Expanding varieties by monoids of endomorphisms

Stanley Burris* and Matthew Valeriote \dagger

The purpose of this paper is to start a general investigation of the varieties $\mathscr{V}(\mathbf{M})$ obtained by expanding a variety \mathscr{V} by a monoid of endomorphisms \mathbf{M}. This construction was used in [3] to manufacture the first example of a variety with a decidable theory and not of the form (discriminator) \otimes (Abelian). It also plays a key role in Baur's papers [1], [2] on the first-order theory of Abelian groups with distinguished subgroups.

In the first section a few basic results are presented. In the second section we describe exactly when $\mathscr{V}(\mathbf{M})$ is a discriminator variety, generalizing the treatment of $\mathscr{B} \mathscr{A}(\mathbf{G})$ given in [3]. The final section is devoted to Abelian varieties and the corresponding varieties of modules.

§1. Definitions and basic results

Given a variety \mathscr{V} of type \mathscr{F} and a monoid $\mathbf{M}=\langle\boldsymbol{M}, \cdot, 1\rangle$ the variety $\mathcal{V}(\mathbf{M})$ is of type $\mathscr{F} \cup M$, where each $m \in M$ is a unary function symbol, and $\mathscr{V}(\mathbf{M})$ is axiomatized by
(i) the identities of V
(ii) $1(x) \approx x$
(iii) $m_{1}\left(m_{2}(x)\right)=\left(m_{1} \cdot m_{2}\right)(x)$ for $m_{1}, m_{2} \in M$
(iv) $m\left(f\left(x_{1}, \ldots, x_{k}\right)\right) \approx f\left(m\left(x_{1}\right), \ldots, m\left(x_{k}\right)\right)$ for $m \in M, f \in \mathscr{F}$.

We use the notion of equivalent varieties as defined in $\S 7$ of Taylor [7]. For $\mathbf{A} \in \mathscr{V}(\mathbf{M})$ let $\mathbf{A} \hat{q}_{\boldsymbol{r}}$ be the reduct of \mathbf{A} to the language of \mathscr{V}; and for $\mathscr{K} \subseteq \mathscr{V}(\mathbf{M})$ let $\left.\mathscr{K}\right|_{\mathcal{V}}=\left\{\left.\mathbf{A}\right|_{\mathcal{V}}: \mathbf{A} \in \mathscr{K}\right\}$.

[^0]THEOREM 1.1. \mathscr{V} is equivalent to a subvariety of $\mathscr{V}(\mathbf{M})$, and \mathscr{V} is a reduct of $\boldsymbol{V}(\mathbf{M})$.

Proof. Let \mathscr{V}^{*} be the subvariety of $\mathscr{V}(\mathbf{M})$ defined by $m(x) \approx x$ for $m \in M$. Clearly \mathscr{V} and \mathscr{V}^{*} are equivalent varieties. Then $\mathscr{V}=\left.\left.\mathscr{V}^{*}\right|_{\mathcal{V}} \subseteq \mathcal{V}(\mathbf{M})\right|_{\mathscr{V}} \subseteq \mathscr{V}$, so $\mathscr{V}=\left.\mathcal{V}(\mathbf{M})\right|_{\boldsymbol{r}}$.

COROLLARY 1.2. \mathscr{V} and $\mathscr{V}(\mathbf{M})$ have the same Mal'cev properties.
Proof. Certainly any Mal'cev property of \mathscr{V} is also a Mal'cev property of $\mathscr{V}(\mathbf{M})$ (using the same identities); and any Mal'cev property of $\mathscr{V}(\mathbf{M})$ is one of \mathscr{V}^{*} (as defined in the proof of Theorem 1.1), and hence it is also a Mal'cev property of γ.

One particular construction, which we describe now, transforms an algebra in \mathscr{V} into an algebra in $\mathscr{V}(\mathbf{M})$. For $\mathbf{A} \in \mathscr{V}$ let $\mathbf{A}^{\mathbf{M}}$ be the algebra obtained by expanding \mathbf{A}^{M} by defining, for $m, n \in M$ and $a \in A^{M}$,

$$
(m(a))(n)=a(n \cdot m)
$$

LEMMA 1.3. For $\mathbf{A} \in \mathscr{V}, \mathbf{A}^{\mathbf{M}} \in \mathscr{V}(\mathbf{M})$.
Proof. Certainly $\mathbf{A}^{M} \in \mathcal{V}$, and for $a \in A^{M}, n \in M$,

$$
\begin{aligned}
(1(a))(n) & =a(n \cdot 1) \\
& =a(n)
\end{aligned}
$$

so

$$
1(a)=a .
$$

Next if $m_{1}, m_{2}, n \in M$ and $a \in A^{M}$ then

$$
\begin{aligned}
\left(m_{1}\left(m_{2}(a)\right)\right)(n) & =\left(m_{2}(a)\right)\left(n \cdot m_{1}\right) \\
& =a\left(n \cdot m_{1} \cdot m_{2}\right) \\
& =\left(\left(m_{1} \cdot m_{2}\right)(a)\right)(n),
\end{aligned}
$$

so

$$
m_{1}\left(m_{2}(a)\right)=\left(m_{1} \cdot m_{2}\right)(a)
$$

Now if $f \in \mathscr{F}, m, n \in M$, and $a_{1}, \ldots, a_{\mathrm{k}} \in A^{M}$ then

$$
\begin{aligned}
\left(m\left(f\left(a_{1}, \ldots, a_{k}\right)\right)\right)(n) & =\left(f\left(a_{1}, \ldots, a_{k}\right)\right)(n \cdot m) \\
& =f\left(a_{1}(n \cdot m), \ldots, a_{k}(n \cdot m)\right) \\
& =f\left(\left(m\left(a_{1}\right)\right)(n), \ldots,\left(m\left(a_{k}\right)\right)(n)\right) \\
& =\left(f\left(m\left(a_{1}\right), \ldots, m\left(a_{k}\right)\right)\right)(n),
\end{aligned}
$$

so

$$
m\left(f\left(a_{1}, \ldots, a_{k}\right)\right)=f\left(m\left(a_{1}\right), \ldots, m\left(a_{k}\right)\right)
$$

A term $p\left(x_{1}, \ldots, x_{k}\right)$ in the language of $\mathscr{V}(\mathbf{M})$ is reduced if $p\left(x_{1}, \ldots, x_{k}\right)$ is $p^{*}\left(m_{1}\left(x_{1}\right), \ldots, m_{1}\left(x_{k}\right), \ldots, m_{l}\left(x_{1}\right), \ldots, m_{l}\left(x_{k}\right)\right)$, for suitable $m_{1}, \ldots m_{l} \in M$ and for $p^{*}\left(x_{11}, \ldots, x_{1 k}, \ldots, x_{l 1}, \ldots, x_{l k}\right)$ a term in the language of \mathscr{V}.

LEMMA 1.4. For every term $p\left(x_{1}, \ldots, x_{k}\right)$ in the language of $\mathcal{V}(\mathbf{M})$ there is a reduced term $p_{*}\left(x_{1}, \ldots, x_{k}\right)$ such that

$$
\mathscr{V}(\mathbf{M})=p\left(x_{1}, \ldots, x_{k}\right) \approx p_{*}\left(x_{1}, \ldots, x_{k}\right)
$$

Proof. After replacing x_{1}, \ldots, x_{k} by $1\left(x_{1}\right), \ldots, 1\left(x_{k}\right)$ one just repeatedly uses properties (iii) and (iv) of the definition of $\mathcal{V}(\mathbf{M})$ to push the m 's occurring in $p\left(x_{1}, \ldots, x_{k}\right)$ down to the variables.

For $X \subseteq A, \mathbf{A} \in \mathscr{V}(\mathbf{M})$, let $M(X)=\{m(x): m \in M, x \in X\}$; and $S_{g_{A}}(X)$ is the subuniverse of \mathbf{A} generated by X. Let T_{V} be the set of terms in the language of \mathscr{V}.

LEMMA 1.5. For $\mathbf{A} \in \mathcal{V}(\mathbf{M})$ and $X \subseteq A$,

$$
\operatorname{Sg}_{\mathbf{A}}(X)=\operatorname{Sg}_{A i_{2}}(M(X))
$$

Proof. We have

$$
\begin{aligned}
\operatorname{Sg}_{\mathbf{A}}(X)= & \left\{p\left(a_{1}, \ldots, a_{k}\right): p \in T_{V(\mathbf{M})}, a_{1}, \ldots, a_{k} \in X\right\} \\
= & \left\{p^{*}\left(m_{1}\left(a_{1}\right), \ldots, m_{l}\left(a_{k}\right)\right): p^{*} \in T_{V}\right. \\
& \left.m_{1}, \ldots, m_{l} \in M, a_{1}, \ldots, a_{k} \in X\right\} \\
= & \operatorname{Sg}_{\mathbf{A l}_{V}}(M(x)) .
\end{aligned}
$$

If a variety \mathscr{V} is trivial then of course so is $\mathscr{V}(\mathbf{M})$. This gives a degenerate case in many of the following results.

THEOREM 1.6. If \mathscr{V} is a nontrivial variety then $\mathscr{V}(\mathbf{M})$ is locally finite iff \mathscr{V} is locally finite and \mathbf{M} is finite.

Proof. Suppose $\mathscr{V}(\mathbf{M})$ is locally finite. As \mathscr{V} is a reduct of $\mathscr{V}(\mathbf{M})$ it follows that \mathscr{V} is locally finite. Let $\mathbf{A} \in \mathscr{V}$ be an algebra with $|A| \geq|M|$, and choose a one-to-one function $a \in A^{M}$. Then for $m_{1}, m_{2} \in M$, we have the following holding in $\mathbf{A}^{\mathbf{M}}$:

$$
\begin{aligned}
m_{1}(a)=m_{2}(a) & \Rightarrow\left(m_{1}(a)\right)(1)=\left(m_{2}(a)\right)(1) \\
& \Rightarrow a\left(m_{1}\right)=a\left(m_{2}\right) \\
& \Rightarrow m_{1}=m_{2} .
\end{aligned}
$$

This says that $\left|\operatorname{Sg}_{\mathbf{A}^{\mathbf{m}}}(\{a\})\right| \geq|M|$. As $\mathscr{V}(\mathbf{M})$, and hence $\mathbf{A}^{\mathbf{M}}$, is locally finite, \mathbf{M} must be a finite monoid.

For the converse suppose \mathscr{V} is locally finite and \mathbf{M} is finite. Then for $\mathbf{A} \in \mathscr{V}(\mathbf{M})$ and X a finite subset of A, the set $M(X)$ is finite, so by Lemma $1.5 S g_{A}(X)$ is finite. Thus $\mathscr{V}(\mathbf{M})$ is locally finite.

LEMMA 1.7. Suppose \mathscr{V} is a nontrivial variety and \mathbf{M} is a monoid. If $m_{1}, m_{2} \in M$ then

$$
\mathcal{V}(\mathbf{M})=m_{1}(x) \approx m_{2}(x) \quad \text { iff } \quad m_{1}=m_{2} .
$$

Proof. (The proof of this is contained in the first paragraph of the proof of Theorem 1.6.)

A variety generated by finitely many finite algebras, or equivalently by a single finite algebra, is finitely generated.

THEOREM 1.8. Suppose \mathcal{V} is a nontrivial variety. If $\mathcal{V}(M)$ is finitely generated then M is finite and \mathcal{V} is finitely generated.

Proof. Let \mathbf{A} be a finite member of $\mathscr{V}(\mathbf{M})$ such that $\mathscr{V}(\mathbf{M})=\operatorname{HSP}(\mathbf{A})$. Then $\mathscr{V}=\operatorname{HSP}(\mathbf{A}) \upharpoonright_{\mathcal{V}} \subseteq \operatorname{HSP}\left(\left.\mathbf{A}\right|_{\mathcal{V}}\right) \subseteq \mathcal{V}$, so $\mathscr{V}=\operatorname{HSP}\left(\left.\mathbf{A}\right|_{\mathcal{V}}\right)$, and hence \mathcal{V} is finitely generated. Next, since the free algebra $\mathbf{F}_{\mathcal{V}(\mathbf{M})}(\bar{x})$ is finite (as $\mathcal{V}(\mathbf{M})$ is locally finite), the set $M(\{\bar{x}\})$ must be finite, and then by Lemma 1.7 M is a finite monoid.

When we are working with elements a, b in a direct product $\prod_{i \in I} A_{i}$ we use
the notation

$$
\begin{aligned}
& \llbracket a=b \rrbracket=\{i \in I: a(i)=b(i)\} \\
& \llbracket a \neq b \rrbracket=\{i \in I: a(i) \neq b(i)\}
\end{aligned}
$$

LEMMA 1.9. Suppose $\mathbf{A} \in \mathcal{V}$.
(a) If $\mathbf{A}^{\mathbf{M}}$ is a simple algebra then either \mathbf{A} is a trivial algebra or one can conclude that \mathbf{M} is a finite group and \mathbf{A} is a simple algebra.
(b) Suppose \mathbf{S} is a simple algebra, \mathbf{G} is a finite group. If the variety generated by \mathbf{S} is distributive then $\mathbf{S}^{\mathbf{G}}$ is a simple algebra.

Proof. (a) If \mathbf{A} is a trivial algebra then this part is obvious, so suppose \mathbf{A} is nontrivial. Let U_{r} be the set of elements in M with a right inverse, i.e.,

$$
U_{r}=\left\{m \in M: m \cdot m^{*}=1 \text { for some } m^{*} \in M\right\}
$$

and let the binary relation θ be defined on A^{M} by

$$
\theta=\left\{\langle a, b\rangle \in A^{M} \times A^{M}: \llbracket a \neq b \rrbracket \subseteq U_{r}\right\}
$$

Then θ is an equivalence relation since, for $a, b, c \in A^{M}$,

$$
\begin{aligned}
& \llbracket a \neq a \rrbracket \subseteq U_{r} \\
& \llbracket a \neq b \rrbracket \subseteq U_{r} \Rightarrow \llbracket b \neq a \rrbracket \subseteq U_{r}
\end{aligned}
$$

and

$$
\llbracket a \neq b \rrbracket \subseteq U_{r} \llbracket b \neq c \rrbracket \subseteq U_{r} \Rightarrow \llbracket a \neq c \rrbracket \subseteq U_{r}
$$

as

$$
\llbracket a \neq c \rrbracket \subseteq \llbracket a \neq b \rrbracket \cup \llbracket b \neq c \rrbracket .
$$

Next θ is compatible with all fundamental operations f of \mathbf{A}^{M} since if $\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{k}, b_{k}\right\rangle \in \theta$ then

$$
\llbracket f\left(a_{1}, \ldots, a_{k}\right) \neq f\left(b_{1}, \ldots, b_{k}\right) \rrbracket \subseteq \llbracket a_{1} \neq b_{1} \rrbracket \cup \cdots \cup \llbracket a_{k} \neq b_{k} \rrbracket \subseteq U_{r}
$$

Now if $m \in M$ and $\langle a, b\rangle \in \theta$ then for $n \in \llbracket m(a) \neq m(b) \rrbracket$ we have

$$
(m(a))(n) \neq(m(b))(n)
$$

i.e.,

$$
a(n \cdot m) \neq b(n \cdot m)
$$

This leads to $n \cdot m \in \llbracket a \neq b \rrbracket \subseteq U_{r}$, so $n \in U_{r}$. Thus $\llbracket m(a) \neq m(b) \rrbracket \subseteq U_{r}$, so $\langle m(a), m(b)\rangle \in \theta$. Thus we have proved θ is a congruence on $\mathbf{A}^{\mathbf{M}}$. Now $\Delta<\theta$ as $\phi \neq U_{r}$, and as $\mathbf{A}^{\mathbf{M}}$ is a simple algebra we must have $\theta=\nabla$; hence $U_{r}=M$. This guarantees that \mathbf{M} is a group.

Now define a binary relation $\hat{\theta}$ on A^{M} by

$$
\hat{\theta}=\left\{\langle a, b\rangle \in A^{M} \times A^{M}: \llbracket a \neq b \rrbracket \text { is finite }\right\} .
$$

Then $\hat{\theta}$ is a well-known congruence on \mathbf{A}^{M}, and $\Delta<\hat{\theta}$. For $m \in M$ and $\langle a, b\rangle \in \hat{\boldsymbol{\theta}}$,

$$
\begin{aligned}
\llbracket m(a) \neq m(b) \rrbracket & =\{n \in M:(m(a))(n) \neq(m(b))(n)\} \\
& =\{n \in M: a(n \cdot m) \neq b(n \cdot m)\} \\
& =\{n \in M: n \cdot m \in \mathbb{I} \neq b \mathbb{\}}\} \\
& =\alpha_{m}^{-1}(\mathbb{I} a \neq b \mathbb{1})
\end{aligned}
$$

where $\alpha_{m}: M \rightarrow M$ is defined by $\alpha_{m}(n)=n \cdot m$. As α_{m} is a bijection (\mathbf{M} is a group), it follows that $\llbracket m(a) \neq m(b) \rrbracket$ is finite, so $\langle a, b\rangle \in \hat{\theta}$ implies $\langle m(a), m(b)\rangle \in \hat{\theta}$. Thus $\hat{\theta}$ is also a congruence on $\mathbf{A}^{\mathbf{M}}$, and as $\mathbf{A}^{\mathbf{M}}$ is a simple algebra we must have $\hat{\theta}=\nabla$. But this can happen only if M is finite.

Next if ϕ is a congruence on \mathbf{A} let ϕ^{*} be the binary relation on A^{M} defined by

$$
\phi^{*}=\left\{\langle a, b\rangle \in A^{M} \times A^{M}:\langle a(n), b(n)\rangle \in \phi \quad \text { for } \quad n \in M\right\} .
$$

Again ϕ^{*} is a well-known congruence on \mathbf{A}^{M}. Now for $m, n \in M$ and $\langle a, b\rangle \in \phi^{*}$ we have

$$
\langle(m(a))(n),(m(b))(n)\rangle=\langle a(n \cdot m), b(n \cdot m)\rangle \in \phi ;
$$

hence $\langle m(a), m(b)\rangle \in \phi^{*}$. Consequently ϕ^{*} is a congruence on $\mathbf{A}^{\mathbf{M}}$. As $\mathbf{A}^{\mathbf{M}}$ is simple this forces ϕ to be Δ_{A} or ∇_{A}; hence \mathbf{A} is a simple algebra.
(b) Again the interesting case is when \mathbf{S} is nontrivial. From the congruencedistributive assumption and the finiteness of \mathbf{G} we know (see IV $\S 11.10$ of [5]) that all congruences on \mathbf{S}^{G} are of the form, for $J \subseteq G$,

$$
\theta_{J}=\left\{\langle a, b\rangle \in S^{G}: \llbracket a \neq b \rrbracket \subseteq J\right\}
$$

Now if θ is a congruence on $\mathbf{S}^{\boldsymbol{G}}$ and $\theta \neq \Delta$ then there must exist $\langle a, b\rangle \in \theta$ and $g \in G$ such that $a(g) \neq b(g)$. Then, for $h \in G$,

$$
a\left(h \cdot h^{-1} \cdot g\right) \neq b\left(h \cdot h^{-1} \cdot g\right)
$$

so

$$
\left(\left(h^{-1} \cdot g\right)(a)\right)(h) \neq\left(\left(h^{-1} \cdot g\right)(b)\right)(h)
$$

As

$$
\left\langle\left(h^{-1} \cdot g\right)(a),\left(h^{-1} \cdot g\right)(b)\right\rangle \in \theta
$$

and

$$
h \in \llbracket\left(h^{-1} \cdot g\right)(a) \neq\left(h^{-1} \cdot g\right)(b) \rrbracket
$$

it follows that the $J \subseteq G$ for which $\theta=\theta_{J}$ must be $J=G$. Thus $\theta=\nabla$, so S^{G} is indeed simple.

§2. Discriminator varieties

Most of the background information on discriminator varieties can be found in IV $\S 9$ of [5] or in $\S 9$ of [6]. Given a variety \mathcal{V} let \mathcal{V}_{S} be the class of simple algebras in \mathscr{V}, and let $\mathscr{V}_{D I}$ be the class of directly indecomposable members of \mathscr{V}. The notation $\mathbf{A} \leq_{b p} \Pi_{x \in X} \mathbf{A}_{x}$ means \mathbf{A} is a Boolean product of the indexed family of algebras $\left(\mathbf{A}_{x}\right)_{x \in X}$, i.e., (i) \mathbf{A} is a subdirect product of the family $\left(\mathbf{A}_{x}\right)_{x \in X}$, and X can be endowed with a Boolean space topology such that (ii) $\llbracket a=b \rrbracket$ is clopen for all $a, b \in A$, and (iii) for $a, b \in A$ and N a clopen subset of $X, a \Upsilon_{N} \cup b{\Upsilon_{X-N} \in A \text {. }}$ $\Gamma^{a}(\mathscr{K})$ denotes the class of all Boolean products of members of \mathscr{K}. A variety \mathscr{V} is a discriminator variety if \mathscr{V} is generated by \mathscr{V}_{s} and there is a discriminator term
$t(x, y, z)$ for \mathscr{V}_{s}, i.e., \mathscr{V}_{s} satisfies

$$
[x \approx y \rightarrow t(x, y, z) \approx z] \&[x \neq y \rightarrow t(x, y, z) \approx x] .
$$

We summarize the basic results on discriminator varieties that we will need in the following theorem.

THEOREM 2.1. Let \mathscr{V} be a discriminator variety, and let $t(x, y, z)$ be a discriminator term for \mathscr{V}_{s}.
(a) $\boldsymbol{V}_{D I}=\mathscr{V}_{S}$
(b) $\mathscr{V}=I \Gamma^{a}\left(\mathscr{V}_{s}\right)$
(c) For $\mathbf{S} \in \mathscr{V}_{\mathbf{S}}$, the factor congruences on \mathbf{S}^{I} are of the form, for $J \subseteq I, \theta_{J}=$ $\left\{\langle a, b\rangle \in S^{I} \times S^{I}: \llbracket a \neq b \rrbracket \subseteq J\right\}$.
(d) Every $\mathbf{A} \in \mathcal{V}$ is isomorphic to a Boolean product \mathbf{A}^{*} of simple algebras, i.e., $\mathbf{A} \leq_{b p} \prod_{x \in X} \mathbf{S}_{x}, \mathbf{S}_{x} \in \mathcal{V}$ for $x \in X$, such that at most one \mathbf{S}_{x} is a trivial algebra. For \mathbf{A} a nontrivial algebra we can furthermore require that x be a nonisolated point of X if \mathbf{S}_{x} is indeed trivial.

Let $\mathbf{A} \leq_{b D} \Pi_{x \in X} \mathbf{S}_{x}, \mathbf{S}_{x}$ simple, in (e)-(h).
(e) For $a, b, c, d \in A$,

$$
\llbracket a \neq b \rrbracket \subseteq \llbracket c \neq d \rrbracket \quad \text { iff } \quad t(c, d, a)=t(c, d, b)
$$

and

$$
\llbracket a \neq b \rrbracket \cup \llbracket c \neq d \rrbracket=\llbracket t(a, b, c) \neq t(b, a, d) \rrbracket .
$$

(f) Every congruence $\boldsymbol{\theta}$ on \mathbf{A} is of the form

$$
\theta_{U}=\left\{\langle a, b\rangle \in A^{2}: \llbracket a \neq b \rrbracket \subseteq U\right\}
$$

for U an open subset of X. The factor congruences on \mathbf{A} are precisely those of the form θ_{N} for N a clopen subset of X.
(g) All finitely generated congruences on \mathbf{A} are principal, and indeed for $a, b \in A$ we have $\theta(a, b)=\theta_{\llbracket a \neq b \rrbracket]}$. A clopen subset N of X is of the form $\llbracket a \neq b \rrbracket$ iff \mathbf{S}_{x} is nontrivial for $x \in N$.
(h) The set of principal congruences on \mathbf{A} forms a sublattice of the congruence lattice of \mathbf{A} which embeds into the lattice of clopen subsets of X under the mapping $\theta(a, b) \rightarrow \llbracket a \neq b \rrbracket$; this is a Boolean lattice if no \mathbf{S}_{x} is trivial.

Now we are ready to prove our main result in this section.

THEOREM 2.2. For \mathcal{V} a nontrivial variety and \mathbf{M} a monoid, $\mathcal{V}(\mathbf{M})$ is a discriminator variety iff \mathcal{V} is a discriminator variety and \mathbf{M} is a finite group.

Proof. (\Rightarrow) Since \mathscr{V} is equivalent to a subvariety of the discriminator variety $\mathscr{V}(\mathbf{M})$ by Theorem 1.1, it follows that \mathscr{V} must be a discriminator variety. Next let \mathbf{S} be a nontrivial simple algebra in \mathscr{V}. We claim that $\mathbf{S}^{\mathbf{M}}$ is a directly indecomposable algebra. To see this we note that factor congruences on $\mathbf{S}^{\mathbf{M}}$ must be of the form

$$
\theta_{J}=\left\{\langle a, b\rangle \in S^{M} \times S^{M}: \llbracket a \neq b \rrbracket \subseteq J\right\},
$$

for $J \subseteq M$, by 2.1 (c). So suppose θ_{J}, θ_{M-J} is a pair of factor congruences on $\mathbf{S}^{\mathbf{M}}$. We can assume $1 \in J$. If $J \neq M$ choose an element $m \in M-J$, and then choose $a, b \in S^{M}$ with $\llbracket a \neq b \rrbracket=\{m\}$. Then

$$
\llbracket a \neq b \rrbracket \subseteq M-J
$$

so,

$$
\langle a, b\rangle \in \theta_{M-J} .
$$

This implies

$$
\langle m(a), m(b)\rangle \in \theta_{M-J},
$$

so

$$
\llbracket m(a) \neq m(b) \rrbracket \subseteq M-J
$$

i.e.,

$$
J \subseteq \llbracket m(a)=m(b) \rrbracket
$$

But this is impossible as $1 \in J$ and $m(a)(1) \neq m(b)(1)$ (since $a(m) \neq b(m)$). Thus $J=\boldsymbol{M}$, and hence $\mathbf{S}^{\mathbf{M}}$ is directly indecomposable. This forces $\mathbf{S}^{\mathbf{M}}$ to be simple by 2.1(a), so by Lemma $1.9(\mathrm{a})$ it follows that \mathbf{M} is a finite group.
(\Leftarrow) Let \mathscr{V} be a nontrivial discriminator variety and let \mathbf{G} be a finite group. Let \mathbf{A} be a nontrivial directly indecomposable member of $\mathscr{V}(\mathbf{G})$. As every algebra
in a discriminator variety can be represented as a Boolean product of simple algebras by 2.1 (b), we can assume

$$
\left.\mathbf{A}\right|_{V} \leq \prod_{b p} \mathbf{S}_{x}, \mathbf{S}_{x} \in \mathcal{V}_{s}
$$

Furthermore by 2.1(d) we can assume that at most one \mathbf{S}_{x} is trivial, and if there is a trivial \mathbf{S}_{x} then x is not an isolated point of the Boolean space X.

For $a, b, c, d \in A$ we have

$$
\llbracket a \neq b \rrbracket \subseteq \llbracket c \neq d \rrbracket \quad \text { iff } \quad t(c, d, a)=t(c, d, b)
$$

where $t(x, y, z)$ is a discriminator term for \mathscr{V}_{s} (by 2.1(e)). Consequently, for $g \in G$ we have

$$
\llbracket a \neq b \rrbracket \subseteq \llbracket c \neq d \rrbracket \quad \text { iff } \quad \llbracket g(a) \neq g(b) \rrbracket \subseteq \llbracket g(c) \neq g(d) \rrbracket .
$$

Thus each g induces an automorphism \bar{g} on the lattice \mathbf{L} of all clopen subsets of X of the form $\llbracket a \neq b \rrbracket$, namely

$$
\bar{g}: \llbracket a \neq b \rrbracket \mapsto \llbracket g(a) \neq g(b) \rrbracket .
$$

For U an open subset of X, θ_{U} is a congruence on $\mathbf{A} \upharpoonright_{r}$ by $2.1(\mathrm{f})$; hence θ_{U} is a congruence on \mathbf{A} iff $\llbracket a \neq b \rrbracket \subseteq U$ implies $\llbracket g(a) \neq g(b) \rrbracket \subseteq U$, for $a, b \in A, g \in G$.

Suppose now that N is a clopen subset of X such that θ_{N} is a congruence of \mathbf{A}. For $a, b \in A$, if

$$
N \cap \llbracket a \neq b \rrbracket=\varnothing \quad \text { but } \quad N \cap \llbracket g(a) \neq g(b) \rrbracket \neq \varnothing
$$

for some $g \in G$, then for some $c, d \in A$,

$$
\llbracket c \neq d \rrbracket=N \cap \llbracket g(a) \neq g(b) \rrbracket
$$

by $2.1(\mathrm{~g})$. But then

$$
\varnothing \neq \llbracket g^{-1}(c) \neq g^{-1}(d) \rrbracket \subseteq \llbracket a \neq b \rrbracket,
$$

and

$$
\llbracket \mathrm{g}^{-1}(c) \neq \mathrm{g}^{-1}(d) \rrbracket \subseteq N
$$

(as θ_{N} is a congruence on \mathbf{A}), contradicting the fact that $N \cap \llbracket a \neq b \rrbracket=\varnothing$. Thus θ_{X-N} is also a congruence on \mathbf{A}. As \mathbf{A} is directly indecomposable this says $N=\varnothing$ or $N=X$ are the only possibilities.

Now if N is a clopen subset of X of the form $\mathbb{} a \neq b \rrbracket$ then

$$
\bar{G}(N)=\bigcup_{x \in G} \bar{g}(N)
$$

is also a clopen subset of X as \mathbf{G} is a finite group; and furthermore if $\llbracket c \neq d \rrbracket \subseteq$ $\bar{G}(N)$ then

$$
\begin{aligned}
\bar{g}(\mathbb{I} c \neq d \mathbb{D}) & \subseteq \overline{\mathrm{g}} \bar{G}(N) \\
& =\overline{\mathrm{g}}\left(\bigcup_{h \in G} \bar{h}(N)\right) \\
& =\bigcup_{h \in G} \bar{g} \bar{h}(N) \\
& =\bigcup_{h \in G} \bar{h}(N)=\bar{G}(N)
\end{aligned}
$$

so $\theta_{\bar{G}(N)}$ is a congruence on \mathbf{A}. Thus

$$
a \neq b \quad \text { implies } \quad \bar{G}(\mathbb{\|} a \neq b \rrbracket)=X
$$

Consequently there are no trivial algebras \mathbf{S}_{x}, for $x \in X$. Thus the clopen subsets of the form $\llbracket a \neq b \rrbracket$ form a subfield \mathbf{B} of the Boolean algebra of all subsets of X by $2.1(\mathrm{~g})$, and furthermore the $\bar{g} ' s$ are automorphisms of \mathbf{B}, for $g \in G$, with the property that $\bar{G}(N)=\cup_{g \in G} \bar{g}(N)$ is X for $N \neq \varnothing$. Such Boolean algebras with a group of automorphisms were studied in [3], and for G finite we proved that the above condition involving \bar{G} forces $|B| \leq 2^{|G|}$. Thus X must be a finite discrete space (indeed $|X| \leq|G|)$. Consequently \mathbf{A} is a simple algebra as all congruences on \mathbf{A} are of the form θ_{U} with U open, and now we know that all open subsets of X are actually clopen sets N (we've already proved that if θ_{N} is a congruence then $N=\varnothing$ or X). At this point we know that $\mathscr{V}(\mathbf{G})$ is a semisimple variety as $\mathscr{V}(\mathbf{G})_{\mathrm{DI}} \subseteq \mathscr{V}(\mathbf{G})_{S}$.

Before continuing let us note that the switching term

$$
s(x, y, u, v)=t(t(x, y, u), t(x, y, v), v)
$$

is such that \mathscr{V}_{S} satisfies

$$
[x \approx y \rightarrow s(x, y, u, v) \approx u] \&[x \neq y \rightarrow s(x, y, u, v) \approx v] .
$$

By repeatedly applying the identity

$$
\llbracket a \neq b \rrbracket \cup \llbracket c \neq d \rrbracket=\llbracket t(a, b, c) \neq t(b, a, d) \rrbracket
$$

we can find terms $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right), q\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ where $G=$ $\left\{g_{1}, \ldots, g_{n}\right\}$, such that for $a, b \in A$ (and using the notation $p(\vec{g}(a), \vec{g}(b))$ for $p\left(g_{1}(a), \ldots, g_{n}(a), g_{1}(b), \ldots, g_{n}(b)\right)$, etc. $)$ we have

$$
\begin{aligned}
\bar{G}(\llbracket a \neq b \mathbb{D} & =\bigcup_{g \in G} \llbracket g(a) \neq g(b) \rrbracket \\
& =\llbracket p(\vec{g}(a), \vec{g}(b)) \neq q(\vec{g}(a), \vec{g}(b)) \rrbracket .
\end{aligned}
$$

Then let

$$
t^{*}(x, y, z)=s(p(\vec{g}(x), \vec{g}(y)), q(\vec{g}(x), \vec{g}(y)), z, x)
$$

We see that for $a, b, c \in A$ (\mathbf{A} as above),

$$
\llbracket p(\vec{g}(a), \vec{g}(b)) \neq q(\vec{g}(a), \vec{g}(b)) \rrbracket=\left\{\begin{array}{lll}
\varnothing & \text { if } & a=b \\
X & \text { if } & a \neq b
\end{array}\right.
$$

as $\bar{G}(\llbracket a \neq b \mathbb{1})$ takes these values. Consequently

$$
t^{*}(a, b, c)=\left\{\begin{array}{lll}
c & \text { if } & a=b \\
a & \text { if } & a \neq b
\end{array}\right.
$$

so $t^{*}(x, y, z)$ is a discriminator term for $\mathscr{V}(\mathbf{G})_{s}$. Thus $\mathscr{V}(\mathbf{G})$ is indeed a discriminator variety.

§3. Abelian varieties

A variety \mathscr{V} is Abelian if it satisfies, for all terms t,

$$
\begin{equation*}
\forall x \forall y \forall \vec{u} \forall \vec{v}[t(x, \vec{u}) \approx t(x, \vec{v}) \leftrightarrow t(y, \vec{u}) \approx t(y, \vec{v})] . \tag{1}
\end{equation*}
$$

The background for this section can be found in [4].
THEOREM 3.1. $\mathcal{V}(\mathbf{M})$ is Abelian iff \mathcal{V} is Abelian.
Proof. (\Rightarrow) If $\mathscr{V}(\mathbf{M})$ is Abelian then so is every subvariety of $\mathscr{V}(\mathbf{M})$. But then by Theorem $1.1 \mathscr{V}$ is Abelian.
(\Leftrightarrow) Given a term $t\left(x, y_{1}, \ldots, y_{n}\right)$ in the language of $\mathcal{V}(\mathbf{M})$ let $t^{*}\left(m_{1}(x), \ldots, m_{1}\left(y_{n}\right), \ldots, m_{l}(x), \ldots, m_{l}\left(y_{n}\right)\right)$ be an equivalent reduced term (as guaranteed by Lemma 1.4). Then for $a, b, c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n} \in A$, where $\mathbf{A} \in$ $\mathscr{V}(\mathbf{M})$, we have, by repeated use of the property (1), which holds for \mathscr{V}, using the abbreviations $m_{1}(\vec{c})$ for $m_{1}\left(c_{1}\right), \ldots, m_{1}\left(c_{n}\right)$, etc.,

$$
\begin{aligned}
& t(a, \vec{c})=t(a, \vec{d}) \\
& \Leftrightarrow t^{*}\left(m_{1}(a), m_{1}(\vec{c}), m_{2}(a), m_{2}(\vec{c}), \ldots, m_{l}(a), m_{l}(\vec{c})\right) \\
& =t^{*}\left(m_{1}(a), m_{1}(\vec{d}), m_{2}(a), m_{2}(\vec{d}), \ldots, m_{l}(a), m_{l}(\vec{d})\right) \\
& \Leftrightarrow t^{*}\left(m_{1}(b), m_{1}(\vec{c}), m_{2}(a), m_{2}(\vec{c}), \ldots, m_{1}(a), m_{l}(\vec{c})\right) \\
& =t^{*}\left(m_{1}(b), m_{1}(\vec{d}), m_{2}(a), m_{2}(\vec{d}), \ldots, m_{l}(a), m_{l}(\bar{d})\right) \\
& \Leftrightarrow t^{*}\left(m_{1}(b), m_{1}(\vec{c}), m_{2}(b), m_{2}(\vec{c}), \ldots, m_{l}(a), m_{l}(\vec{c})\right) \\
& =t^{*}\left(m_{1}(b), m_{1}(\vec{d}), m_{2}(b), m_{2}(\vec{d}), \ldots, m_{l}(a), m_{l}(\vec{d})\right) \\
& \Leftrightarrow t^{*}\left(m_{1}(b), m_{1}(\vec{c}), m_{2}(b), m_{2}(\vec{c}), \ldots, m_{l}(b), m_{l}(\vec{c})\right) \\
& =t^{*}\left(m_{1}(b), m_{1}(\vec{d}), m_{2}(b), m_{2}(\vec{d}), \ldots, m_{l}(b), m_{l}(\vec{d})\right) . \\
& \Leftrightarrow t(b, \vec{c})=t(b, \vec{d}) .
\end{aligned}
$$

Thus (1) holds for $\mathscr{V}(\mathbf{M})$, so $\mathscr{V}(\mathbf{M})$ is Abelian.
Associated with each congruence-modular Abelian variety is a variety of modules $_{\mathbf{R}(\mathscr{A})} \mathbf{M}$, where $\mathbf{R}(\mathscr{A})$ is a ring with unit. Indeed the varieties \mathscr{A} and $\mathbf{R}(\mathscr{A})^{M}$ are in many respects equivalent. Our main result in this section is to establish a simple connection between $\mathbf{R}(\mathscr{A})$ and $\mathbf{R}(\mathscr{A}(\mathbf{M}))$. First let us sketch the details of the basic results on modular Abelian varieties.

A modular Abelian variety \mathscr{A} is congruence-permutable, so there is a Mal'cev
$\operatorname{term} p(x, y, z)$ for \mathscr{A}. Let $R=\left\{r(\bar{u}, \bar{v}) \in F_{\mathscr{A}}(\bar{u}, \bar{v}): \mathscr{A} \vDash r(v, v) \approx v\right\}$. Then define the operations $+, \cdot,-, 0,1$ on R by

$$
\begin{aligned}
r(\bar{u}, \bar{v})+s(\bar{u}, \bar{v}) & =p(r(\bar{u}, \bar{v}), \bar{v}, s(\bar{u}, \bar{v})) \\
r(\bar{u}, \bar{v}) \cdot s(\bar{u}, \bar{v}) & =r(s(\bar{u}, \bar{v}), \bar{v}) \\
-r(\bar{u}, \bar{v}) & =p(\bar{v}, r(\bar{u}, \bar{v}), \bar{v}) \\
0 & =\bar{v} \\
1 & =\bar{u} .
\end{aligned}
$$

This gives us the ring \mathbf{R} associated with \mathscr{A}, i.e., $\mathbf{R}(\mathscr{A})$. Terms $r(u, v)$ such that $\mathcal{V} \vDash r(v, v) \approx v$ are called binary idempotent terms.

In the following, when working with the function associated with a term $p\left(x_{1}, \ldots, x_{n}\right)$ on an algebra \mathbf{A} we will write $p^{\mathbf{A}}\left(x_{1}, \ldots, x_{n}\right)$ with the exception of $\mathbf{A}=\mathbf{F}_{s(\mathbf{M})}(\bar{u}, \bar{v})$, in which case we omit the superscript. Also we will write \mathbf{F} for $\mathbf{F}_{s \in}(\bar{u}, \bar{v})$.

Next, given $\mathbf{A} \in \mathscr{A}$ and $\alpha \in A$ we can construct on the set A a left $\mathbf{R}(\mathscr{A})$ module $\mathbf{M}(\mathbf{A}, \alpha)=\left\langle A,+,-, \alpha,(r)_{r \in R(\Omega)}\right\rangle$ by defining, for $a, b \in A$,

$$
\begin{aligned}
a+b & =p^{\mathbf{A}}(a, \alpha, b) \\
-a & =p^{\mathbf{A}}(\alpha, a, \alpha) \\
0 & =\alpha \\
r \cdot a & =r^{\mathbf{A}}(a, \alpha) .
\end{aligned}
$$

Furthermore, for each term $p\left(x_{1}, \ldots, x_{n}\right)$ in the language of \mathscr{A} one can find a term $p_{M}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i \leq n} r_{i} \cdot x_{i}$ in the language of $R(\mathscr{A})$-modules such that for $\mathbf{A} \in \mathscr{A}$ and $\alpha \in A$,

$$
p^{\mathbf{A}}\left(x_{1}, \ldots, x_{n}\right)=p_{M}^{\mathbf{M}(\mathbf{A}, \alpha)}\left(x_{1}, \ldots, x_{n}\right)+p^{\mathbf{A}}(\alpha, \ldots, \alpha)
$$

i.e., for $a_{1}, \ldots, a_{n} \in A$ we have

$$
p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\sum_{1 \leq i \leq n} r_{i} \cdot a_{i}+p^{\mathbf{A}}(\alpha, \ldots, \alpha)
$$

where the module operations on the right are those of $\mathbf{M}(\mathbf{A}, \alpha)$. This also can be written as

$$
p^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\sum_{1 \leq i \leq n} r_{i}^{\mathbf{A}}\left(a_{i}, \alpha\right)+p^{\mathbf{A}}(\alpha, \ldots, \alpha)
$$

Given a monoid \mathbf{M} and a ring \mathbf{R} we define $R[M]$ to be the set of all functions $\vec{r} \in R^{M}$ such that $r_{m}=0$ for all but finitely many $m \in M\left(r_{m}\right.$ being the value of \vec{r} at m). Then we define the monoid-ring $\mathbf{R}[\mathbf{M}]$ with universe $R[M]$ by

$$
\begin{aligned}
\overrightarrow{0}(m) & =0 \\
\overrightarrow{1}(1) & =1, \overrightarrow{1}(m)=0 \quad \text { if } \quad m \neq 1 \\
(\vec{r}+\vec{s})(m) & =r_{m}+s_{m} \\
(\vec{r} \cdot \vec{s})(m) & =\sum_{m_{1} \cdot m_{2}=m} r_{m_{1}}: s_{m_{2}}
\end{aligned}
$$

If \mathscr{A} is an Abelian variety then we can use the same Mal'cev term for \mathscr{A} and $\mathscr{A}(\mathbf{M})$. Then we can easily see that we have a natural embedding $\phi: \mathbf{R}(\mathscr{A}) \rightarrow$ $\mathbf{R}(\mathscr{A}(\mathbf{M}))$ defined by $\phi\left(r^{\mathbf{F}}(\bar{u}, \bar{v})\right)=r(\bar{u}, \bar{v})$, where $r(u, v)$ is a binary idempotent term in the language of \mathbf{A}. The image of $\mathbf{R}(\mathscr{A})$ under ϕ will be called \mathbf{R}^{*}; thus \mathbf{R}^{*} is the subring of $\mathbf{R}(\mathscr{A}(\mathbf{M}))$ whose universe consists of all $r(\bar{u}, \bar{v})$ where $r(u, v)$ is a binary idempotent term in the language of \mathbf{A}.

We would like to know what new binary idempotent terms we have in the language of $\mathscr{A}(\mathbf{M})$. The most obvious candidates are of the form $m(u)-m(v)$, properly expressed in the language of $\mathscr{A}(\mathbf{M})$. As it turns out these, along with the original binary idempotent terms of \mathscr{A}, generate $\mathbf{R}(\mathscr{A}(\mathbf{M})$) in a simple fashion. We give this fundamental decomposition in the next lemma.

LEMMA 3.2. Given an idempotent term $r(u, v)$ in the language of $\mathscr{A}(\mathbf{M})$ there is a unique $\vec{r} \in R^{*}[M]$ such that

$$
r(\bar{u}, \bar{v})=\sum r_{m}(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v}))
$$

where the module operations on the right side are those of $\mathbf{M}\left(\mathbf{F}_{s(M)}(\bar{u}, \bar{v}), \bar{v}\right)$. (The sum is \bar{v} if each $r_{m}(\bar{u}, \bar{v})=\bar{v}$; otherwise it is defined to be the finite sum over all m for which $r_{m}(\bar{u}, \bar{v}) \neq \bar{v}$.) The mapping $r(\bar{u}, \bar{v}) \mapsto \vec{r}$ described above is a bijection from $R(\mathscr{A})$ to $R^{*}[M]$.

Proof. First we find a reduced term (by Lemma 1.4) $r^{*}\left(m_{1}(u), m_{1}(v), \ldots\right.$, $\left.m_{n}(u), m_{n}(v)\right)$ which is equivalent to $r(u, v)$. We assume the m_{i} 's are distinct. As $\mathscr{A}(\mathbf{M}) \neq \mathrm{r}(\mathrm{v}, \mathrm{v}) \approx \mathrm{v}$ we have

$$
\begin{equation*}
\mathscr{A}(\mathbf{M}) \vDash r^{*}\left(m_{1}(v), m_{1}(v), \ldots, m_{n}(v), m_{n}(v)\right) \approx v \tag{2}
\end{equation*}
$$

Since $r^{*}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ is in the language of \mathscr{A} we can find idempotent terms $r_{i}(u, v), s_{i}(u, v)$ in the language of $\mathscr{A}, 1 \leq i \leq n$, such that for $\mathbf{A} \in \mathscr{A}$ and $\alpha \in A$ (with module operations in $\mathbf{M}(\mathbf{A}, \alpha)$)

$$
\begin{equation*}
r^{* \mathbf{A}}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\sum_{1 \leq i \leq n} r_{i}^{\mathbf{A}}\left(x_{i}, \alpha\right)+\sum_{1 \leq i \leq n} s_{i}^{\mathbf{A}}\left(y_{i}, \alpha\right)+r^{* \mathbf{A}}(\alpha, \ldots, \alpha) \tag{3}
\end{equation*}
$$

This equation will also hold for $\mathbf{A} \in \mathscr{A}(\mathbf{M})$ since the addition operation of $\mathbf{M}(\mathbf{A}, \alpha)$ is the same as that of $\mathbf{M}\left(\mathbf{A} \Gamma_{\mathscr{\alpha}}, \alpha\right)$.

From (2) we have

$$
\mathscr{A}(\mathbf{M}) \vDash r^{*}(v, v, \ldots, v) \approx v
$$

thus from (3)

$$
\begin{equation*}
r^{\mathbf{A}}(u, v)=\sum_{1 \leq i \leq n} r_{i}^{\mathbf{A}}\left(m_{i}^{\mathbf{A}}(u), \alpha\right)+\sum_{i \leq i \leq n} s_{i}^{\mathbf{A}}\left(m_{i}^{\mathbf{A}}(v), \alpha\right) \tag{4}
\end{equation*}
$$

Now let $\mathbf{A}=\mathbf{F}^{\mathbf{M}}$. Then for $a, \alpha \in A$ we have from (4)

$$
a=r^{\mathbf{A}}(a, a)=\sum_{1 \leq i \leq n} r_{i}^{\mathbf{A}}\left(m_{i}^{\mathbf{A}}(a), \alpha\right)+\sum_{1 \leq i \leq n} s_{i}^{\mathbf{A}}\left(m_{i}^{\mathbf{A}}(a), \alpha\right)
$$

With module operations in $\mathbf{M}(\mathbf{F}, \boldsymbol{\alpha}(1))$ we have, by evaluating at 1 ,

$$
a(1)=\sum_{1 \leq i \leq n} r_{i}^{\mathbf{F}}\left(a\left(m_{i}\right), \alpha(1)\right)+\sum_{1 \leq i \leq n} s_{i}^{\mathbf{F}}\left(a\left(m_{i}\right), \alpha(1)\right)
$$

For a fixed j, if $m_{\mathbf{j}} \neq 1$ let us choose a such that $a(m)=\bar{u}$ for $m=m_{j}, a(m)=\bar{v}$
otherwise; and let $\alpha(m)=\bar{v}$ for all m. Then

$$
\bar{v}=r_{j}^{F}(\bar{u}, \bar{v})+s_{j}^{\mathbf{F}}(\bar{u}, \bar{v})
$$

But then

$$
\bar{v}=r_{j}(\bar{u}, \bar{v})+s_{j}(\bar{u}, \bar{v}),
$$

i.e.,

$$
s_{j}(\bar{u}, \bar{v})=-r_{j}(\bar{u}, \bar{v}) \quad \text { if } \quad m_{j} \neq 1 .
$$

Thus, noting that $1(\bar{u})-1(\bar{v})=\bar{u}$, we have from (4)

$$
\begin{aligned}
r(\bar{u}, \bar{v}) & =\sum_{1 \leq i \leq n} r_{i}(\bar{u}, \bar{v}) \cdot m_{i}(\bar{u})+\sum_{1 \leq i \leq n} s_{i}(\bar{u}, \bar{v}) \cdot m_{i}(\bar{v}) \\
& =\sum_{1 \leq i \leq n} r_{i}(\bar{u}, \bar{v}) \cdot\left(m_{i}(\bar{u})-m_{i}(\bar{v})\right)
\end{aligned}
$$

To show that this representation is unique suppose $\vec{r}, \vec{s} \in R^{*}[M]$ and

$$
\sum r_{m}(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v}))=\sum s_{m}(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v})) .
$$

Then

$$
\sum r_{m}(m(\bar{u})-m(\bar{v}), \bar{v})=\sum s_{m}(m(\bar{u})-m(\bar{v}), \bar{v}) .
$$

Now given any $\mathbf{A} \in \mathscr{A}(\mathbf{M})$ and $a, b \in A$ the homomorphism $\lambda: \mathbf{F}_{\mathscr{A}(\mathbf{M})}(\bar{u}, \bar{v}) \rightarrow \mathbf{A}$ defined by $\lambda(\bar{u})=a, \lambda(\bar{v})=b$, is also a homomorphism from $\mathbf{M}\left(\mathbf{F}_{\mathcal{A Q}(\mathbb{M})}(\bar{u}, \bar{v}), \bar{v}\right) \rightarrow$ $\mathbf{M}(\mathbf{A}, b)$; hence for $\mathbf{A} \in \mathscr{A}(\mathbf{M})$ and $a, b \in A$

$$
\mathbf{A} \vDash \sum r_{m}^{\mathbf{A}}\left(m^{\mathbf{A}}(a)-m^{\mathbf{A}}(b), b\right)=\sum s_{m}^{\mathbf{A}}\left(m^{\mathbf{A}}(a)-m^{\mathbf{A}}(b), b\right) .
$$

Now let $\mathbf{A}=\mathbf{F}^{\mathbf{M}}$, and evaluate both sides at 1 to obtain

$$
\sum r_{m}^{\mathbf{F}}(a(m)-b(m), b(1))=\sum s_{m}^{\mathbf{F}}(a(m)-b(m), b(1))
$$

Letting $b(m)=v$ for all m we have

$$
\sum r_{m}^{\mathbf{F}}(a(m), \bar{v})=\sum s_{m}^{\mathbf{F}}(a(m), \bar{v}) .
$$

For $n \in M$ let $a(n)=\bar{u}, a(m)=\bar{v}$ otherwise. This yields

$$
\boldsymbol{r}_{n}^{\mathbf{F}}(\bar{u}, \bar{v})=s_{n}^{\mathbf{F}}(\bar{u}, \bar{v}),
$$

so

$$
r_{n}(\bar{u}, \bar{v})=s_{n}(\bar{u}, \bar{v})
$$

Thus for $r(\bar{u}, \bar{v}) \in F_{\mathbf{A}(\mathbf{M})}(\bar{u}, \bar{v})$, the associated $\vec{r} \in R^{*}[M]$ is unique.

THEOREM 3.3. $\mathbf{R}(\mathscr{A}(\mathbf{M})) \cong(\mathbf{R}(\mathscr{A}))[\mathbf{M}]$.

Proof. Let $\phi: R(\mathscr{A}(\mathbf{M})) \rightarrow R^{*}[M]$ be the bijection described in Lemma 3.2. Then for $r(u, v), s(u, v)$ idempotent terms in the language of $\mathscr{A}(\mathbf{M})$ we have $\phi(r(\bar{u}, \bar{v}))=\vec{r}, \phi(s(\bar{u}, \bar{v}))=\vec{s}$ where

$$
\begin{aligned}
& r(\bar{u}, \bar{v})=\sum r_{m}(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v})) \\
& s(\bar{u}, \bar{v})=\sum s_{m}(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v}))
\end{aligned}
$$

As $r_{m}(\bar{u}, \bar{v}), s_{m}(\bar{u}, \bar{v})$ and $m(\bar{u})-m(\bar{v}) \in R(\mathscr{A}(\mathbf{M}))$, for $m \in M$, we can think of the above operations of addition and multiplication as being ring operations of $\mathbf{R}(\mathscr{A}(\mathbf{M})$). But then

$$
r(\bar{u}, \bar{v})+s(\bar{u}, \bar{v})=\sum\left(r_{m}(\bar{u}, \bar{v})+s_{m}(\bar{u}, \bar{v})\right) \cdot(m(\bar{u})-m(\bar{v})),
$$

so $\phi(r(\bar{u}, \bar{v})+s(\bar{u}, \bar{v}))=\phi(r(\bar{u}, \bar{v}))+\phi(s(\bar{u}, \bar{v}))$. Also $\phi(\bar{v})=\overrightarrow{0}$ and $\phi(\bar{u})=\overrightarrow{1}$, and then $\phi(-r(\bar{u}, \bar{v}))=-\phi(r(\bar{u}, \bar{v}))$.

Finally to show that ϕ preserves multiplication we make use of the fact that the Mal'cev term $p(x, y, z)$ permutes with other terms in the language of $\mathscr{A}(\mathbf{M})$, and that for $\mathbf{A} \in \mathscr{A}(\mathbf{M})$ and $a \in A$,

$$
p^{\mathbf{A}}(x, y, z)=x-y+z
$$

where the calculations on the right are done in $\mathbf{M}(\mathbf{A}, a)$.
First note that for $m, n \in M$,

$$
\begin{aligned}
(m(\bar{u})-m(\bar{v})) \cdot(n(\bar{u})-n(\bar{v})) & =m(n(\bar{u})-n(\bar{v}))-m(\bar{v}) \\
& =m(p(n(\bar{u}), n(\bar{v}), \bar{v}))-m(\bar{v}) \\
& =p((m \cdot n)(\bar{u}),(m \cdot n)(\bar{v}), m(\bar{v}))-m(\bar{v}) \\
& =(m \cdot n)(\bar{u})-(m \cdot n)(\bar{v})+m(\bar{v})-m(\bar{v}) \\
& =(m \cdot n)(\bar{u})-(m \cdot n)(\bar{v}) .
\end{aligned}
$$

Next, if $t(u, v)$ is an idempotent term in the language of \mathscr{A}, and if $m \in M$, then

$$
\begin{aligned}
(m(\bar{u})-m(\bar{v})) \cdot t(\bar{u}, \bar{v}) & =m(t(\bar{u}, \bar{v}))-m(\bar{v}) \\
& =t(m(\bar{u}), m(\bar{v}))-m(\bar{v}) \\
& =t(m(\bar{u}), m(\bar{v}))-t(m(\bar{v}), m(\bar{v}))+t(\bar{v}, \bar{v}) \\
& =p(t(m(\bar{u}), m(\bar{v})), t(m(\bar{v}), m(\bar{v})), t(\bar{v}, \bar{v})) \\
& =t(p(m(\bar{u}), m(\bar{v}), \bar{v}), p(m(\bar{v}), m(\bar{v}), \bar{v})) \\
& =t(m(\bar{u})-m(\bar{v}), \bar{v}) \\
& =t(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v})) .
\end{aligned}
$$

Thus elements of \mathbf{R}^{*} commute with elements of $\mathbf{R}(\mathscr{A}(\mathbf{M}))$ of the form $m(\bar{u})$ $m(\bar{v})$.

Consequently we have

$$
\begin{aligned}
& \phi(r(\bar{u}, \bar{v}) \cdot s(\bar{u}, \bar{v})) \\
& \quad=\phi\left(\left(\sum_{m} r_{m}(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v}))\right)+\left(\sum_{m} s_{m}(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v}))\right)\right. \\
& \quad=\phi\left(\sum_{m, n} r_{m}(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v})) \cdot s_{n}(\bar{u}, \bar{v}) \cdot(n(\bar{u})-n(\bar{v}))\right) \\
& \quad=\phi\left(\sum_{m, n} r_{m}(\bar{u}, \bar{v}) \cdot s_{n}(\bar{u}, \bar{v}) \cdot(m(\bar{u})-m(\bar{v})) \cdot(n(\bar{u})-n(\bar{v}))\right) \\
& \left.\quad \phi\left(\sum_{m, n} r_{m}(\bar{u}, \bar{v}) \cdot s_{n}(\bar{u}, \bar{v}) \cdot((m n)(\bar{u})-(m n)(\bar{v}))\right)\right) \\
& \quad=\phi(r(\bar{u}, \bar{v})) \cdot \phi(s(\bar{u}, \bar{v})) .
\end{aligned}
$$

This completes the proof.

REFERENCES

[1] W. BaUR, Decidability and undecidability of theories of abelian groups with predicates for subgroups, Compos. Math. 31 (1975), 23-30.
[2] -_, Undecidability of the theory of abelian groups with a subgroup, Proc. Amer. Math. Soc. 44 (1976), 125-128.
[3] S. Burris, The first-order theory of Boolean algebras with a distinguished group of automorphisms, (to appear in Algebra Universalis).
[4] S. Burris and R. McKenzie, Decidability and Boolean Representations, Memoirs Amer. Math. Soc. No. 246, July 1981.
[5] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Math. No. 78, Springer-Verlag 1981.
[6] S. Burris and H. WERNER, Sheaf constructions and their elementary properties, Trans. Amer. Math. Soc. 248 (1979), 269-309.
[7] W. Taylor, Equational Logic, Houston J. of Math., Survey 1979.
University of Waterloo Waterloo, Ontario Canada

[^0]: * Research supported by NSERC Grant No. A7256
 \dagger Research supported by a Student NSERC Grant for Summer Studies
 Presented by B. Jónsson. Received May 14, 1982. Accepted for publication in final form September 3, 1982.

