these
four elements indicate the 〈α, β〉-traces contained in U .
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Figure 2: N and N ′ are equal modulo α.
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Figure 3: No 〈α, β〉-traces are equal modulo α.

In Figure 2, N and N ′ are distinct 〈α, β〉-traces which are “equal mod-
ulo α”, which means that they project onto the same set in the quotient
modulo α. In the situation we have been describing, it is not necessary that
U contain any 〈α, β〉-traces that are equal modulo α, as one can see by Fig-
ure 3, but avoiding a pair of traces which are equal modulo α is not so easy
since any two α-related elements of U are connected by overlapping 〈α, β〉-
traces. (In particular, Figure 3 can only occur when typ(0, α) = 1.) So, it
is natural to ask what happens when we have a pair of traces in U which
are equal modulo α. Theorem 2.2 proves that if this situation occurs when
typ(α, β) ∈ {2,3} and the traces share a point in common, then A generates
a residually large equational class. Here is why. When typ(α, β) ∈ {2,3},
then both (0, 1) and (1, 0) are 1-snags. The fact that N and N ′ are equal
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modulo α makes it easy to construct the polynomial f having the properties
described in Theorem 2.2. Since the type is 2 or 3, there is a polynomial
c(x) which switches 0 and 1. By Lemma 2.4, all that we need to do is show
that for any unary polynomial p of A satisfying p(0) = 1 we have

p(1) = 1 ⇐⇒ p(1′) = 1 .

A glance at Figure 2 shows that this is obvious, since either p(1) = 1 = p(0)
or p(1′) = 1 = p(0) means that p is not 1-1 on U , so p(α|U) ⊆ 0A. Thus,
p identifies any two subsets of U which are equal modulo α; in particular,
p(1) = p(1′) holds.

It is useful for one to keep in mind Figure 2 when deciding whether to
apply Theorem 2.2.

3 Residually SmallMinimalEquationalClasses

Let K be a finite set of finite similar algebras. We will say that HS(K) is
semisimple if all irreducible algebras in HS(K) are simple. In this section we
will investigate residually small equational classes of the form V = HSP(K)
where HS(K) is semisimple. Our main result is the following.

THEOREM 3.1 Let K be a finite set of finite similar algebras where HS(K)
is semisimple. Assume that V = HSP(K) contains no simple algebras of types
1 or 5. Then V is residually small if and only if V is congruence modular.

Only one implication of Theorem 3.1 is hard: it is the proof that residual
smallness implies congruence modularity. The argument for the reverse im-
plication goes as follows. If V is congruence modular and finitely generated,
it follows from Theorem 10.15 of [1] that V is residually small if and only if
V satisfies the commutator equation

C1 : x ∧ [y, y] = [x ∧ y, y] .

The commutator equation C1 holds for any simple algebra and, as is proved in
Theorem 8.1 of [1], C1 is inherited by finite subdirect products. Hence HS(K)
satisfies C1. But now Theorem 8.1 of [1] can be invoked again, together with
Remark 8.7 of [1], to conclude that C1 “goes up” from K to V . Hence V is
residually small if it is congruence modular.
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Theorem 3.1 may be compared with Theorem 10.4 of [2] where it is proven
that if V is a locally finite equational class with {1,5} ∩ typ{V} = ∅ and V
is residually small, then V is congruence modular. Although the statements
of these two theorems are similar, neither implies the other. Theorem 3.1
assumes that V is generated by simple algebras, while Theorem 10.4 of [2]
does not. On the other hand, Theorem 10.4 of [2] assumes that no member
of V has a type 1 or 5 quotient, while Theorem 3.1 only assumes that there
are no type 1 or 5 simple algebras in V .

Theorem 3.1 applies to minimal equational classes generated by simple
algebras of types 2, 3 or 4. Any locally finite minimal equational class is
generated by a strictly simple algebra and Theorem 14.8 of [2] proves that if
two finite simple algebras generate the same equational class, then they have
the same type. Hence, a minimal equational class generated by a strictly
simple algebra A of type 2, 3 or 4 will satisfy the hypotheses of Theorem 3.1
for K = {A}. It follows that such an equational class is residually small if
and only if it is congruence modular. This explains the following corollary
to Theorem 3.1.

COROLLARY 3.2 Assume that A is a strictly simple algebra and that
V = HSP(A) is a residually small minimal equational class.

(1) If typ{A} = {2}, then V is affine.

(2) If typ{A} ∈ {3,4}, then V is congruence distributive.

The only words of further explanation that we need to add are that when
A is strictly simple and V = HSP(A) is congruence modular, then it is a
consequence of modular commutator theory that V is affine when A is abelian
and congruence distributive when A is nonabelian. (See Theorem 12.1 (1)
of [1].)

The abelian strictly simple algebras which generate minimal equational
classes are classified in [4], and the classification shows that every such alge-
bra generates a residually small equational class. Hence, the residual small-
ness hypothesis in Corollary 3.2 is redundant for conclusion (1). It is not
redundant for conclusion (2) as is shown by the next result.

COROLLARY 3.3 (See [8]) Let P be a finite bounded partial order and
let A be order primal with respect to P. Then A generates a congruence
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distributive equational class if and only if it generates a residually small
equational class.

Proof. It is not hard to see that A is strictly simple of type 4. To
see that the equational class V = HSP(A) is minimal, let 0, 1 ∈ P be the
bounds. Then the operation b(x, y) defined by b(x, y) = 0 for x 6= 1 and
b(1, y) = y is a basic operation of A since it is compatible with the order on P.
These equations imply that 0 and 1 are terms with different interpretations
in each nontrivial member of V . Hence any nontrivial algebra in V has a
nontrivial subuniverse consisting of the interpretations of constant terms.
But FV(0) ∼= A, which is simple, so the subalgebra of constants in any
nontrivial algebra of V is isomorphic to A. Hence A is embeddable into every
nontrivial member of V . This proves that V contains no proper nontrivial
equational class. The rest follows from Corollary 3.2.

Exercise 10.5 of [2] describes an eight-element order primal algebra which
generates a residually large (non-congruence distributive) equational class.

LEMMA 3.4 Let C be a finite algebra and δ, θ, α congruences of C such
that δ < θ and θ ∧ α = 0C . Assume further that C(α, θ; δ) fails, and α is a
minimal congruence of type 2, 3, or 4. Then the RL configuration occurs in
C/δ.

Proof. We shall establish the conditions of Theorem 2.2 in C/δ, using
Corollary 2.5. Let M be a 〈0C , α〉-trace. We have ¬C(α, θ; δ), so in fact we
must have ¬C(M2, θ; δ), since M2 generates α. This means that there is a
polynomial p(x,y) of C such that

0̃ = p(a,u) δ p(a,v) = 0̃′

α α
1̃ = p(b,u) θ − δ p(b,v) = 1̃′ .

where (a, b) ∈ M2 and u θ v. Since θ∩α ⊆ δ, the conditions of Corollary 2.5
are satisfied.

We must have 0̃ 6= 1̃. Indeed, assume otherwise. Then we get 0̃′ θ 1̃′ by
transitivity, and thus α ∧ θ = 0 implies that 0̃′ = 1̃′. But this shows that
1̃ δ 1̃′, which is a contradiction.

As M is a 〈0, α〉-trace, 0̃ 6= 1̃ implies that M ′ = p(M,u) is also a 〈0, α〉-
trace. Since the type of 〈0, α〉 is 2, 3, or 4, we get that (1̃, 0̃) is a 1-snag
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(because in these types any pair of different elements of a trace is a 1-snag).
By composing a polynomial inverse of p(x,u) : M → M ′ with p(x,v) we
obtain a unary polynomial f of C mapping 0̃ to 0̃′ and 1̃ to 1̃′. These
remarks show that conditions (1) and (2) of Theorem 2.2 are satisfied in C/δ
for the elements 0 = 0̃/δ = 0̃′/δ, 1 = 1̃/δ and 1′ = 1̃′/δ. Corollary 2.5 shows
that condition (3) is also satisfied.

The rest of this section is devoted to the proof of Theorem 3.1. Let K be
a fixed finite set of finite similar algebras where HS(K) is semisimple, and let
V denote HSP(K). We assume that V contains no simple algebras of types 1
or 5.

LEMMA 3.5 The simple abelian algebras which are in HS(K) generate a
congruence permutable equational class.

Proof. We have to show that the type 2 simple algebras in HS(K)
generate a congruence permutable equational class. This follows from Corol-
lary 6.9 of [4] which proves that a locally finite equational class generated
by left nilpotent algebras is congruence permutable iff it contains no simple
algebra of type 1. Since V contains no simple algebra of type 1, it follows
that the equational class generated by the simple abelian algebras in HS(K)
is congruence permutable.

Our aim is to track down the irreducible algebras of V .

LEMMA 3.6 Let C ∈ V be a finite subdirect product of members of HS(K)
and let δ be a meet-irreducible congruence of C with upper cover θ. Suppose
that typ(δ, θ) ∈ {2,3,4} and there exists a U ∈ MC(δ, θ) which has empty
tail. Then θ = 1C and there exists an atom α in Con C which is not below
δ.

Proof. The algebra C is a subdirect product of simple algebras, let ηi

(i ∈ I) denote the projection kernels. We may assume that I is minimal for
the property that

∧
i∈I ηi = 0C .

As all congruences of C|U can be extended to C, each ηi|U is either a
coatom of Con C|U or else ηi|U = 1U . We have

∧

i∈I

(ηi|U) = (
∧

i∈I

ηi)|U = 0U .
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In particular, the coatoms of Con C|U meet to 0U .
Choose a subset J ⊆ I which is minimal under inclusion for the property

that
∧

j∈J ηj|U = 0U . Clearly, every element j of J satisfies ηj|U < 1U . We
claim that

σ =
∧

j∈J

ηj ≤ δ .

Indeed, if this is not the case, then from the fact that δ is meet-irreducible
we get that

θ ≤ δ ∨ ∧

j∈J

ηj ,

hence
θ|U ≤ δ|U ∨

∧

j∈J

(ηj|U) = δ|U ∨ 0U = δ|U ,

which is a contradiction.
By the results in Section 4 of [2] we know that in the type 3 and 4 cases

U has two elements, while in the type 2 case C|U is Mal’tsev and nilpotent.
Thus, when the type is 3 or 4 every j ∈ J satisfies ηj|U = 0U , so by the
minimality of J we get that J = {j} for some j. Thus σ = ηj ≤ δ, so δ is
indeed a maximal congruence. In fact, δ = ηj is a projection kernel.

If the type is 2, then the set U contains no 2-snags, and this implies, using
elementary tame congruence theory, that the quotient 〈ηj, 1C〉 is of abelian
type for every j ∈ J . Thus C/σ is a subdirect product of the simple abelian
algebras C/ηj for j ∈ J . But, as we proved in Lemma 3.5, the simple abelian
algebras in HS(K) generate a congruence permutable equational class. This
class contains C/σ now, and so the interval I[σ, 1C ] in Con C is a modular
lattice, whose coatoms intersect to zero. Thus this interval is a relatively
complemented lattice. Therefore θ has a complement in the interval I[δ, 1C ].
As δ is meet-irreducible we see that δ must be a coatom, and θ = 1C .

Now we look for atoms that are not below δ. Suppose first that the
type of 〈δ, θ〉 is nonabelian. Then, as we have seen, δ = ηj for some j. It
is not possible that

∧
i∈I−{j} ηi = 0C by the minimality of I. Thus there

exists an atom α in Con C below
∧

i∈I−{j} ηj. Then α is not below ηj (since∧
i∈I ηi = 0C). So we are done in this case.

In the abelian case recall that the coatoms of Con C|U intersect to zero,
and as C|U is Mal’tsev, Con C|U is a complemented modular lattice. The
minimality hypothesis on J now implies that the set B = {(ηj|U) | j ∈ J}
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is a maximal independent set of coatoms of Con C|U . (Saying that B is an
independent set of coatoms means that no two distinct subsets of B have the
same meet.) The sublattice of Con C|U generated by B is a Boolean lattice
which has the same height as Con C|U . In particular, atoms in the Boolean
sublattice generated by B are atoms in Con C|U . The atoms of this Boolean
sublattice are the elements

αj =
∧

i∈J−{j}
ηi|U .

The atoms of a finite Boolean algebra join to the top, so there exists a j ∈ J
such that αj is not below δ|U . Again, we can find an atom α in Con C below∧

i∈I−{j} ηj, and as α is not below ηj, we get that α ∨ ηj = 1C . Therefore
α|U ∨ ηj|U = 1U , so ηj|U 6= 1U implies that α|U > 0U . On the other hand,
α|U is below the atom αj, so we have α|U = αj. Therefore α is not below δ
and the proof is complete.

This lemma has several important consequences.

COROLLARY 3.7 If C ∈ V is a finite subdirect product of members of
HS(K), then the join of the atoms of Con C is 1C .

Proof. If the join of atoms is not 1C , then there exists a maximal
congruence δ of C which contains all atoms. This contradicts Lemma 3.6
(since the minimal sets for all quotients at the top have empty tail).

COROLLARY 3.8 Let S be a finite irreducible algebra in V with monolith
µ. If C(1S, µ; 0S) holds, then S is simple.

Proof. We have C(µ, µ; 0), so the monolith has abelian type. If this
type is 1, then Lemma 6.1 of [4] shows that V contains a simple algebra of
type 1, contradicting our assumption on V . Thus the type of µ is 2.

Let S = C/δ, where C ∈ V is a finite subdirect product of elements of
HS(K) and define θ by θ/δ = µ. Then we have C(1C , θ; δ) in C. But by
Lemma 2.11 (6) of [4], the body of any 〈δ, θ〉-minimal set U is equal to the
intersection with U of a single (δ : θ)-class. Therefore U has empty tail, and
Lemma 3.6 implies that S is simple.
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COROLLARY 3.9 Let C ∈ V be a finite subdirect product of members of
HS(K) and δ a meet-irreducible congruence of C with upper cover θ. Then
for every atom α of Con C we have typ(0C , α) ∈ {2,3,4}. If θ < 1C , then α
is either below δ or not below θ.

Proof. Let α be any atom. There exists a projection kernel ηi which
does not contain α, which implies that we have a perspectivity α/0C ↗ 1C/ηi.
Because of our assumption on simple algebras in V , the type of 〈ηi, 1C〉 is 2,
3 or 4. We know that perspective prime quotients have the same type, so
the first assertion is proved.

Suppose that an atom α is below θ, but not below δ. Then we have a
perspectivity α/0C ↗ θ/δ as well. Thus θ/δ and 1C/ηi are projective prime
quotients, and typ(θ, δ) ∈ {2,3,4}.

The minimal sets for the quotient 1C/ηi have empty tail. For types 1
and 5, a minimal set may have empty tail with respect to one quotient, but
not with respect to a perspective quotient. However, this cannot happen for
types 2, 3 and 4. Indeed, if U is of type 3 or 4, then U has empty tail if and
only if |U | = 2. If U is of type 2, then U has empty tail if and only if C|U
has a Mal’tsev polynomial. These properties are independent of the quotient
for which U is minimal. Therefore the 〈δ, θ〉-minimal sets have empty tail in
our case, and Lemma 3.6 implies that δ is a maximal congruence of C, which
contradicts the assumption that θ < 1C .

COROLLARY 3.10 If the equational class V is residually small, then
every finite irreducible algebra of V is simple.

Proof. Assume not. Then there exists an algebra C ∈ V , which is
a finite subdirect product of members of HS(K) and has a meet-irreducible
congruence δ whose unique upper cover θ is not 1C . We show that the
conditions of Lemma 3.4 are satisfied for this δ, θ, and some atom α.

From Corollary 3.8 we see that C(1C , θ; δ) fails in C. Corollary 3.7 shows
that the join of all atoms is 1C . Therefore there is an atom α such that
C(α; θ; δ) fails. Of course α is not below δ (since then C(α; θ; δ) holds),
and so Corollary 3.9 implies that α is not below θ, that is, θ ∧ α = 0C .
By the same Corollary, 〈0C , α〉 has type 2, 3, or 4. Thus all conditions of
Lemma 3.4 are satisfied, and so V is residually large. This contradiction
proves the statement.
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We can now show that if V is residually small, then it is congruence
modular. In the light of Corollary 3.10, the following lemma finishes the
proof of Theorem 3.1.

LEMMA 3.11 If V is not congruence modular, then it contains a finite
irreducible algebra which is not simple.

Proof. Suppose that V is not congruence modular. Then we can find
a finite C ∈ V whose congruence lattice contains a pentagon. That is, there
are congruences α, β, γ ∈ Con C such that α ≺ β, α ∨ γ = β ∨ γ, and
α ∧ γ = β ∧ γ. Choose a congruence δ ≥ α which is maximal for δ 6≥ β.
Necessarily, the congruence δ is meet irreducible, so C/δ is irreducible. We
claim that C/δ is not simple. We shall prove this by contradiction.

Assume that C/δ is simple. Then δ ≺ 1C . Let U ∈ MC(δ, 1C). As 1C/δ
and β/α are perspective quotients, we have that α|U < β|U . This implies
that α|U , β|U and γ|U generate a pentagon in Con C|U . But clearly U is a
single trace, since δ ≺ 1C . If typ(δ, 1C) ∈ {3,4}, then |U | = 2, so there
aren’t enough equivalence relations on U to form a pentagon in Con C|U .
If typ(δ, 1C) = 2, then C|U has a Mal’tsev polynomial, so Con C|U cannot
contain a pentagon. The remaining possibilities, typ(δ, 1C) ∈ {1,5}, are
ruled out because this would mean that V contains a simple algebra C/δ of
type 1 or 5. This contradiction finishes the proof.

4 Multitraces

Let A be a finite algebra and ρ < γ be congruences of A with 〈ρ, γ〉 a tame
quotient of type 2 or 3. We are interested in sets of the form p(N, . . . , N)
where p is some polynomial of A and N is a 〈ρ, γ〉-trace. These sets are called
〈ρ, γ〉-multitraces of A. Section 3 of [4] provides us with detailed knowledge
of the induced structure on a multitrace in the case where ρ = 0A. We need
to consider other situations and so make the following definition.

Definition 4.1 A pair of congruences 〈ρ, γ〉 on a finite algebra A is called
stiff if it is tame, and ρ is trivial on all (unary) polynomial images of 〈ρ, γ〉-
traces.
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Thus, if 〈ρ, γ〉 is stiff, and N is a 〈ρ, γ〉-trace, then for each p(x) ∈ Pol1A
we have that either p is constant on N or p(N) is polynomially isomorphic
to N . Of course any tame pair of the form 〈0A, γ〉 is stiff; the following
proposition provides other examples.

PROPOSITION 4.2 Let A be a finite algebra and 〈ρ, γ〉 a tame pair of
congruences of A.

(1) Suppose that 〈ρ, γ〉 is stiff and that N is a 〈ρ, γ〉-trace. If the pair
(a, b) is in the congruence generated by N2 then there is a chain of
overlapping 〈ρ, γ〉-traces connecting a to b.

(2) If HS(A2) is abelian, and 〈ρ, γ〉 is tame of type 2 with ρ strongly solv-
able, then 〈ρ, γ〉 is stiff.

Proof. Part (1) of this proposition is immediate from the definition.
Theorem 7.4 of [9] shows that in part (2), the congruence ρ is strongly abelian
and hence is trivial on any 〈ρ, γ〉-trace. Arguing as in Lemma 8.2 of [9] we
conclude that 〈ρ, γ〉 is indeed stiff.

The following theorem is an extension of some of the results of Section 3
of [4] which will suit our needs in this and subsequent sections.

THEOREM 4.3 Let A be a finite algebra and 〈ρ, γ〉 a stiff pair of A of
type 2 or 3. Let N be a 〈ρ, γ〉-trace, p(x) a polynomial of A and let T =
p(N, . . . , N). Then T is an E-trace with respect to γ and

(1) If 〈ρ, γ〉 is of type 2 then

(a) A|T is term equivalent to (A|N)[k] for some k and hence is poly-
nomially equivalent to a matrix power of a finite vector space. In
this case, we say that the rank of T is k.

(b) If U is a 〈ρ, γ〉-minimal set with body B which contains N and
if p has exactly k variables then C = p(B, . . . , B) is an E-trace
with respect to (ρ : γ) and the induced structure on this set is
isomorphic to (A|B)[k]. Thus A|C is Mal’tsev.

There is a binary polynomial b(x, y) of A|C such that for any
c ∈ C, the mapping b(x, c)|T is a bijection between T and the
γ|C-class which contains c.
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(2) If 〈ρ, γ〉 is of type 3 then A|T is a primal algebra and ρ is trivial on T .
There exists an idempotent polynomial e such that T is the intersection
of e(A) with some γ-class, and T is also the union of some (ρ : γ)|e(A)-
classes.

Proof. If 〈ρ, γ〉 is of type 3 then it is not hard to see that any two
elements of T are contained in the image of N under a unary polynomial.
Therefore, part (2) of this theorem follows from Lemmas 3.6 and 3.11 of [4].
The last statement follows from a careful examination of the proof of 3.6
part (3), using the fact that the body B of any 〈ρ, γ〉-minimal set U is a
union of (two) (ρ : γ)|U -classes (see Exercise 4.37 (5) of [2]).

To establish the first claim of (1) it suffices, by Lemma 3.8 of [4], to
show that ρ is trivial on T . As ρ is trivial on N then A|N is polynomially
equivalent to a vector space. Let 0 ∈ N be the additive identity element
with respect to this vector space. In this case it is not generally true that
any two elements of T are contained in a polynomial image of N (unless N
is one-dimensional). First we prove a special case:

Claim 1 If v1, . . . , vm is a linearly independent set of vectors in N and
t(x1, . . . , xm) is a polynomial of A, then t(0, . . . , 0) ρ t(v1, . . . , vm) if and
only if t(0, . . . , 0) = t(v1, . . . , vm).

This can be proved by induction on m. The hypotheses of this theorem
handle the case m = 1. Suppose that t(0, . . . , 0) ρ t(v1, . . . , vm) and that
the claim is valid for linearly independent sets with fewer than m elements.
Let αi = ρ ∨ CgA(0, vi) for i ≤ m. As the vi are linearly independent, we
get that αm|N ∧ ∨

i<m αi|N = 0N , and using that 〈ρ, γ〉 is tame we see that
αm ∧ ∨

i<m αi = ρ.
Let a = t(0, . . . , 0), b = t(v1, . . . , vm−1, 0) and c = t(v1, . . . , vm). Then

(b, c) ∈ αm ∧ ∨
i<m αi = ρ. On the other hand, b, c ∈ t(v1, . . . , vm−1, N). The

stiffness of 〈ρ, γ〉 therefore implies that b = c. Thus, (a, b) ∈ ρ, and then by
the induction hypothesis we conclude that a = b = c, proving the claim.

Now the fact that ρ restricts trivially to T can be proved easily, by ap-
plying the claim to polynomials t obtained from p by appropriate linear
substitutions.

To prove part (b) of (1), let U be a 〈ρ, γ〉-minimal set which contains N ,
let B be the body of U and let e(x) be an idempotent polynomial of A
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with range U . If p is a k-variable polynomial (with k the rank of the multi-
trace T ), then by examining the proof of Lemma 3.8 of [4] we see that we may
assume that T is coordinatized with respect to p and N via the coordinate
polynomials gi(x), i ≤ k, i.e.,

gi(p(x1, . . . , xk)) = xi for all xj ∈ N and i ≤ k.

Replacing gi by egi and p(x1, . . . , xk) by p(e(x1), . . . , e(xk)) we may also as-
sume that p(e(x1), . . . , e(xk)) = p(x) and egi(y) = gi(y) for all xj, y ∈ A
and i ≤ k.

Since A is finite then there is some number ` such that

t`(i)(x1, . . . , xi−1, t
`
(i)(x), xi+1, . . . , xm) = t`(i)(x)

holds for all polynomials t of A. We will use this number ` to define the
following sequence of polynomials of A:

p0(x) = p(x);

pi+1(x) = pi(x1, . . . , xi, (gi+1pi)
`−1
(i+1)(x), xi+2, . . . , xk)

for i < k.

Claim 2 For 0 ≤ i ≤ k,

1. pi(x) = p(x) for all x ∈ N .

2. For all b from B, and 1 ≤ j ≤ k, the restriction of the polynomial
gjpi(b1, . . . , bj−1, x, bj+1, . . . , bk) to U is a permutation of U .

3. For 1 ≤ j ≤ i, and b from B, gjpi(b) = bj.

Note that for a given i ≤ k, the second part of this claim follows from the
first by using Corollary 4.34 of [2] and that gj(p(b1, . . . , bj−1, x, bj+1, . . . , bk))
is a permutation of U whenever the bi’s are from N .

The remaining two parts of this claim can be proved by induction on i,
with the base step being trivial. Suppose that the equalities mentioned in the
two parts hold for pi and consider pi+1. By the induction hypothesis we can
easily deduce that (gi+1pi)

`−1
(i+1)(x) = xi+1 for all x from N and so conclude

that pi+1(x) = pi(x) = p(x) for all x from N .
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If j ≤ i and b is from B then gjpi+1(b) = gjpi(b1, . . . , bi, b
′, bi+2, . . . , bk)

where b′ = (gi+1pi)
`−1
(i+1)(b) is some element from B. Then by induction we

have that gjpi(b1, . . . , bi, b
′, bi+2, . . . , bk) = bj as required. For j = i + 1 we

have that gi+1pi+1(b) is the value of the idempotent polynomial

(gi+1pi)
`
(i+1)(b1, . . . , bi, x, bi+2, . . . , bk)

applied to bi+1. Since the restriction of this polynomial to U is a permutation
of U it follows that this polynomial maps bi+1 to bi+1 as required. Thus the
claim is proved.

If we set t(x) = pk(x) then the above claim shows that C = t(B, . . . , B)
is coordinatized with respect to Bk with coordinate maps gi(x), i ≤ k and
is contained in p(B, . . . , B). By Corollary 3.7 of [4] we conclude that C is
an E-trace with respect to (ρ : γ) since B is and that A|C is polynomially
isomorphic to (A|B)[k]. Finally, since p(B, . . . , B) has size at most |B|k and
the subset C contains exactly this many elements, then it follows that C =
p(B, . . . , B). This also implies that ρ is trivial on C.

Since the type of 〈ρ, γ〉 is 2 then A|B has a Mal’tsev polynomial. Using
the induced structure on C we therefore see that there exists a polynomial
d(x, y, z) of A which is Mal’tsev on C. Let a be any member of T . Then
using the fact that C is contained in a (ρ : γ)-class, a classical argument
shows that the polynomial b(x, y) = d(x, a, y) satisfies the conditions at the
end of part (1) of this theorem.

COROLLARY 4.4 Let A be a finite algebra and 〈ρ, γ〉 a stiff pair of con-
gruences of A of type 2 or 3. Let U and V be 〈ρ, γ〉-multitraces.

(1) U and V are polynomially isomorphic if and only if they have the same
size, or equivalently, in the type 2 case, they have the same rank.

(2) Let p(x) be a unary polynomial of A. There is some multitrace W
contained in U such that p is a polynomial isomorphism between W
and p(U).

(3) If ρ ≺ β ≤ γ, then any two β-related elements of U are contained in a
〈ρ, β〉-trace.
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Proof. Using the coordinate maps one can construct unary polynomials
mapping U onto V and vice versa, hence we get (1). To see (2) notice that
p(U) is a multitrace of size less than or equal the size of U , and therefore
U contains a polynomially isomorphic copy of p(U) by (1). So, it suffices to
verify this part, as well as part (3), under the assumption that A = U and
A is polynomially equivalent to a matrix power of a finite vector space or
is primal. The latter case is very easy to handle, while the former can be
taken care of using some elementary linear algebra. Part (3) follows from the
classical observation that in a Mal’tsev algebra the congruence generated by
a pair (a, b) is the set of pairs (p(a), p(b)), where p is a unary polynomial.

We present an example which shows that even in rather nice situations
a set obtained by applying an arbitrary polynomial to the body of a type 2
minimal set need not be coordinatizable with respect to the body. The pre-
vious theorem establishes coordinatizability under an additional assumption
on the polynomial. Let A be the algebra with universe {0, 1, 2, 3, 4, 5, 6, 7}
and having as its only basic operation the following binary function:

· 0 1 2 3 4 5 6 7
0 0 1 2 3 2 3 0 1
1 1 0 3 2 3 2 1 0
2 4 5 6 7 6 7 4 5
3 5 4 7 6 7 6 5 4
4 4 5 6 7 6 7 4 5
5 5 4 7 6 7 6 5 4
6 0 1 2 3 2 3 0 1
7 1 0 3 2 3 2 1 0

The congruence γ generated by {(0, 1)} is a type 2 cover of 0A and {0, 1, 2, 3}
is a 〈0A, γ〉-minimal set (having an empty tail). Observe that by applying
x · y to this minimal set all 8 elements of A are obtained. Clearly A itself is
not coordinatizable with respect to {0, 1, 2, 3} since it does not have size an
integral power of 4. We leave as an exercise to check the above details and
also that A is an abelian algebra.

The results proved so far show that (in the type 2 or 3 case) every mul-
titrace is a Mal’tsev E-trace. It is interesting to note that the converse also
holds:
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THEOREM 4.5 Let 〈0A, γ〉 be a tame quotient of type 2 or 3. If X is an
E-trace with respect to γ and A|X has a Mal’tsev polynomial, then X is a
〈0A, γ〉-multitrace.

Proof. Let U be a multitrace contained in X of maximal size. Since X
is an E-trace then it can be connected by overlapping 〈0A, γ〉-traces. Thus,
if U 6= X then there is a trace N contained in X which contains elements
from both U and from X − U .

If d(x, y, z) is a polynomial of A whose restriction to X is Mal’tsev and
a ∈ N ∩ U then the set d(U, a, N) is a multitrace which contains both U
and N , contradicting the maximality of U . Therefore, X is a multitrace.

An easy corollary of this theorem is the result of Werner on functionally
complete algebras.

COROLLARY 4.6 (see [11]) Let A be a finite algebra in a congruence
permutable equational class. A is functionally complete if and only if Con A2

is isomorphic to 22, the square of the two element lattice.

Proof. Clearly if Con A2 is isomorphic to 22 then A is a simple algebra.
Also, A cannot be abelian or else the congruence of A2 generated by the
diagonal of A would produce a nontrivial congruence distinct from the kernels
of the two projection homomorphisms. Thus A is a simple nonabelian algebra
in a congruence permutable equational class, and hence has type 3.

From the previous theorem it follows that A itself is a multitrace and then
by Theorem 4.3 it follows that A|A is a primal algebra, i.e., A is functionally
complete.

For the remainder of this section let A be a finite algebra and 〈0A, γ〉 a
tame quotient of A of type 2 or 3.

LEMMA 4.7 Let N be a 〈0A, γ〉-trace and let a and b be distinct elements
of A contained in the same γ-class as N . Let 0 be any element from N . There
is an idempotent unary polynomial of A which maps the γ-class of N onto
N and which separates a and b. In particular, if M is any other 〈0A, γ〉-trace
contained in the same γ-class as N then there is an idempotent polynomial
π which maps M onto N .

If the type of 〈0A, γ〉 is 2, say the 〈0A, γ〉-traces are polynomially equiv-
alent to an F-vector space for some finite field F, and f(x) is any other
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polynomial which maps M onto N then there is some v ∈ N and λ ∈ F with
f(x) = λπ(x) + v for all x ∈ M .

Proof. Since 〈0A, γ〉 is of type 2 or 3 then there is a polynomial + of
A whose restriction to N describes a group operation on N having neutral
element 0.

Let F be the set of unary polynomials of A which map the γ-class of N
into N . Let G ⊆ F be the subset of polynomials which are one-to-one on N
and let H ⊆ F be the subset of polynomials which separate a and b. By [2],
both G and H are nonempty. But then G∩H is nonempty, since if g ∈ G−H
and h ∈ H − G, then g + h ∈ G ∩H.

It is clear from the definitions that G∩H is closed under composition, and
so by iterating any f ∈ G ∩ H one can produce an idempotent polynomial
which maps the γ-class of N into N , separates a and b, and is one-to-one on
N .

If M is another trace contained in the same γ-class as N , then we may
apply the preceding result to distinct elements a, b ∈ M to obtain an idem-
potent polynomial π which maps M onto N .

Now, suppose that the type of 〈0A, γ〉 is 2 and that f(x) is some poly-
nomial of A which maps M into N . Let g be a polynomial inverse of
π : M → N . Then the map f(g(x)) maps N into N and so is of the form
λx + v for some λ ∈ F and v ∈ N . From this we see that f(x) = λπ(x) + v
for all x ∈ M as required.

COROLLARY 4.8 If M and N are distinct 〈0A, γ〉-traces then they have
at most one element in common. If M and N have exactly one element
in common then there is an idempotent polynomial which maps the γ-class
containing N onto N and is constant on M .

Proof. If M and N are distinct overlapping traces, then we can choose
0 ∈ M ∩N and a ∈ M −N . We shall use Lemma 4.7 to build an idempotent
polynomial e which maps the γ-class of a onto N and which maps a (and
hence all of M) onto 0. This polynomial is thus both constant and one-to-one
on M ∩N and so |M ∩N | = 1.

To find such a polynomial, apply Lemma 4.7 to the elements a and 0 to
obtain an idempotent polynomial e1 which maps the γ-class of N onto N
and which separates a and 0 (and so e1(M) = N). Let e1(a) = b. Apply the
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lemma once more to the elements a and b to obtain an idempotent polyno-
mial e2 which maps the γ-class of N onto N and which separates a and b.
Let c = e2(a) and note that c 6= b.

If the type of 〈0A, γ〉 is 3 then N has exactly two elements and so c = 0
and we are done. On the other hand, if the type is 2 then by the last part
of Lemma 4.7 we see that there is some λ ∈ F with e2(x) = λ(e1(x)) for
all x ∈ M . This implies that c = λb.

A straightforward calculation shows that the polynomial

λ

λ− 1
(e1(x)− e2(x)) + e2(x)

maps 0 and a to 0 and is one-to-one on N and so some iterate of it will
provide us with the desired idempotent polynomial.

LEMMA 4.9 Let X be a 〈0A, γ〉-multitrace and M a 〈0A, γ〉-trace which
is not contained in X but which has nonempty intersection with X. Then
there is an idempotent polynomial p(x) which maps the γ-class of X onto X
and which is constant on M .

Proof. Let e(x) be an idempotent polynomial such that X is the
intersection of a γ-class with the range of e and let 0 be an element in the
intersection of M with X. We may assume that e is not constant on M ,
otherwise we may set p = e.

Since M is a trace then so is e(M) and since 0 lies in both M and e(M)
then by Corollary 4.8 there is an idempotent polynomial f(x) which maps
the γ-class of e(M) onto e(M) and which is constant on M .

Let + be a polynomial whose restriction to X provides an abelian group
operation with additive identity element 0 and let h(x) = e(x)+f(x)−fe(x).
We claim that h is constant on M and is the identity map on X and so some
suitable iterate of h will provide the polynomial p that we are after.

If m ∈ M then

h(m) = e(m) + f(m)− fe(m) = e(m) + 0− e(m) = 0

since f maps all of M to 0 and is the identity on e(M). Also, if a ∈ X then

h(a) = e(a) + f(a)− fe(a) = a + f(a)− f(a) = a

since e is the identity map on X.
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COROLLARY 4.10 Let V and W be distinct 〈0A, γ〉-multitraces such that
V is not contained in W but their intersection is nonempty. Then there is
an idempotent polynomial which maps the γ-class of V onto W and which
is not one-to-one on V .

Proof. All that is needed is to find some 〈0A, γ〉-trace contained in V
and which contains elements from V ∩W and from V −W . Since any two
elements in a multitrace can be connected by a chain of overlapping traces
then such a trace does indeed exist. The previous corollary provides an
idempotent map which maps the γ-class of V onto W and which is constant
on this trace. This map cannot be one-to-one on V .

COROLLARY 4.11 Let V and W be 〈0A, γ〉-multitraces. Then V ∩W is
either empty or a multitrace.

Proof. Let X = V ∩ W and assume that X is not empty and not
a multitrace. Replacing V and W with smaller multitraces containing X if
necessary, we may assume that no proper subset of V or W is a multitrace
containing X. We may also assume that |V | ≤ |W |. By the previous corollary
there is an idempotent polynomial e(x) which maps V ∪ W onto W and
which is not one-to-one on V . This is an impossibility since the multitrace
e(V ) ⊂ W is strictly smaller than W and contains X. We conclude that
X = V ∩W is a multitrace.

5 Parallel Multitraces

Throughout this section let A be a finite algebra and 〈ρ, γ〉 a stiff pair of
congruences of type 2 or 3.

Definition 5.1 Two subsets X and Y of an algebra B are said to be quasi-
parallel if for all polynomials p(x) of B we have that p is constant on X if
and only if it is constant on Y . We write X oo Y in this case.

Clearly, oo is an equivalence relation on the subsets of any algebra. We
now list some other important properties of this relation. To formulate this
result, let us introduce a new concept.
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Recall from Chapter 2 of [2] that subsets X and Y of an algebra A
are polynomially isomorphic if there exist polynomials f , f ′ of A such that
f |X : X → Y and f ′|Y : Y → X are inverse bijections. It is well known
and easy to show that, when A is finite, to determine if X, Y ⊆ A are
polynomially isomorphic it is enough to find f and f ′ such that f |X and
f ′|Y are bijections, since from these polynomials one can construct inverse
(polynomial) bijections between X and Y by composition and iteration. We
define subsets X and Y of A to be E-isomorphic if they are polynomially
isomorphic via idempotent polynomials. That is, there are e, e′ ∈ E(A) such
that e|X : X → Y and e′|Y : Y → X are inverse bijections. As in the case
of ordinary polynomial isomorphism, E-isomorphism can be established from
partial information when we are dealing with finite algebras. In particular,
if f |X : X → Y and f ′|Y : Y → X are polynomial bijections, and f(Y ) = Y ,
then idempotents e, e′ ∈ E(A) witnessing E-isomorphism can be constructed
from f and f ′ by composition and iteration.

LEMMA 5.2 Let U and V be 〈ρ, γ〉-multitraces.

(1) If X and Y are subsets of A and p(x) is a polynomial of A, then X oo Y
implies p(X) oo p(Y ).

(2) If V is properly contained in U , then U is not quasi-parallel to V .

(3) Suppose that either

(A) U and V are quasi-parallel and lie in the same γ-class; or

(B) the type of 〈ρ, γ〉 is 3 and U and V are equal modulo (ρ : γ).

Then U and V are E-isomorphic. If u1 ∈ U corresponds to v1 ∈ V
and u2 ∈ U corresponds to v2 ∈ V under this E-isomorphism, then for
every unary polynomial p of A we have that p(u1) = p(u2) if and only
if p(v1) = p(v2). In particular, U oo V holds also in case (B).

(4) If the type of 〈ρ, γ〉 is 2 and U and V are of rank k and such that their
intersection properly contains a multitrace of rank k − 1, then U oo V .

(5) If U and V are distinct and quasi-parallel, then either they are disjoint
or the RL configuration occurs in A. If ρ = 0A then U and V must be
disjoint.
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Proof. Part (1) follows immediately from the definition of oo .
To prove (2), assume that V is properly contained in U . By Theorem 4.3

we know that both U and V are E-traces with respect to γ. From this and
V ⊂ U we know that there is an idempotent e such that e(U) = V and e
is not one-to-one on U . Again by Theorem 4.3 we know that A|U is primal
or polynomially equivalent to a matrix power of a vector space. In either
case there is a binary polynomial x − y of A whose restriction to U is an
abelian group subtraction operation. Subtraction can be used to construct
the polynomial p(x) = x − e(x), which is constant on V and not on U .
Therefore U is not quasi-parallel to V .

For part (3), suppose first that U and V are quasi-parallel and lie in the
same γ-class. As we have mentioned, Theorem 4.3 guarantees an idempotent
polynomial e such that U is the intersection of e(A) with some γ-class. Since
U and V lie in the same γ-class, then e(V ) ⊆ U and so by part (1) we get that
e(V ) and e(U) = U are quasi-parallel. By part (2), we must have U = e(V ).
By reversing the roles of U and V we can find an idempotent polynomial e′

such that e′(V ) = e′(U) = V . Thus U and V are E-isomorphic.
Suppose next that the type of 〈ρ, γ〉 is 3 and U and V are equal modulo

(ρ : γ). As A|U and A|V are both primal, (ρ : γ) is trivial on both of these
sets. Thus the (ρ : γ)-classes establish a one-to-one correspondence between
U and V . By Theorem 4.3 there is an idempotent polynomial e(x) of A such
that U is the intersection of e(A) with some γ-class and U is the union of
(ρ : γ)|e(A)-classes. From this it follows that if a ∈ U and b (ρ : γ) a then
e(b) = a and so v (ρ : γ) e(v) for all v ∈ V . By reversing the roles of U and V
in this argument we can find an idempotent polynomial e′ which maps both
U and V onto V . Thus U and V are E-isomorphic in this case too.

Let e′ : U → V be an idempotent which maps U onto V . If p(x) is any
polynomial of A, then the sets p(U) and p(V ) are multitraces which satisfy
(A) or (B), respectively, so we can find an idempotent polynomial f : p(U) →
p(V ) mapping p(U) onto p(V ). Let x−y be a binary polynomial of A whose
restriction to p(V ) acts as subtraction with respect to some abelian group
structure on p(V ). Now consider the polynomial h(x) = pe′(x)− fp(x). For
v ∈ V we have that h(v) = p(v) − p(v) = 0 and so h is constant on V . In
case (A) we have that h is constant on U since U oo V , and in case (B) we
have that if a, b ∈ U then h(a) (ρ : γ) h(e′(a)) = h(e′(b)) (ρ : γ) h(b). As
(ρ : γ) is trivial on p(V ) then we conclude that h(a) = h(b). In both cases,
we must have that h is constant on U . Thus for any u1, u2 ∈ U and for
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vi
def
= e′(ui) we have

p(v1)− fp(u1) = h(u1) = h(u2) = p(v2)− fp(u2),

from which it follows that p(u1) = p(u2) if and only if p(v1) = p(v2).
Now we establish part (4). Note that if ρ = 0A, then we must have

U = V by Corollary 4.11, but not in general. Let 〈ρ, γ〉 be of type 2 and let
n be the size of any 〈ρ, γ〉-trace. Let U and V be multitraces of rank k whose
intersection properly contains a multitrace M of rank k−1. Assume that p is
a unary polynomial which is constant on V . Then p is constant on a subset of
U which properly contains M . Now U is the union of n disjoint multitraces
which are quasi-parallel to M , and so p will be constant on each of these
multitraces. Thus p(U), which is a multitrace, can have size 1 or n, but since
p is constant on a set which properly contains M , it must be that p(U) has
size 1. Thus if p is constant on V it is constant on U . The symmetric fact
establishes that U is quasi-parallel to V .

To see why part (5) is true, let U and V be quasi-parallel and suppose
that they are distinct but have a nonempty intersection. Let 0 lie in the
intersection and let 1 be an element from U − V . Since U and V lie in the
same γ-class they are E-isomorphic via idempotent polynomials e and e′. In
particular, |U | = |V |.

If ρ = 0A, then by Corollary 4.10 there is an idempotent polynomial f
which maps U∪V onto V and which is not one-to-one on U . Then by part (1)
of this lemma f(U) is a multitrace properly contained in, but quasi-parallel
to, the multitrace f(V ) = V , contradicting part (2) of this lemma. This
establishes the second remark of part (5).

If ρ 6= 0A, then we will show that (1, 0) along with e′ constitute an RL
configuration in A. Since A|U supports an abelian group operation with
neutral element 0, it follows that (1, 0) is a 1-snag of A. Since 0 lies in the

intersection of U and V then e′(0) = 0. Also, for 1′ def
= e′(1) ∈ V −U we have

e(1′) = e(1) = 1, and for the polynomial c(x) = 1− x we have c(0) = 1 and
c(1) = 0. According to Lemma 2.4, to show that our data constitute an RL
configuration we need only to verify that for all polynomials p(x), if p(0) = 1
then p(1) = 1 if and only if p(1′) = 1. Here we apply part (3) of this lemma
to (u1, u2) = (0, 1) and (v1, v2) = (0, 1′). Part (3) tells us that p(0) = p(1)
if and only if p(0) = p(1′). Hence p(1) = 1 if and only if p(1′) = 1, since
p(0) = 1.
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A different notion of parallelism is given in the next definition.

Definition 5.3 Let T be a tolerance of an algebra B and let X and Y be
two subsets of B. X and Y are said to be T -parallel (denoted: X ‖T Y ) if
they are polynomially isomorphic and the pair (X,Y ) lies in the transitive
closure of the relation

{(t(X, r), t(X, s)) | t ∈ Pol B and (r, s) ∈ T} .

When T is the relation B2 then we write ‖ in place of ‖T and use the term
“parallel” in place of “T -parallel”.

Thus ‖T is the transitive closure of the T -twin relation between subsets.
Clearly, this is an equivalence relation, and if T is generated (as a tolerance)
by the pair (c, d) then we can always assume that {r, s} = {c, d} in the above
definition. We leave it as an exercise to show that if T ≤ (0B : X2), then
X ‖T Y implies that X oo Y . In particular, if B is abelian then X ‖ Y implies
that X oo Y .

We shall need the following addition to part (3) of Lemma 5.2.

LEMMA 5.4 If the type of 〈ρ, γ〉 is 2 and U and V are two quasi-parallel
〈ρ, γ〉-multitraces which are equal modulo some congruence ε ≤ (ρ : γ), then
there is a multitrace W which is ε-parallel to U and E-isomorphic to V .

Proof. By Theorem 4.3 there is some set C containing U which is an
E-trace with respect to (ρ : γ) and such that A|C is polynomially isomor-
phic to (A|B)[k] for some 〈ρ, γ〉-body B and natural number k. Let e be an
idempotent polynomial such that C is the intersection of e(A) with some
(ρ : γ)-class.

If we apply e to the multitrace V then we obtain a multitrace e(V ) con-
tained in C and quasi-parallel to e(U) = U . Let W be the γ|C-class which
contains e(V ). By Theorem 4.3 there is some binary polynomial b(x, y) of
A|C such that for any c ∈ C, the mapping b(x, c)|U is a bijection between
U and the γ|C-class containing c. This shows that the set W is a multi-
trace which is ε-parallel to U and hence is quasi-parallel to it. Then by
Lemma 5.2 (2) the multitraces e(V ) and W must be equal since e(V ) ⊆ W
and e(V ) oo e(U) = U oo W .
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To prove that V is E-isomorphic to W = e(V ) we need to prove that
there is a polynomial inverse to e(x)|V mapping W back onto V . From
the remarks following Definition 5.1 we know that it suffices to show that
there is some polynomial bijection from W to V , and therefore (in view of
Corollary 4.4 (1)) we only need to show that |V | = |W |. From the previous
paragraph we gather that |U | = |W | = |e(V )| ≤ |V |. By reversing the role
of U and V , we can conclude that in fact U , V and W must have the same
size, and hence the multitraces V and W are E-isomorphic.

Next we shall associate congruences with the parallel and quasi-parallel
relation. Let W be a 〈ρ, γ〉-multitrace and ~W = (w1, . . . , wr) a listing of the

distinct elements of W . Let B be the subalgebra of Ar generated by ~W and
the diagonal. Then

B = {(t(w1), . . . , t(wr)) | t ∈ Pol1A} ,

hence if a tuple u in Ar belongs to B then {ui | i < r} is a 〈ρ, γ〉-multitrace.
For u and v in B and ε ∈ Con A, let us define u and v to be ε-parallel

(and write u ‖ε v) if this pair lies in the transitive closure of the relation

{
(t̂( ~W, ĉ), t̂( ~W, d̂)) | t a polynomial of A and (c, d) ∈ ε

}
.

Further, let us define u and v to be quasi-parallel (and write u oo v) if for
every polynomial p(x) of B, p(u) is a constant sequence if and only if p(v) is.

LEMMA 5.5 With the notation above, we have the following:

(1) The ‖ε relation is the congruence of B generated by
{
(ĉ, d̂) | c ε d

}
.

(2) The oo relation is the largest congruence of B for which the diagonal
is a union of congruence classes.

(3) If ε ≤ (ρ : γ) then ‖ε ⊆ oo .
(4) If u oo v then {ui | i < r} and {vi | i < r} are quasi-parallel multitraces

of A. Conversely, if the multitraces {ui | i < r} and {vi | i < r} are
quasi-parallel and have size r, and there are idempotent polynomials
e0(x) and e1(x) of A with e0(vi) = ui and e1(ui) = vi for i < r, then
u oo v. If ε ≤ (ρ : γ) and u ‖ε v in B then {ui | i < r} and {vi | i < r}
are ε-parallel in A.
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(5) If ρ = 0A or A avoids the RL configuration then the congruence oo
intersects trivially with the projection kernels of B.

Proof. Using the definitions of B, ‖ε and oo it is straightforward to
verify (1) and (2).

To show (3) it is sufficient to prove by (1) that if c ε d are elements of A,
then ĉ oo d̂. Let p be a unary polynomial of B. There is some polynomial
r(x, y) of A such that p(x) = r̂(x, ~W ) for all x ∈ B, and so having p constant
on ĉ is equivalent to asserting that the polynomial r(c, x) is constant on W .
Since W is contained in a γ-class and (c, d) are in (ρ : γ) then r(d, x) must
map W into some ρ-class. By the stiffness of 〈ρ, γ〉 it follows that this
polynomial is actually constant on W . This is equivalent to having p(d̂)
constant.

The first part of (4) is immediate from the definitions, since if u ∈ B then
{ui | i < r} is a multitrace. For the converse, the first thing to note is that
since u is a vector of r distinct elements in B then there is a polynomial
isomorphism in A which sends wi to ui for i < r. The inverse to this
map can be used to show that B is also generated by the diagonal and the
vector u. Now, suppose that p(x) is a polynomial of B with p(u) constant.
Since u along with the diagonal generates B then there is some polynomial
r(x, y) of A such that p(x) = r̂(x,u) for all x ∈ B. We may assume that
r(x, e0(y)) = r(x, y) for all x and y in A. Since p(u) is constant, then the
polynomial d(x) = r(x, x) of A is constant on the multitrace {ui | i < r}
and thus also on {vi | i < r}. Then p(v) = r̂(v,u) = r̂(v,v) = d̂(v) is a
constant vector. Since B is also generated by the diagonal and v, we get, by
symmetry, that if p(v) is constant then so is p(u). Therefore u oo v.

It suffices to verify the last part of (4) for pairs in the generating set of

‖ε . So, suppose that ε ≤ (ρ : γ) and that (u,v) = (t̂( ~W, ĉ), t̂( ~W, d̂)) for
some polynomial t of A and (c, d) ∈ ε. By Lemma 4.4 (2) there is some
multitrace U ⊆ W with t(x, c) a polynomial isomorphism between U and
{ui | i < r}. From (c, d) ∈ (ρ : γ) we get that the kernels of the mappings
t(x, c)|W and t(x, d)|W are equal. Hence {vi | i < r} = t(U, d) and from this
we conclude that the two multitraces are ε-parallel.

To prove (5) suppose that u oo v and that ui = vi for some i < r. By (4)
we know that the multitraces {ui | i < r} and {vi | i < r} are quasi-parallel
and that they share an element in common. By part (5) of Lemma 5.2 we
conclude that these multitraces are equal. Call this multitrace U .
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Let x−y be some polynomial of A whose restriction to U acts as subtrac-
tion with respect to some abelian group operation on U and let s(x) be the
polynomial x − u of B, where − is to be executed componentwise. Clearly
s(u) is constant and so s(v) must be as well. Since ui = vi then this can
only happen if u = v.

We are now ready to prove the main result of this section.

THEOREM 5.6 Let W0 and W1 be quasi-parallel 〈ρ, γ〉-multitraces of A
which are equal modulo some congruence ε ≤ (ρ : γ). If the equational class
generated by A avoids the RL configuration then W0 ‖ε W1.

Proof. Referring to Lemma 5.2 for the case when typ(ρ, γ) = 3 or
Lemma 5.4 for the case when typ(ρ, γ) = 2, we may assume that W0 and
W1 are E-isomorphic. That is, we may assume that there are idempotent
polynomials e0 and e1 of A with ei(Wj) = Wi and such that ei(ej(x)) = x
for all x ∈ Wi and i, j < 2. Let r be the number of elements in W0 (and

W1) and let ~W0 be some r-tuple which is a listing of all of the elements of
W0. Assume that W0 and W1 are not ε-parallel. We plan to contradict this
assumption by showing, via Corollary 2.5, that it leads to an instance of the
RL configuration in the equational class generated by A.

Let B be the diagonal subalgebra of Ar generated by ~W0 and define ~W1

to be ê1( ~W0). Note that ~W1 is a listing of the elements of W1 and that

ê0( ~W1) = ~W0. The congruences ‖ε and oo of B will play the roles of ρ and
σ in Corollary 2.5 respectively. Let R be the kernel of the first projection
map from B to A. From Lemma 5.5 (5) we see that oo ∩R ⊆ ‖ε .

Let 0 ∈ W0 denote the first component of ~W0 and let 0′ = e1(0) ∈ W1.

The elements 0̂, 0̂′ = ê1(0̂), ~W0, ~W1 ∈ B will play the roles of 0̃, 0̃′, 1̃ and 1̃′

from Corollary 2.5. Clearly we have 0̂ R ~W0 and 0̂′ R ~W1. To verify that

0̂ ‖ε 0̂′

R R
~W0 oo ~W1 ,

as Corollary 2.5 requires, we need to show that 0̂ ‖ε 0̂′ and ~W0 oo ~W1. The
latter follows from Lemma 5.5 (4). For the former, it is enough to show that
(0, 0′) ∈ ε. As W0 and W1 are equal modulo ε, then there is some c ∈ W1

such that 0 ε c. Then 0′ = e1(0) ε e1(c) = c, which yields that (0, 0′) ∈ ε.
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We have now proved that the conditions of Corollary 2.5 are satisfied.
By Lemma 5.5 (4) it follows that ( ~W0, ~W1) /∈ ‖ε , since W0 and W1 were

assumed not to be ε-parallel. Thus, in order to prove that {0̂/ ‖ε , ~W0/ ‖ε }
along with the polynomial ê1/ ‖ ε constitute an RL configuration in B/ ‖ε

it is sufficient to show that ( ~W0, 0̂) is a 1-snag of B. This can be done using
the fact that A|W0 has an abelian group operation.

We can now explain why the configuration in Figure 1 leads to residual
largeness. If A is any seven-element simple algebra of type 2 whose collection
of minimal sets consists of the three-element subsets from Figure 1, then we
claim that the minimal sets N and N ′ are quasi-parallel but not parallel.

To see that N oo N ′, suppose that p(x) is some polynomial of A which
maps N to a single element. It follows that p maps the two remaining minimal
sets distinct from N and N ′ to the same set (by Corollary 4.8) and this set
is either a minimal set or a singleton. In either case, this forces p to map all
of N ′ to a point. Similarly, any polynomial which maps N ′ to a point also
maps N to one. Thus N and N ′ are quasi-parallel and are in fact the only
pair of distinct quasi-parallel minimal sets in the algebra since every other
pair of minimal sets have nonempty intersection.

The scarcity of quasi-parallel traces in A implies that if N and N ′ are
parallel, then they must lie in some multitrace. This is not possible since A
has only 7 elements and any multitrace which contains both N and N ′ must
have rank at least 2 and hence contain at least 9 elements. We gather from
Theorem 5.6 that A generates a residually large equational class.

6 Residually SmallAbelianEquationalClasses

In this section we will show that a locally finite abelian equational class
is residually small if and only if it avoids the RL configuration. We have
already shown in Section 2 that the presence of the RL configuration leads
to residual largeness. To show the converse we need to locate an instance of
the RL configuration in any locally finite abelian equational class which has
a proper class of irreducibles. We will do more than this. We will locate an
instance of the RL configuration in any locally finite abelian equational class
V which has a sufficiently large irreducible, where ‘sufficiently large’ means
‘exceeding some finite bound determined by the free spectrum of V ’.
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Let V be a locally finite abelian equational class. For i a nonnegative
integer, let Mi be the size of the i-generated free algebra in V . The sequence
(M0,M1,M2, . . .) is known as the free spectrum of V . The main result of this
section is that if V contains an irreducible whose cardinality exceeds the finite

number 2M3M
M4

2
2 , then the RL configuration occurs in V . To make reading

the proof easier, we now give a rough sketch of the path the argument will
take.

Assume that the RL configuration does not occur in V and that S is
an irreducible member of V . Let ρ denote the strongly solvable radical of

S. We will show that the cardinality of S is no more than 2M3M
M4

2
2 by

showing that ρ-classes are no bigger than 2M3 and that the index of ρ is

no more than M
M4

2
2 . The first part of the argument (bounding ρ-classes)

is a modification of Shapiro’s proof for bounding the size of irreducibles
in strongly abelian equational classes (Theorem 6.3). The second part of
the argument (bounding the index of ρ) is accomplished by showing that
the index of ρ is at most MKM2

2 , where K denotes the number of covers
of ρ in Con S (Theorem 6.4). Then we argue that in the absence of RL
configurations we must have K ≤ M3

2 (Corollary 6.11). All of the machinery
of multitraces is applied to establish this bound on K.

We begin by listing a few facts about abelian equational classes.

PROPOSITION 6.1 Let A be a member of V , a locally finite abelian
equational class.

(1) If ρ is a locally strongly solvable congruence of A then ρ is strongly
abelian.

(2) The typeset of V is contained in {1,2} and all type 2 minimal sets of
finite algebras in V have empty tails and hence are Mal’tsev.

(3) If A ∈ V and X,Y ⊆ A, then X ‖ Y implies X oo Y .

(4) If p(x) ∈ PolnA then there is an (n + 2)-ary term t(x, u, v) such that
for any 0 ∈ A we have p(x) = t(x, 0, p(0, . . . , 0)) for all x ∈ A.

(5) If U is the range of an idempotent polynomial of A, then there is a
binary term t(x, y) satisfying t(t(x, y), y) = t(x, y) such that all sets of
the form t(A, a), for a ∈ A are E-isomorphic and parallel to U .
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(6) If A is finite and 〈ρ, γ〉 is a stiff pair of congruences of A of type 2 then
modulo the parallel (or quasi-parallel) relation there are at most M2

〈ρ, γ〉-multitraces.

Proof. Parts (1) and (2) repeat some basic facts about abelian equa-
tional classes which can be found in [9, 2]. Part (3) follows from the remark
made after Definition 5.3.

For part (4) we use the fact proved in [5] that locally finite abelian equa-
tional classes are hamiltonian. The following argument is similar to that
given by Klukovits [7] in his study of hamiltonian equational classes. Now if
p(x) is an n-ary polynomial, then p(x) = s(x, a) for some (n + k)-ary term s
and some a ∈ Ak. Let F be the V-free algebra generated by 2(n+k) distinct
elements xi, x

′
i, yj, y

′
j where 1 ≤ i ≤ n and 1 ≤ j ≤ k. Let x = (x1, . . . , xn),

x′ = (x′1, . . . , x
′
n), y = (y1, . . . , yk), and y′ = (y′1, . . . , y

′
k). Let S be the sub-

universe of F generated by the three elements s(x,y′), s(x′,y′) and s(x′,y).
Since V is hamiltonian, S is a block of a congruence which we denote σ. In
F/σ we have

s(x′,y′) = s(x′,y),

so the term condition guarantees that

s(x,y′) = s(x,y).

Therefore it must be that s(x,y) ∈ S. There must be a ternary term r such
that

V |= r(s(x,y′), s(x′,y′), s(x′,y)) = s(x,y).

Using this equation, and p(x) = s(x, a), we can construct the desired term t.
Let ui denote the tuple of length i whose entries are all equal to u. The term

t(x, u, v)
def
= r(s(x,uk), s(un,uk), v) has the property claimed in (4), since

t(x, 0, p(0, . . . , 0)) = t(x, 0, s(0n, a))
= r(s(x,0k), s(0n,0k), s(0n, a))
= s(x, a) = p(x).

To prove (5), suppose that U = e(A) for e an idempotent polynomial.
Then there is a term r(x,y) and elements u of A such that e(x) = r(x,u) for
all x ∈ A. Since V is locally finite and e is idempotent we may assume that
the equation r(x,y) = r(r(x,y),y) holds in V . We claim that any set of the
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form r(A,v) is polynomially isomorphic to U via the idempotent polynomials
r(x,u) and r(x,v). It is an elementary exercise, using the abelian property
and the fact that r is idempotent in x to show this. Finally, setting t(x, y) =
r(x, y, y, . . . , y) produces the sought-after term.

For part (6), let T be a 〈ρ, γ〉-multitrace. By Theorem 4.3 (1)(b), there
is an idempotent e(x) such that T is a γ-class of U = e(A), and each other
γ-class of U is a 〈ρ, γ〉-multitrace parallel to T . Using part (5) of this propo-
sition there is a term t(x, y) such that t(A, a) is E-isomorphic and parallel to
U for any a ∈ A. Now fix 0 ∈ A and let T0 = t(T, 0). Then T0 is parallel and
E-isomorphic to T . Note that, up to parallelism, T0 (hence T ) is determined
by the choice of t. This is because T0 is a γ-class of t(A, 0) and all such
classes are parallel to one another. Since there are at most M2 choices for t,
we are done.

The first step in our proof will be to show that the “large” finite irre-
ducibles in V must have a strongly abelian monolith but cannot themselves
be strongly abelian. The next theorem is a special case of Theorem 5.1 of
[3].

THEOREM 6.2 If S is a finite abelian irreducible with monolith µ such
that typ(0S, µ) = 2 then S has at most MM2

2 elements.

For the remainder of this section let S be a finite irreducible member of
V , let µ be the monolith of S and let ρ be its strongly solvable radical (the
largest strongly solvable congruence of S). Note that under the assumption
that V is abelian, ρ must be strongly abelian.

The following is a modification of an argument found in [10].

THEOREM 6.3 If σ is a strongly solvable congruence of S, then each σ-
class has no more than 2M3 elements. Consequently, each strongly abelian
irreducible in V has size at most 2M3 .

Proof. We may assume that σ contains µ, the least nontrivial congru-
ence of S. Let C be a σ-class and let (a, b) ∈ µ with a 6= b. For each c ∈ C
let Tc denote the set of ternary terms t(x, y, z) (modulo V-equivalence) for
which a = t(c, c, a). Since there are M3 ternary terms up to equivalence,
there are at most 2M3 different sets Tc, c ∈ C. To prove the theorem it will
suffice to show that Tc 6= Td whenever c and d are distinct elements of C.
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Since (a, b) is in the congruence generated by (c, d), there is a unary poly-
nomial p(x) such that p(c) = a 6= p(d) (or the same with c and d switched,
in which case the argument is the same). From Proposition 6.1 (4) there
is a ternary term t such that p(x) = t(x, c, p(c)) = t(x, c, a). Thus, since
a = p(c) = t(c, c, a) we get that t ∈ Tc. We now show that t 6∈ Td.

If a = t(d, d, a) = t(c, c, a), then the strong term condition implies that
t(d, d, a) = t(d, c, a). Therefore a = t(d, d, a) = t(d, c, a) = p(d) 6= a, which is
a contradiction. This completes the proof.

Using the bound established in the previous theorem we can now bound
the size of a finite irreducible in V in terms of the number of covers of its
strongly solvable radical ρ. Let C be the set of covers of ρ and let K = |C|.
Note that for each α ∈ C we have typ(ρ, α) = 2.

THEOREM 6.4 |S/ρ| ≤ MKM2
2 and hence |S| ≤ 2M3MKM2

2 .

Proof. For each α ∈ C, let α∗ be a congruence maximal amongst those
whose intersection with α is ρ. It is clear that α∗ is meet irreducible and that
the type of the pair 〈α∗, α∗〉 is 2, where α∗ is the unique cover of α∗, since
〈ρ, α〉 is perspective with this pair. The intersection of {α∗ | α ∈ C} contains
ρ and contains no cover of ρ, and so it is ρ. Thus, S/ρ can be embedded in∏

α∈C S/α∗. By Theorem 6.2 we know that each factor of this product has
size at most MM2

2 and so S/ρ can have at most MKM2
2 elements. The second

statement follows from Theorem 6.3.

We now set out to show that if V avoids the RL configuration then the
strongly solvable radical of S must have no more than M3

2 covers (so K ≤
M3

2 ). To avoid a trivial situation, assume that the type of (0S, µ) is 1.

Definition 6.5 Let A be a finite algebra and δ ∈ Con A. Two covers α and
β of δ will be called equivalent if MA(δ, α) = MA(δ, β).

Every minimal set in S is the image of an idempotent unary polynomial
of S. By Proposition 6.1 (5) it is possible to choose a collection of at most M2

subsets of S representing every idempotent image up to E-isomorphism. In
particular, S has at most M2 minimal sets up to E-isomorphism. This implies
that there are at most M2 equivalence classes of covers of the congruence ρ
of S. The rest of the section is devoted to showing that no equivalence class
can contain more than M2

2 covers if V avoids the RL configuration.
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LEMMA 6.6 Let A be a finite algebra and δ ∈ Con A. Let E be a set of
equivalent covers of δ such that the type of 〈δ, α〉 is 2 for each α ∈ E . If
γ =

∨ E and β is a cover of δ below γ with typ(δ, β) = 2, then β is equivalent
to each member of E .

Proof. Let β be a cover of δ below γ with typ(δ, β) = 2, and U a
〈δ, β〉-minimal set with body B and tail T . Since β ≤ ∨ E and U is the range
of some idempotent polynomial e of A, then β|U ≤ ∨

α∈E α|U . If α ∈ E , then
α is abelian over δ, hence we get from Lemma 4.27 of [2] that α|U ⊆ B2∪T 2.
Therefore β|B ≤ ∨

α∈E α|B and so there must be at least one α ∈ E with
α|B > δ|B. Fix such an α, and let a, b ∈ B with (a, b) ∈ α − δ. Connect a
to b by 〈δ, α〉-traces, and pull this chain into U by e. We get that U contains
a 〈δ, α〉-minimal set V whose intersection with B has more than 1 element.
From Lemma 4.30 of [2] we conclude that U = V . Thus MA(δ, β) = MA(δ, α)
for each α ∈ E as required.

COROLLARY 6.7 Let A be a finite algebra and E a set of equivalent
covers of a congruence δ of A with typ(δ, α) = 2 for each α ∈ E . If every
cover of δ below γ =

∨ E is of type 2, then the pair 〈δ, γ〉 is tame and of
type 2.

Proof. If U is a 〈δ, α〉-minimal set for some α ∈ E , then U is also a
〈δ, γ〉-minimal set and the restriction map from the interval [δ, γ] in Con A
into Con A|U is 1-separating. The previous lemma can be used to show that
this map is also 0-separating and so it follows that 〈δ, γ〉 is indeed tame. The
type of a tame quotient is determined by the polynomial structure on any
minimal set, so the type of 〈δ, γ〉 is the same as the type of 〈δ, α〉: it is 2.

Now we resume our efforts to bound the size of the irreducible algebra S.
Fix a cover α of the strongly solvable radical ρ in Con S, and let E be the set
of covers of ρ equivalent to α. We have to prove that |E| ≤ M2

2 . Let γ =
∨ E .

The previous corollary demonstrates that 〈ρ, γ〉 is tame and of type 2. By
Proposition 4.2 (2) we have that this pair is stiff.

Let W be a 〈ρ, γ〉-minimal set and V ⊆ W a 〈ρ, γ〉-trace. Fix (a, b) ∈
µ − 0S. By Proposition 4.2 (2), for any β ∈ E the quotient 〈ρ, β〉 is stiff,
so by Proposition 4.2 (1) there is a chain of overlapping 〈ρ, β〉-traces which

connect a to b. Let N0
β , . . . , N

kβ

β be such a chain, with kβ as small as possible.
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Since each 〈ρ, β〉-trace is contained in a 〈ρ, γ〉-trace, we can fix 〈ρ, γ〉-traces
V i

β such that N i
β ⊆ V i

β for all i ≤ kβ. The following lemma records some
relevant facts about these chains under the assumption that V avoids the RL
configuration.

LEMMA 6.8 Assume that V avoids the RL configuration and that β, ν ∈
E .

(1) Each kβ is at least 1.

(2) If i < kβ and M is a 〈ρ, γ〉-multitrace which contains V i+1
β , then M∩V i

β

is a singleton and equals N i
β ∩N i+1

β .

(3) If V 0
β is quasi-parallel to V 0

ν , then they are equal.

Proof. If kβ = 0 then we would have a, b ∈ N0
β , contradicting that µ

is trivial on any 〈ρ, β〉-multitrace.
To prove (2), let e(x) be an idempotent polynomial of S such that M is

the intersection of e(S) with some γ-class. If M ∩ V i
β contains more than

one element, then as e is one-to-one on M it must also be one-to-one on V i
β .

Thus, e(V i
β) is polynomially isomorphic to V i

β and has at least two elements
in common with it. Since V i

β is a multitrace of rank 1, from Lemma 5.2 (4)
and (5) we conclude that these two sets must be equal, and so M contains V i

β .

Applied to M = V i+1
β , this argument shows that V i

β ∩ V i+1
β contains exactly

one element since these two traces are distinct.
To get a contradiction from V i

β ∪ V i+1
β ⊆ M recall that N j

β, j ≤ kβ is a
chain of overlapping 〈ρ, β〉-traces of minimal length which connect a to b. Let
a−1 = a, akβ

= b and for j < kβ, let aj be an element in the intersection of N j
β

and N j+1
β . By Corollary 4.4 (3) there exists a 〈ρ, β〉-trace N which contains

both ai−1 and ai+1. Then the chain N0
β , . . . , N i−1

β , N , N i+2
β , . . . , N

kβ

β is a
shorter chain of 〈ρ, β〉-traces which connect a to b. From this contradiction
we get that M ∩ V i

β is a singleton. Since N i
β ∩ N i+1

β 6= ∅, N i
β ⊆ V i

β and

N i+1
β ⊆ V i+1

β ⊆ M , we get that N i
β ∩N i+1

β is the same singleton.
If V 0

β is quasi-parallel to V 0
ν , then as these two multitraces contain the

element a it follows from Lemma 5.2 (5) that they must be equal.

LEMMA 6.9 If E has more than M2
2 elements then there is some subset I

of E of size greater than M2 with V 0
β = V 0

ν for all β, ν ∈ I. For β, ν ∈ I,
the singletons V 0

β ∩ V 1
β and V 0

ν ∩ V 1
ν are distinct.
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Proof. From Proposition 6.1 (6) we learn that modulo the quasi-
parallel relation there are at most M2 distinct 〈ρ, γ〉-traces. Thus if E has
size greater than M2

2 then there must be some subset I of E of size greater
than M2 such that V 0

β and V 0
ν are quasi-parallel for all β, ν ∈ I. By part (3)

of Lemma 6.8 it follows that for β, ν ∈ I, V 0
β = V 0

ν .
By construction, for any β ∈ E , the unique element in V 0

β ∩V 1
β is β-related

to a. As β ∩ ν = ρ and ρ is trivial on V 0
β and V 0

ν for any two covers β, ν of ρ
it follows that the singletons V 0

β ∩ V 1
β and V 0

ν ∩ V 1
ν are distinct.

We now do something rather unexpected (and having roots in the pa-
per [5]) which will lead quickly to the main result of this section. For each
β ∈ E , let Mβ be some maximal 〈ρ, γ〉-multitrace which contains V 1

β . Define
ε to be the congruence of S generated by V 2.

LEMMA 6.10 Suppose that V avoids the RL configuration. If M is a
maximal 〈ρ, γ〉-multitrace and M ′ is a multitrace which is quasi-parallel to
M and lies in the same ε-class as M then M = M ′.

Proof. By Theorem 5.6 it follows that M and M ′ are ε-parallel and so
there are polynomials pi(x, y) of S, i ≤ n for some n, and pairs (ui, vi) from V 2

such that p0(M,u0) = M , pi(M, vi) = pi+1(M,ui+1) and pn(M, vn) = M ′. As
S is abelian we see that |pi(M, ui)| = |pi(M, vi)| for each i ≤ n. Using the
maximality of M it follows that M = pi(M, V ) = pi(M, vi) for each i ≤ n.
Thus, M = M ′ as required.

We are now able to derive our final contradiction.

COROLLARY 6.11 If V avoids the RL configuration, then E has no more
than M2

2 elements.

Proof. Suppose instead that V avoids the RL configuration and that E
has more than M2

2 elements. Let I be a subset of E satisfying the conditions
of Lemma 6.9. Since I has more than M2 elements then by Proposition
6.1 there must be two members β and ν such that Mβ and Mν are parallel.
These maximal multitraces lie in the same ε-class as a and hence by Lemma
6.10 must be equal. Then Mβ is a multitrace which contains V 1

β and which
contains at least two elements of V 0

β , namely the elements in V 0
β ∩ V 1

β and
V 0

ν ∩ V 1
ν (since V 0

β = V 0
ν and V 1

ν ⊆ Mν = Mβ). This contradicts part (2) of
Lemma 6.8.

Putting all the results together, we get:
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THEOREM 6.12 Let V be a locally finite abelian equational class. The
following are equivalent:

(1) V is residually small,

(2) V is residually bounded by 2M3M
M4

2
2 ,

(3) V avoids the RL configuration.

The following corollary provides an algorithm to determine whether or
not a finite algebra generates a residually small abelian equational class.

COROLLARY 6.13 The equational class V generated by a finite algebra
A is abelian and residually small if and only if HS(AA3

) is hamiltonian and
every 2-generated algebra in V avoids the RL configuration. In this case V
is residually bounded by 2nn3

nn4n2+2
, where |A| = n.

Proof. By [5], the first condition is necessary and sufficient for a
finite algebra to generate an abelian equational class and by Theorem 2.2
the second condition is necessary if V is to be residually small.

Suppose that (1, 0) along with the polynomial f(x) constitute an RL
configuration in the algebra B from V . Then there is a polynomial s(x, y)
of B such that s(0, 0) = 0 and s(0, 1) = s(1, 0) = 1. Since s(0, 0) = 0 and
f(0) = 0, then by Proposition 6.1 there are terms t(x, y, z) and r(x, y) such
that s(x, y) = t(x, y, 0) and f(x) = r(x, 0) for all x, y ∈ B. From this it is
easy to see that the RL configuration occurs in the subalgebra of B generated
by {0, 1}.
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