Algebra Universalis, 17 (1983) 150-169

Expanding varieties by monoids of endomorphisms

STANLEY BURRIS* and MATTHEW VALERIOTET

The purpose of this paper is to start a general investigation of the varieties $\mathcal{V}(\mathbf{M})$ obtained by expanding a variety \mathcal{V} by a monoid of endomorphisms \mathbf{M} . This construction was used in [3] to manufacture the first example of a variety with a decidable theory and not of the form (discriminator) \otimes (Abelian). It also plays a key role in Baur's papers [1], [2] on the first-order theory of Abelian groups with distinguished subgroups.

In the first section a few basic results are presented. In the second section we describe exactly when $\mathcal{V}(\mathbf{M})$ is a discriminator variety, generalizing the treatment of $\mathscr{BA}(\mathbf{G})$ given in [3]. The final section is devoted to Abelian varieties and the corresponding varieties of modules.

§1. Definitions and basic results

Given a variety \mathcal{V} of type \mathcal{F} and a monoid $\mathbf{M} = \langle M, \cdot, 1 \rangle$ the variety $\mathcal{V}(\mathbf{M})$ is of type $\mathcal{F} \cup M$, where each $m \in M$ is a unary function symbol, and $\mathcal{V}(\mathbf{M})$ is axiomatized by

(i) the identities of \mathcal{V}

(ii) $1(x) \approx x$

(iii) $m_1(m_2(x)) \approx (m_1 \cdot m_2)(x)$ for $m_1, m_2 \in M$

(iv) $m(f(x_1,\ldots,x_k)) \approx f(m(x_1),\ldots,m(x_k))$ for $m \in M, f \in \mathcal{F}$.

We use the notion of equivalent varieties as defined in §7 of Taylor [7]. For $\mathbf{A} \in \mathcal{V}(\mathbf{M})$ let $\mathbf{A} \mid_{\mathcal{V}}$ be the reduct of \mathbf{A} to the language of \mathcal{V} ; and for $\mathcal{H} \subseteq \mathcal{V}(\mathbf{M})$ let $\mathcal{H} \mid_{\mathcal{V}} = \{\mathbf{A} \mid_{\mathcal{V}} : \mathbf{A} \in \mathcal{H}\}.$

^{*} Research supported by NSERC Grant No. A7256

[†] Research supported by a Student NSERC Grant for Summer Studies

Presented by B. Jónsson. Received May 14, 1982. Accepted for publication in final form September 3, 1982.

THEOREM 1.1. \mathcal{V} is equivalent to a subvariety of $\mathcal{V}(\mathbf{M})$, and \mathcal{V} is a reduct of $\mathcal{V}(\mathbf{M})$.

Proof. Let \mathcal{V}^* be the subvariety of $\mathcal{V}(\mathbf{M})$ defined by $m(x) \approx x$ for $m \in M$. Clearly \mathcal{V} and \mathcal{V}^* are equivalent varieties. Then $\mathcal{V} = \mathcal{V}^* \mid_{\mathcal{V}} \subseteq \mathcal{V}(\mathbf{M}) \mid_{\mathcal{V}} \subseteq \mathcal{V}$, so $\mathcal{V} = \mathcal{V}(\mathbf{M}) \mid_{\mathcal{V}}$. \Box

COROLLARY 1.2. \mathcal{V} and $\mathcal{V}(\mathbf{M})$ have the same Mal'cev properties.

Proof. Certainly any Mal'cev property of \mathcal{V} is also a Mal'cev property of $\mathcal{V}(\mathbf{M})$ (using the same identities); and any Mal'cev property of $\mathcal{V}(\mathbf{M})$ is one of \mathcal{V}^* (as defined in the proof of Theorem 1.1), and hence it is also a Mal'cev property of \mathcal{V} . \Box

One particular construction, which we describe now, transforms an algebra in \mathcal{V} into an algebra in $\mathcal{V}(\mathbf{M})$. For $\mathbf{A} \in \mathcal{V}$ let $\mathbf{A}^{\mathbf{M}}$ be the algebra obtained by expanding $\mathbf{A}^{\mathbf{M}}$ by defining, for $m, n \in M$ and $a \in A^{\mathbf{M}}$,

 $(m(a))(n) = a(n \cdot m).$

LEMMA 1.3. For $\mathbf{A} \in \mathcal{V}, \mathbf{A}^{\mathbf{M}} \in \mathcal{V}(\mathbf{M})$.

Proof. Certainly $\mathbf{A}^M \in \mathcal{V}$, and for $a \in A^M$, $n \in M$,

$$(1(a))(n) = a(n \cdot 1)$$
$$= a(n)$$

so

1(a) = a.

Next if $m_1, m_2, n \in M$ and $a \in A^M$ then

$$(m_1(m_2(a)))(n) = (m_2(a))(n \cdot m_1)$$

= $a(n \cdot m_1 \cdot m_2)$
= $((m_1 \cdot m_2)(a))(n)$

so

$$m_1(m_2(a)) = (m_1 \cdot m_2)(a).$$

Now if $f \in \mathcal{F}$, $m, n \in M$, and $a_1, \ldots, a_k \in A^M$ then

$$(m(f(a_1, ..., a_k)))(n) = (f(a_1, ..., a_k))(n \cdot m)$$

= $f(a_1(n \cdot m), ..., a_k(n \cdot m))$
= $f((m(a_1))(n), ..., (m(a_k))(n))$
= $(f(m(a_1), ..., m(a_k)))(n),$

so

$$m(f(a_1,\ldots,a_k)) = f(m(a_1),\ldots,m(a_k)). \quad \Box$$

A term $p(x_1, \ldots, x_k)$ in the language of $\mathcal{V}(\mathbf{M})$ is reduced if $p(x_1, \ldots, x_k)$ is $p^*(m_1(x_1), \ldots, m_1(x_k), \ldots, m_l(x_1), \ldots, m_l(x_k))$, for suitable $m_1, \ldots, m_l \in M$ and for $p^*(x_{11}, \ldots, x_{1k}, \ldots, x_{l1}, \ldots, x_{lk})$ a term in the language of \mathcal{V} .

LEMMA 1.4. For every term $p(x_1, \ldots, x_k)$ in the language of $\mathcal{V}(\mathbf{M})$ there is a reduced term $p_*(x_1, \ldots, x_k)$ such that

 $\mathcal{V}(\mathbf{M}) \models p(x_1, \ldots, x_k) \approx p_*(x_1, \ldots, x_k).$

Proof. After replacing x_1, \ldots, x_k by $1(x_1), \ldots, 1(x_k)$ one just repeatedly uses properties (iii) and (iv) of the definition of $\mathcal{V}(\mathbf{M})$ to push the *m*'s occurring in $p(x_1, \ldots, x_k)$ down to the variables. \Box

For $X \subseteq A$, $\mathbf{A} \in \mathcal{V}(\mathbf{M})$, let $M(X) = \{m(x) : m \in M, x \in X\}$; and $Sg_{\mathbf{A}}(X)$ is the subuniverse of \mathbf{A} generated by X. Let $T_{\mathcal{V}}$ be the set of terms in the language of \mathcal{V} .

LEMMA 1.5. For $\mathbf{A} \in \mathcal{V}(\mathbf{M})$ and $X \subseteq A$,

 $Sg_{\mathbf{A}}(X) = Sg_{\mathbf{A}} h_{\mathbf{X}}(M(X)).$

Proof. We have

$$Sg_{\mathbf{A}}(X) = \{p(a_{1}, \dots, a_{k}) : p \in T_{\mathcal{V}(\mathbf{M})}, a_{1}, \dots, a_{k} \in X\}$$
$$= \{p^{*}(m_{1}(a_{1}), \dots, m_{l}(a_{k})) : p^{*} \in T_{\mathcal{V}},$$
$$m_{1}, \dots, m_{l} \in M, a_{1}, \dots, a_{k} \in X\}$$
$$= Sg_{\mathbf{A} \upharpoonright \mathcal{V}}(M(x)). \square$$

Vol 17, 1983 Expanding varieties by monoids of endomorphisms

If a variety \mathcal{V} is trivial then of course so is $\mathcal{V}(\mathbf{M})$. This gives a degenerate case in many of the following results.

THEOREM 1.6. If \mathcal{V} is a nontrivial variety then $\mathcal{V}(\mathbf{M})$ is locally finite iff \mathcal{V} is locally finite and \mathbf{M} is finite.

Proof. Suppose $\mathcal{V}(\mathbf{M})$ is locally finite. As \mathcal{V} is a reduct of $\mathcal{V}(\mathbf{M})$ it follows that \mathcal{V} is locally finite. Let $\mathbf{A} \in \mathcal{V}$ be an algebra with $|A| \ge |M|$, and choose a one-to-one function $a \in A^M$. Then for $m_1, m_2 \in M$, we have the following holding in $\mathbf{A}^{\mathbf{M}}$:

$$m_1(a) = m_2(a) \Rightarrow (m_1(a))(1) = (m_2(a))(1)$$
$$\Rightarrow a(m_1) = a(m_2)$$
$$\Rightarrow m_1 = m_2.$$

This says that $|Sg_{\mathbf{A}^{\mathbf{M}}}(\{a\})| \ge |M|$. As $\mathcal{V}(\mathbf{M})$, and hence $\mathbf{A}^{\mathbf{M}}$, is locally finite, **M** must be a finite monoid.

For the converse suppose \mathcal{V} is locally finite and **M** is finite. Then for $\mathbf{A} \in \mathcal{V}(\mathbf{M})$ and X a finite subset of A, the set M(X) is finite, so by Lemma 1.5 $Sg_{\mathbf{A}}(X)$ is finite. Thus $\mathcal{V}(\mathbf{M})$ is locally finite. \Box

LEMMA 1.7. Suppose \mathcal{V} is a nontrivial variety and **M** is a monoid. If $m_1, m_2 \in M$ then

 $\mathcal{V}(\mathbf{M}) \models m_1(x) \approx m_2(x) \quad \text{iff} \quad m_1 = m_2.$

Proof. (The proof of this is contained in the first paragraph of the proof of Theorem 1.6.) \Box

A variety generated by finitely many finite algebras, or equivalently by a single finite algebra, is *finitely generated*.

THEOREM 1.8. Suppose \mathcal{V} is a nontrivial variety. If $\mathcal{V}(M)$ is finitely generated then **M** is finite and \mathcal{V} is finitely generated.

Proof. Let **A** be a finite member of $\mathcal{V}(\mathbf{M})$ such that $\mathcal{V}(\mathbf{M}) = \text{HSP}(\mathbf{A})$. Then $\mathcal{V} = \text{HSP}(\mathbf{A})|_{\mathcal{V}} \subseteq \text{HSP}(\mathbf{A}|_{\mathcal{V}}) \subseteq \mathcal{V}$, so $\mathcal{V} = \text{HSP}(\mathbf{A}|_{\mathcal{V}})$, and hence \mathcal{V} is finitely generated. Next, since the free algebra $\mathbf{F}_{\mathcal{V}(\mathbf{M})}(\bar{\mathbf{x}})$ is finite (as $\mathcal{V}(\mathbf{M})$ is locally finite), the set $M(\{\bar{\mathbf{x}}\})$ must be finite, and then by Lemma 1.7 **M** is a finite monoid. \Box

When we are working with elements a, b in a direct product $\prod_{i \in I} A_i$ we use

the notation

$$[[a = b]] = \{i \in I : a(i) = b(i)\}$$

 $[a \neq b] = \{i \in I : a(i) \neq b(i)\}.$

LEMMA 1.9. Suppose $\mathbf{A} \in \mathcal{V}$.

(a) If $\mathbf{A}^{\mathbf{M}}$ is a simple algebra then either \mathbf{A} is a trivial algebra or one can conclude that \mathbf{M} is a finite group and \mathbf{A} is a simple algebra.

(b) Suppose S is a simple algebra, G is a finite group. If the variety generated by S is distributive then S^{G} is a simple algebra.

Proof. (a) If A is a trivial algebra then this part is obvious, so suppose A is nontrivial. Let U_r be the set of elements in M with a right inverse, i.e.,

 $U_r = \{m \in M : m \cdot m^* = 1 \text{ for some } m^* \in M\},\$

and let the binary relation θ be defined on $A^{\mathcal{M}}$ by

 $\theta = \{ \langle a, b \rangle \in A^M \times A^M : \llbracket a \neq b \rrbracket \subseteq U_r \}.$

Then θ is an equivalence relation since, for $a, b, c \in A^M$,

$$[a \neq a] \subseteq U_r$$

 $[a \neq b] \subseteq U_r \Rightarrow [b \neq a] \subseteq U_r$

and

$$[a \neq b] \subseteq U_r, [b \neq c] \subseteq U_r \Rightarrow [a \neq c] \subseteq U_r$$

as

 $\llbracket a \neq c \rrbracket \subseteq \llbracket a \neq b \rrbracket \cup \llbracket b \neq c \rrbracket.$

Next θ is compatible with all fundamental operations f of \mathbf{A}^{M} since if $\langle a_1, b_1 \rangle, \ldots, \langle a_k, b_k \rangle \in \theta$ then

$$[\![f(a_1,\ldots,a_k)\neq f(b_1,\ldots,b_k)]\!] \subseteq [\![a_1\neq b_1]\!] \cup \cdots \cup [\![a_k\neq b_k]\!] \subseteq U_r.$$

Now if $m \in M$ and $(a, b) \in \theta$ then for $n \in [m(a) \neq m(b)]$ we have

$$(m(a))(n) \neq (m(b))(n),$$

i.e.,

$$a(n \cdot m) \neq b(n \cdot m).$$

This leads to $n \cdot m \in [[a \neq b]] \subseteq U_r$, so $n \in U_r$. Thus $[[m(a) \neq m(b)]] \subseteq U_r$, so $\langle m(a), m(b) \rangle \in \theta$. Thus we have proved θ is a congruence on $\mathbf{A}^{\mathbf{M}}$. Now $\Delta < \theta$ as $\emptyset \neq U_r$, and as $\mathbf{A}^{\mathbf{M}}$ is a simple algebra we must have $\theta = \nabla$; hence $U_r = M$. This guarantees that \mathbf{M} is a group.

Now define a binary relation $\hat{\theta}$ on A^M by

$$\hat{\theta} = \{ \langle a, b \rangle \in A^{\mathcal{M}} \times A^{\mathcal{M}} : \llbracket a \neq b \rrbracket \text{ is finite} \}.$$

Then $\hat{\theta}$ is a well-known congruence on $\mathbf{A}^{\mathcal{M}}$, and $\Delta < \hat{\theta}$. For $m \in M$ and $\langle a, b \rangle \in \hat{\theta}$,

$$\llbracket m(a) \neq m(b) \rrbracket = \{ n \in M : (m(a))(n) \neq (m(b))(n) \}$$
$$= \{ n \in M : a(n \cdot m) \neq b(n \cdot m) \}$$
$$= \{ n \in M : n \cdot m \in \llbracket a \neq b \rrbracket \}$$
$$= \alpha_m^{-1} (\llbracket a \neq b \rrbracket),$$

where $\alpha_m : M \to M$ is defined by $\alpha_m(n) = n \cdot m$. As α_m is a bijection (**M** is a group), it follows that $[m(a) \neq m(b)]$ is finite, so $\langle a, b \rangle \in \hat{\theta}$ implies $\langle m(a), m(b) \rangle \in \hat{\theta}$. Thus $\hat{\theta}$ is also a congruence on $\mathbf{A}^{\mathbf{M}}$, and as $\mathbf{A}^{\mathbf{M}}$ is a simple algebra we must have $\hat{\theta} = \nabla$. But this can happen only if M is finite.

Next if ϕ is a congruence on **A** let ϕ^* be the binary relation on A^M defined by

$$\phi^* = \{ \langle a, b \rangle \in A^M \times A^M : \langle a(n), b(n) \rangle \in \phi \quad \text{for} \quad n \in M \}.$$

Again ϕ^* is a well-known congruence on \mathbf{A}^M . Now for $m, n \in M$ and $(a, b) \in \phi^*$ we have

$$\langle (m(a))(n), (m(b))(n) \rangle = \langle a(n \cdot m), b(n \cdot m) \rangle \in \phi;$$

hence $\langle m(a), m(b) \rangle \in \phi^*$. Consequently ϕ^* is a congruence on $\mathbf{A}^{\mathbf{M}}$. As $\mathbf{A}^{\mathbf{M}}$ is simple this forces ϕ to be $\Delta_{\mathbf{A}}$ or $\nabla_{\mathbf{A}}$; hence \mathbf{A} is a simple algebra.

(b) Again the interesting case is when **S** is nontrivial. From the congruencedistributive assumption and the finiteness of **G** we know (see IV §11.10 of [5]) that all congruences on \mathbf{S}^{G} are of the form, for $J \subseteq G$,

$$\theta_J = \{ \langle a, b \rangle \in S^G : [[a \neq b]] \subseteq J \}.$$

Now if θ is a congruence on $\mathbf{S}^{\mathbf{G}}$ and $\theta \neq \Delta$ then there must exist $\langle a, b \rangle \in \theta$ and $g \in G$ such that $a(g) \neq b(g)$. Then, for $h \in G$,

$$a(h \cdot h^{-1} \cdot g) \neq b(h \cdot h^{-1} \cdot g),$$

SO

$$((h^{-1} \cdot g)(a))(h) \neq ((h^{-1} \cdot g)(b))(h).$$

As

$$\langle (h^{-1} \cdot g)(a), (h^{-1} \cdot g)(b) \rangle \in \theta$$

and

$$h \in [(h^{-1} \cdot g)(a) \neq (h^{-1} \cdot g)(b)]$$

it follows that the $J \subseteq G$ for which $\theta = \theta_J$ must be J = G. Thus $\theta = \nabla$, so $\mathbf{S}^{\mathbf{G}}$ is indeed simple. \Box

§2. Discriminator varieties

Most of the background information on discriminator varieties can be found in IV §9 of [5] or in §9 of [6]. Given a variety \mathcal{V} let \mathcal{V}_S be the class of simple algebras in \mathcal{V} , and let \mathcal{V}_{DI} be the class of directly indecomposable members of \mathcal{V} . The notation $\mathbf{A} \leq_{bp} \prod_{x \in X} \mathbf{A}_x$ means \mathbf{A} is a Boolean product of the indexed family of algebras $(\mathbf{A}_x)_{x \in X}$, i.e., (i) \mathbf{A} is a subdirect product of the family $(\mathbf{A}_x)_{x \in X}$, and X can be endowed with a Boolean space topology such that (ii) $[\![a = b]\!]$ is clopen for all $a, b \in A$, and (iii) for $a, b \in A$ and N a clopen subset of X, $a \upharpoonright_N \cup b \upharpoonright_{X-N} \in A$. $\Gamma^a(\mathcal{H})$ denotes the class of all Boolean products of members of \mathcal{H} . A variety \mathcal{V} is a discriminator variety if \mathcal{V} is generated by \mathcal{V}_S and there is a discriminator term

t(x, y, z) for \mathcal{V}_{S} , i.e., \mathcal{V}_{S} satisfies

$$[x \approx y \rightarrow t(x, y, z) \approx z] \& [x \neq y \rightarrow t(x, y, z) \approx x].$$

We summarize the basic results on discriminator varieties that we will need in the following theorem.

THEOREM 2.1. Let \mathcal{V} be a discriminator variety, and let t(x, y, z) be a discriminator term for \mathcal{V}_{S} .

- (a) $\mathcal{V}_{DI} = \mathcal{V}_{S}$
- (b) $\mathcal{V} = I\Gamma^{a}(\mathcal{V}_{S})$
- (c) For $\mathbf{S} \in \mathcal{V}_{S}$, the factor congruences on \mathbf{S}^{I} are of the form, for $J \subseteq I$, $\theta_{J} = \{\langle a, b \rangle \in S^{I} \times S^{I} : [[a \neq b]] \subseteq J\}$.
- (d) Every A∈ V is isomorphic to a Boolean product A* of simple algebras, i.e., A≤_{bp}∏_{x∈X}S_x, S_x ∈ V for x∈X, such that at most one S_x is a trivial algebra. For A a nontrivial algebra we can furthermore require that x be a nonisolated point of X if S_x is indeed trivial.
- Let $\mathbf{A} \leq_{bp} \prod_{x \in X} \mathbf{S}_x, \mathbf{S}_x$ simple, in (e)-(h). (e) For $a, b, c, d \in A$,

$$[a \neq b] \subseteq [c \neq d]$$
 iff $t(c, d, a) = t(c, d, b)$,

and

$$[[a \neq b]] \cup [[c \neq d]] = [[t(a, b, c) \neq t(b, a, d)]].$$

(f) Every congruence θ on **A** is of the form

 $\theta_U = \{ \langle a, b \rangle \in A^2 \colon \llbracket a \neq b \rrbracket \subseteq U \},\$

for U an open subset of X. The factor congruences on A are precisely those of the form θ_N for N a clopen subset of X.

- (g) All finitely generated congruences on **A** are principal, and indeed for $a, b \in A$ we have $\theta(a, b) = \theta_{[a \neq b]}$. A clopen subset N of X is of the form $[a \neq b]$ iff S_x is nontrivial for $x \in N$.
- (h) The set of principal congruences on A forms a sublattice of the congruence lattice of A which embeds into the lattice of clopen subsets of X under the mapping θ(a, b)→ [[a≠b]]; this is a Boolean lattice if no S_x is trivial.

Now we are ready to prove our main result in this section.

THEOREM 2.2. For \mathcal{V} a nontrivial variety and **M** a monoid, $\mathcal{V}(\mathbf{M})$ is a discriminator variety iff \mathcal{V} is a discriminator variety and **M** is a finite group.

Proof. (\Rightarrow) Since \mathcal{V} is equivalent to a subvariety of the discriminator variety $\mathcal{V}(\mathbf{M})$ by Theorem 1.1, it follows that \mathcal{V} must be a discriminator variety. Next let **S** be a nontrivial simple algebra in \mathcal{V} . We claim that $\mathbf{S}^{\mathbf{M}}$ is a directly indecomposable algebra. To see this we note that factor congruences on $\mathbf{S}^{\mathbf{M}}$ must be of the form

$$\theta_J = \{ \langle a, b \rangle \in S^M \times S^M : \llbracket a \neq b \rrbracket \subseteq J \},\$$

for $J \subseteq M$, by 2.1(c). So suppose θ_J , θ_{M-J} is a pair of factor congruences on \mathbb{S}^M . We can assume $1 \in J$. If $J \neq M$ choose an element $m \in M-J$, and then choose $a, b \in S^M$ with $[a \neq b] = \{m\}$. Then

$$\llbracket a \neq b \rrbracket \subseteq M - J,$$

so,

$$\langle a, b \rangle \in \theta_{M-J}$$

This implies

 $\langle m(a), m(b) \rangle \in \theta_{M-J},$

so

$$\llbracket m(a) \neq m(b) \rrbracket \subseteq M - J,$$

i.e.,

$$J \subseteq \llbracket m(a) = m(b) \rrbracket.$$

But this is impossible as $1 \in J$ and $m(a)(1) \neq m(b)(1)$ (since $a(m) \neq b(m)$). Thus J = M, and hence S^{M} is directly indecomposable. This forces S^{M} to be simple by 2.1(a), so by Lemma 1.9(a) it follows that **M** is a finite group.

 (\Leftarrow) Let \mathcal{V} be a nontrivial discriminator variety and let **G** be a finite group. Let **A** be a nontrivial directly indecomposable member of $\mathcal{V}(\mathbf{G})$. As every algebra in a discriminator variety can be represented as a Boolean product of simple algebras by 2.1(b), we can assume

$$\mathbf{A}\!\upharpoonright_{\mathcal{V}}\leq\prod_{\mathbf{x}\in\mathcal{X}}\mathbf{S}_{\mathbf{x}},\mathbf{S}_{\mathbf{x}}\in\mathcal{V}_{S}.$$

Furthermore by 2.1(d) we can assume that at most one S_x is trivial, and if there is a trivial S_x then x is not an isolated point of the Boolean space X.

For $a, b, c, d \in A$ we have

$$[[a \neq b]] \subseteq [[c \neq d]]$$
 iff $t(c, d, a) = t(c, d, b)$,

where t(x, y, z) is a discriminator term for \mathcal{V}_s (by 2.1(e)). Consequently, for $g \in G$ we have

$$\llbracket a \neq b \rrbracket \subseteq \llbracket c \neq d \rrbracket \quad \text{iff} \quad \llbracket g(a) \neq g(b) \rrbracket \subseteq \llbracket g(c) \neq g(d) \rrbracket.$$

Thus each g induces an automorphism \bar{g} on the lattice **L** of all clopen subsets of X of the form $[a \neq b]$, namely

$$\bar{g}: \llbracket a \neq b \rrbracket \mapsto \llbracket g(a) \neq g(b) \rrbracket.$$

For U an open subset of X, θ_U is a congruence on $\mathbf{A} \upharpoonright_{\mathcal{V}}$ by 2.1(f); hence θ_U is a congruence on \mathbf{A} iff $[a \neq b] \subseteq U$ implies $[g(a) \neq g(b)] \subseteq U$, for $a, b \in A, g \in G$.

Suppose now that N is a clopen subset of X such that θ_N is a congruence of **A**. For $a, b \in A$, if

$$N \cap \llbracket a \neq b \rrbracket = \emptyset$$
 but $N \cap \llbracket g(a) \neq g(b) \rrbracket \neq \emptyset$

for some $g \in G$, then for some $c, d \in A$,

$$\llbracket c \neq d \rrbracket = N \cap \llbracket g(a) \neq g(b) \rrbracket$$

by 2.1(g). But then

$$\emptyset \neq \llbracket g^{-1}(c) \neq g^{-1}(d) \rrbracket \subseteq \llbracket a \neq b \rrbracket,$$

and

$$[\![g^{-1}(c) \neq g^{-1}(d)]\!] \subseteq N$$

(as θ_N is a congruence on **A**), contradicting the fact that $N \cap [\![a \neq b]\!] = \emptyset$. Thus θ_{X-N} is also a congruence on **A**. As **A** is directly indecomposable this says $N = \emptyset$ or N = X are the only possibilities.

Now if N is a clopen subset of X of the form $[a \neq b]$ then

$$\bar{G}(N) = \bigcup_{g \in G} \bar{g}(N)$$

is also a clopen subset of X as G is a finite group; and furthermore if $[c \neq d] \subseteq \overline{G}(N)$ then

$$\bar{g}(\llbracket c \neq d \rrbracket) \subseteq \bar{g}\bar{G}(N)$$

$$= \bar{g}\left(\bigcup_{h \in G} \bar{h}(N)\right)$$

$$= \bigcup_{h \in G} \bar{g}\bar{h}(N)$$

$$= \bigcup_{h \in G} \bar{h}(N) = \bar{G}(N)$$

so $\theta_{\bar{G}(N)}$ is a congruence on **A**. Thus

$$a \neq b$$
 implies $\overline{G}(\llbracket a \neq b \rrbracket) = X$.

Consequently there are no trivial algebras \mathbf{S}_x , for $x \in X$. Thus the clopen subsets of the form $[\![a \neq b]\!]$ form a subfield **B** of the Boolean algebra of all subsets of X by 2.1(g), and furthermore the \bar{g} 's are automorphisms of **B**, for $g \in G$, with the property that $\bar{G}(N) = \bigcup_{g \in G} \bar{g}(N)$ is X for $N \neq \emptyset$. Such Boolean algebras with a group of automorphisms were studied in [3], and for **G** finite we proved that the above condition involving \bar{G} forces $|B| \leq 2^{|G|}$. Thus X must be a finite discrete space (indeed $|X| \leq |G|$). Consequently **A** is a simple algebra as all congruences on **A** are of the form θ_U with U open, and now we know that all open subsets of X are actually clopen sets N (we've already proved that if θ_N is a congruence then $N = \emptyset$ or X). At this point we know that $\mathcal{V}(\mathbf{G})$ is a semisimple variety as $\mathcal{V}(\mathbf{G})_{DI} \subseteq \mathcal{V}(\mathbf{G})_{S}$.

Before continuing let us note that the switching term

s(x, y, u, v) = t(t(x, y, u), t(x, y, v), v)

is such that \mathcal{V}_{S} satisfies

$$[x \approx y \rightarrow s(x, y, u, v) \approx u] \& [x \neq y \rightarrow s(x, y, u, v) \approx v].$$

By repeatedly applying the identity

$$[[a \neq b]] \cup [[c \neq d]] = [[t(a, b, c) \neq t(b, a, d)]]$$

we can find terms $p(x_1, \ldots, x_n, y_1, \ldots, y_n)$, $q(x_1, \ldots, x_n, y_1, \ldots, y_n)$ where $G = \{g_1, \ldots, g_n\}$, such that for $a, b \in A$ (and using the notation $p(\vec{g}(a), \vec{g}(b))$ for $p(g_1(a), \ldots, g_n(a), g_1(b), \ldots, g_n(b))$, etc.) we have

$$\begin{split} \bar{G}(\llbracket a \neq b \rrbracket) &= \bigcup_{g \in G} \llbracket g(a) \neq g(b) \rrbracket \\ &= \llbracket p(\vec{g}(a), \vec{g}(b)) \neq q(\vec{g}(a), \vec{g}(b)) \rrbracket. \end{split}$$

Then let

$$t^{*}(x, y, z) = s(p(\vec{g}(x), \vec{g}(y)), q(\vec{g}(x), \vec{g}(y)), z, x).$$

We see that for $a, b, c \in A$ (A as above),

$$\llbracket p(\vec{g}(a), \vec{g}(b)) \neq q(\vec{g}(a), \vec{g}(b)) \rrbracket = \begin{cases} \varnothing & \text{if } a = b \\ X & \text{if } a \neq b \end{cases}$$

as $\overline{G}([a \neq b])$ takes these values. Consequently

$$t^*(a, b, c) = \begin{cases} c & \text{if } a = b \\ a & \text{if } a \neq b, \end{cases}$$

so $t^*(x, y, z)$ is a discriminator term for $\mathcal{V}(\mathbf{G})_S$. Thus $\mathcal{V}(\mathbf{G})$ is indeed a discriminator variety.

§3. Abelian varieties

A variety \mathcal{V} is Abelian if it satisfies, for all terms t,

$$\forall x \forall y \forall \vec{u} \forall \vec{v} [t(x, \vec{u}) \approx t(x, \vec{v}) \leftrightarrow t(y, \vec{u}) \approx t(y, \vec{v})].$$
⁽¹⁾

The background for this section can be found in [4].

THEOREM 3.1. $\mathcal{V}(\mathbf{M})$ is Abelian iff \mathcal{V} is Abelian.

Proof. (\Rightarrow) If $\mathcal{V}(\mathbf{M})$ is Abelian then so is every subvariety of $\mathcal{V}(\mathbf{M})$. But then by Theorem 1.1 \mathcal{V} is Abelian.

(\Leftarrow) Given a term $t(x, y_1, \ldots, y_n)$ in the language of $\mathcal{V}(\mathbf{M})$ let $t^*(m_1(x), \ldots, m_1(y_n), \ldots, m_l(x), \ldots, m_l(y_n))$ be an equivalent reduced term (as guaranteed by Lemma 1.4). Then for $a, b, c_1, \ldots, c_n, d_1, \ldots, d_n \in A$, where $\mathbf{A} \in \mathcal{V}(\mathbf{M})$, we have, by repeated use of the property (1), which holds for \mathcal{V} , using the abbreviations $m_1(\tilde{c})$ for $m_1(c_1), \ldots, m_1(c_n)$, etc.,

$$t(a, \vec{c}) = t(a, \vec{d})$$

$$\Leftrightarrow t^*(m_1(a), m_1(\vec{c}), m_2(a), m_2(\vec{c}), \dots, m_l(a), m_l(\vec{c}))$$

= $t^*(m_1(a), m_1(\vec{d}), m_2(a), m_2(\vec{d}), \dots, m_l(a), m_l(\vec{d}))$

$$\Leftrightarrow t^*(m_1(b), m_1(\vec{c}), m_2(a), m_2(\vec{c}), \dots, m_l(a), m_l(\vec{c}))$$

= $t^*(m_1(b), m_1(\vec{d}), m_2(a), m_2(\vec{d}), \dots, m_l(a), m_l(\vec{d}))$

$$\Leftrightarrow t^{*}(m_{1}(b), m_{1}(\vec{c}), m_{2}(b), m_{2}(\vec{c}), \dots, m_{l}(a), m_{l}(\vec{c}))$$

= $t^{*}(m_{1}(b), m_{1}(\vec{d}), m_{2}(b), m_{2}(\vec{d}), \dots, m_{l}(a), m_{l}(\vec{d}))$

 $\Leftrightarrow t^{*}(m_{1}(b), m_{1}(\vec{c}), m_{2}(b), m_{2}(\vec{c}), \dots, m_{l}(b), m_{l}(\vec{c}))$ = $t^{*}(m_{1}(b), m_{1}(\vec{d}), m_{2}(b), m_{2}(\vec{d}), \dots, m_{l}(b), m_{l}(\vec{d})).$

 $\Leftrightarrow t(b, \vec{c}) = t(b, \vec{d}).$

Thus (1) holds for $\mathcal{V}(\mathbf{M})$, so $\mathcal{V}(\mathbf{M})$ is Abelian.

Associated with each congruence-modular Abelian variety is a variety of modules $_{\mathbf{R}(\mathscr{A})}\mathbf{M}$, where $\mathbf{R}(\mathscr{A})$ is a ring with unit. Indeed the varieties \mathscr{A} and $_{\mathbf{R}(\mathscr{A})}\mathbf{M}$ are in many respects equivalent. Our main result in this section is to establish a simple connection between $\mathbf{R}(\mathscr{A})$ and $\mathbf{R}(\mathscr{A}(\mathbf{M}))$. First let us sketch the details of the basic results on modular Abelian varieties.

A modular Abelian variety A is congruence-permutable, so there is a Mal'cev

term p(x, y, z) for \mathscr{A} . Let $R = \{r(\bar{u}, \bar{v}) \in F_{\mathscr{A}}(\bar{u}, \bar{v}) : \mathscr{A} \models r(v, v) \approx v\}$. Then define the operations $+, \cdot, -, 0, 1$ on R by

 $r(\bar{u}, \bar{v}) + s(\bar{u}, \bar{v}) = p(r(\bar{u}, \bar{v}), \bar{v}, s(\bar{u}, \bar{v}))$ $r(\bar{u}, \bar{v}) \cdot s(\bar{u}, \bar{v}) = r(s(\bar{u}, \bar{v}), \bar{v})$ $-r(\bar{u}, \bar{v}) = p(\bar{v}, r(\bar{u}, \bar{v}), \bar{v})$ $0 = \bar{v}$ $1 = \bar{u}.$

This gives us the ring **R** associated with \mathcal{A} , i.e., **R**(\mathcal{A}). Terms r(u, v) such that $\mathcal{V} \models r(v, v) \approx v$ are called *binary idempotent terms*.

In the following, when working with the function associated with a term $p(x_1, \ldots, x_n)$ on an algebra **A** we will write $p^{\mathbf{A}}(x_1, \ldots, x_n)$ with the exception of $\mathbf{A} = \mathbf{F}_{\mathscr{A}(\mathbf{M})}(\bar{u}, \bar{v})$, in which case we omit the superscript. Also we will write **F** for $\mathbf{F}_{\mathscr{A}}(\bar{u}, \bar{v})$.

Next, given $\mathbf{A} \in \mathcal{A}$ and $\alpha \in A$ we can construct on the set A a left $\mathbf{R}(\mathcal{A})$ -module $\mathbf{M}(\mathbf{A}, \alpha) = \langle A, +, -, \alpha, (r)_{r \in \mathbf{R}(\mathcal{A})} \rangle$ by defining, for $a, b \in A$,

$$a + b = p^{\mathbf{A}}(a, \alpha, b)$$
$$-a = p^{\mathbf{A}}(\alpha, a, \alpha)$$
$$0 = \alpha$$
$$r \cdot a = r^{\mathbf{A}}(a, \alpha).$$

Furthermore, for each term $p(x_1, \ldots, x_n)$ in the language of \mathscr{A} one can find a term $p_{\mathcal{M}}(x_1, \ldots, x_n) = \sum_{1 \le i \le n} r_i \cdot x_i$ in the language of $R(\mathscr{A})$ -modules such that for $\mathbf{A} \in \mathscr{A}$ and $\alpha \in \mathbf{A}$,

$$p^{\mathbf{A}}(x_1,\ldots,x_n)=p_{\mathcal{M}}^{\mathbf{M}(\mathbf{A},\alpha)}(x_1,\ldots,x_n)+p^{\mathbf{A}}(\alpha,\ldots,\alpha).$$

i.e., for $a_1, \ldots, a_n \in A$ we have

$$p^{\mathbf{A}}(a_1,\ldots,a_n)=\sum_{1\leq i\leq n}r_i\cdot a_i+p^{\mathbf{A}}(\alpha,\ldots,\alpha),$$

where the module operations on the right are those of $M(\mathbf{A}, \alpha)$. This also can be written as

$$p^{\mathbf{A}}(a_1,\ldots,a_n) = \sum_{1\leq i\leq n} r_i^{\mathbf{A}}(a_i,\alpha) + p^{\mathbf{A}}(\alpha,\ldots,\alpha).$$

Given a monoid **M** and a ring **R** we define R[M] to be the set of all functions $\vec{r} \in R^M$ such that $r_m = 0$ for all but finitely many $m \in M(r_m$ being the value of \vec{r} at m). Then we define the *monoid-ring* **R**[**M**] with universe R[M] by

$$\vec{0}(m) = 0$$

 $\vec{1}(1) = 1, \vec{1}(m) = 0$ if $m \neq 1$
 $(\vec{r} + \vec{s})(m) = r_m + s_m$

$$(\vec{r}\cdot\vec{s})(m)=\sum_{m_1\cdot m_2=m}r_{m_1}\cdot s_{m_2}$$

If \mathscr{A} is an Abelian variety then we can use the same Mal'cev term for \mathscr{A} and $\mathscr{A}(\mathbf{M})$. Then we can easily see that we have a natural embedding $\phi: \mathbf{R}(\mathscr{A}) \to \mathbf{R}(\mathscr{A}(\mathbf{M}))$ defined by $\phi(r^{\mathbf{F}}(\bar{u}, \bar{v})) = r(\bar{u}, \bar{v})$, where r(u, v) is a binary idempotent term in the language of \mathbf{A} . The image of $\mathbf{R}(\mathscr{A})$ under ϕ will be called \mathbf{R}^* ; thus \mathbf{R}^* is the subring of $\mathbf{R}(\mathscr{A}(\mathbf{M}))$ whose universe consists of all $r(\bar{u}, \bar{v})$ where r(u, v) is a binary idempotent term in the language of \mathbf{A} .

We would like to know what new binary idempotent terms we have in the language of $\mathscr{A}(\mathbf{M})$. The most obvious candidates are of the form m(u) - m(v), properly expressed in the language of $\mathscr{A}(\mathbf{M})$. As it turns out these, along with the original binary idempotent terms of \mathscr{A} , generate $\mathbf{R}(\mathscr{A}(\mathbf{M}))$ in a simple fashion. We give this fundamental decomposition in the next lemma.

LEMMA 3.2. Given an idempotent term r(u, v) in the language of $\mathcal{A}(\mathbf{M})$ there is a unique $\vec{r} \in \mathbb{R}^*[M]$ such that

$$r(\bar{u}, \bar{v}) = \sum r_m(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v}))$$

where the module operations on the right side are those of $\mathbf{M}(\mathbf{F}_{\mathscr{A}(\mathbf{M})}(\bar{u},\bar{v}),\bar{v})$. (The sum is \bar{v} if each $r_m(\bar{u},\bar{v})=\bar{v}$; otherwise it is defined to be the finite sum over all m for which $r_m(\bar{u},\bar{v})\neq\bar{v}$.) The mapping $r(\bar{u},\bar{v})\mapsto\bar{r}$ described above is a bijection from $R(\mathscr{A})$ to $R^*[M]$.

Proof. First we find a reduced term (by Lemma 1.4) $r^*(m_1(u), m_1(v), \ldots, m_n(u), m_n(v))$ which is equivalent to r(u, v). We assume the m_i 's are distinct. As $\mathscr{A}(\mathbf{M}) \models r(v, v) \approx v$ we have

$$\mathscr{A}(\mathbf{M}) \models r^*(m_1(v), m_1(v), \dots, m_n(v), m_n(v)) \approx v.$$
⁽²⁾

Since $r^*(x_1, y_1, \ldots, x_n, y_n)$ is in the language of \mathscr{A} we can find idempotent terms $r_i(u, v)$, $s_i(u, v)$ in the language of \mathscr{A} , $1 \le i \le n$, such that for $\mathbf{A} \in \mathscr{A}$ and $\alpha \in \mathbf{A}$ (with module operations in $\mathbf{M}(\mathbf{A}, \alpha)$)

$$r^{*\mathbf{A}}(x_1, y_1, \dots, x_n, y_n) = \sum_{1 \le i \le n} r_i^{\mathbf{A}}(x_i, \alpha) + \sum_{1 \le i \le n} s_i^{\mathbf{A}}(y_i, \alpha) + r^{*\mathbf{A}}(\alpha, \dots, \alpha).$$
(3)

This equation will also hold for $\mathbf{A} \in \mathscr{A}(\mathbf{M})$ since the addition operation of $\mathbf{M}(\mathbf{A}, \alpha)$ is the same as that of $\mathbf{M}(\mathbf{A} \upharpoonright_{\mathscr{A}}, \alpha)$.

From (2) we have

$$\mathscr{A}(\mathbf{M}) \models r^*(v, v, \ldots, v) \approx v;$$

thus from (3)

$$\mathbf{r}^{\mathbf{A}}(u, v) = \sum_{1 \le i \le n} \mathbf{r}^{\mathbf{A}}_i(m^{\mathbf{A}}_i(u), \alpha) + \sum_{1 \le i \le n} s^{\mathbf{A}}_i(m^{\mathbf{A}}_i(v), \alpha).$$
(4)

Now let $\mathbf{A} = \mathbf{F}^{\mathbf{M}}$. Then for $a, \alpha \in A$ we have from (4)

$$a = r^{\mathbf{A}}(a, a) = \sum_{1 \leq i \leq n} r_i^{\mathbf{A}}(m_i^{\mathbf{A}}(a), \alpha) + \sum_{1 \leq i \leq n} s_i^{\mathbf{A}}(m_i^{\mathbf{A}}(a), \alpha).$$

With module operations in $\mathbf{M}(\mathbf{F}, \alpha(1))$ we have, by evaluating at 1,

$$a(1) = \sum_{1 \leq i \leq n} r_i^{\mathbf{F}}(a(m_i), \alpha(1)) + \sum_{1 \leq i \leq n} s_i^{\mathbf{F}}(a(m_i), \alpha(1)).$$

For a fixed j, if $m_j \neq 1$ let us choose a such that $a(m) = \bar{u}$ for $m = m_j$, $a(m) = \bar{v}$

otherwise; and let $\alpha(m) = \overline{v}$ for all m. Then

$$\bar{v} = r_j^{\mathbf{F}}(\bar{u}, \bar{v}) + s_j^{\mathbf{F}}(\bar{u}, \bar{v}).$$

But then

$$\bar{v}=r_j(\bar{u},\,\bar{v})+s_j(\bar{u},\,\bar{v}),$$

i.e.,

$$s_i(\bar{u}, \bar{v}) = -r_i(\bar{u}, \bar{v})$$
 if $m_i \neq 1$.

Thus, noting that $1(\bar{u}) - 1(\bar{v}) = \bar{u}$, we have from (4)

$$r(\bar{u}, \bar{v}) = \sum_{1 \le i \le n} r_i(\bar{u}, \bar{v}) \cdot m_i(\bar{u}) + \sum_{1 \le i \le n} s_i(\bar{u}, \bar{v}) \cdot m_i(\bar{v})$$
$$= \sum_{1 \le i \le n} r_i(\bar{u}, \bar{v}) \cdot (m_i(\bar{u}) - m_i(\bar{v})).$$

To show that this representation is unique suppose $\vec{r}, \vec{s} \in \mathbb{R}^*[M]$ and

$$\sum r_m(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v})) = \sum s_m(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v})).$$

Then

$$\sum r_m(m(\bar{u})-m(\bar{v}),\bar{v})=\sum s_m(m(\bar{u})-m(\bar{v}),\bar{v}).$$

Now given any $\mathbf{A} \in \mathscr{A}(\mathbf{M})$ and $a, b \in \mathbf{A}$ the homomorphism $\lambda : \mathbf{F}_{\mathscr{A}(\mathbf{M})}(\bar{u}, \bar{v}) \to \mathbf{A}$ defined by $\lambda(\bar{u}) = a, \lambda(\bar{v}) = b$, is also a homomorphism from $\mathbf{M}(\mathbf{F}_{\mathscr{A}(\mathbf{M})}(\bar{u}, \bar{v}), \bar{v}) \to \mathbf{M}(\mathbf{A}, b)$; hence for $\mathbf{A} \in \mathscr{A}(\mathbf{M})$ and $a, b \in \mathbf{A}$

$$\mathbf{A} \models \sum r_m^{\mathbf{A}}(m^{\mathbf{A}}(a) - m^{\mathbf{A}}(b), b) = \sum s_m^{\mathbf{A}}(m^{\mathbf{A}}(a) - m^{\mathbf{A}}(b), b).$$

Now let $\mathbf{A} = \mathbf{F}^{\mathbf{M}}$, and evaluate both sides at 1 to obtain

$$\sum r_m^{\mathbf{F}}(a(m) - b(m), b(1)) = \sum s_m^{\mathbf{F}}(a(m) - b(m), b(1)).$$

Letting b(m) = v for all m we have

$$\sum r_m^{\mathbf{F}}(a(m), \, \bar{v}) = \sum s_m^{\mathbf{F}}(a(m), \, \bar{v}).$$

166

For $n \in M$ let $a(n) = \overline{u}$, $a(m) = \overline{v}$ otherwise. This yields

$$r_n^{\mathbf{F}}(\bar{u},\,\bar{v}) = s_n^{\mathbf{F}}(\bar{u},\,\bar{v}),$$

so

 $r_n(\bar{u}, \bar{v}) = s_n(\bar{u}, \bar{v}).$

Thus for $r(\bar{u}, \bar{v}) \in F_{A(M)}(\bar{u}, \bar{v})$, the associated $\bar{r} \in R^*[M]$ is unique. \Box

THEOREM 3.3. $\mathbf{R}(\mathscr{A}(\mathbf{M})) \cong (\mathbf{R}(\mathscr{A}))[\mathbf{M}].$

Proof. Let $\phi: R(\mathscr{A}(\mathbf{M})) \to R^*[M]$ be the bijection described in Lemma 3.2. Then for r(u, v), s(u, v) idempotent terms in the language of $\mathscr{A}(\mathbf{M})$ we have $\phi(r(\bar{u}, \bar{v})) = \bar{r}, \phi(s(\bar{u}, \bar{v})) = \bar{s}$ where

$$r(\bar{u}, \bar{v}) = \sum r_m(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v}))$$
$$s(\bar{u}, \bar{v}) = \sum s_m(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v})).$$

As $r_m(\bar{u}, \bar{v})$, $s_m(\bar{u}, \bar{v})$ and $m(\bar{u}) - m(\bar{v}) \in R(\mathscr{A}(\mathbf{M}))$, for $m \in M$, we can think of the above operations of addition and multiplication as being *ring* operations of $\mathbf{R}(\mathscr{A}(\mathbf{M}))$. But then

$$r(\bar{u},\bar{v})+s(\bar{u},\bar{v})=\sum \left(r_m(\bar{u},\bar{v})+s_m(\bar{u},\bar{v})\right)\cdot \left(m(\bar{u})-m(\bar{v})\right),$$

so $\phi(r(\bar{u}, \bar{v}) + s(\bar{u}, \bar{v})) = \phi(r(\bar{u}, \bar{v})) + \phi(s(\bar{u}, \bar{v}))$. Also $\phi(\bar{v}) = \bar{0}$ and $\phi(\bar{u}) = \bar{1}$, and then $\phi(-r(\bar{u}, \bar{v})) = -\phi(r(\bar{u}, \bar{v}))$.

Finally to show that ϕ preserves multiplication we make use of the fact that the Mal'cev term p(x, y, z) permutes with other terms in the language of $\mathscr{A}(\mathbf{M})$, and that for $\mathbf{A} \in \mathscr{A}(\mathbf{M})$ and $a \in A$,

 $p^{\mathbf{A}}(x, y, z) = x - y + z,$

where the calculations on the right are done in $\mathbf{M}(\mathbf{A}, a)$. First note that for $m, n \in M$,

$$(m(\bar{u}) - m(\bar{v})) \cdot (n(\bar{u}) - n(\bar{v})) = m(n(\bar{u}) - n(\bar{v})) - m(\bar{v})$$

= $m(p(n(\bar{u}), n(\bar{v}), \bar{v})) - m(\bar{v})$
= $p((m \cdot n)(\bar{u}), (m \cdot n)(\bar{v}), m(\bar{v})) - m(\bar{v})$
= $(m \cdot n)(\bar{u}) - (m \cdot n)(\bar{v}) + m(\bar{v}) - m(\bar{v})$
= $(m \cdot n)(\bar{u}) - (m \cdot n)(\bar{v}).$

Next, if t(u, v) is an idempotent term in the language of \mathcal{A} , and if $m \in M$, then

$$(m(\bar{u}) - m(\bar{v})) \cdot t(\bar{u}, \bar{v}) = m(t(\bar{u}, \bar{v})) - m(\bar{v})$$

$$= t(m(\bar{u}), m(\bar{v})) - m(\bar{v})$$

$$= t(m(\bar{u}), m(\bar{v})) - t(m(\bar{v}), m(\bar{v})) + t(\bar{v}, \bar{v})$$

$$= p(t(m(\bar{u}), m(\bar{v})), t(m(\bar{v}), m(\bar{v})), t(\bar{v}, \bar{v}))$$

$$= t(p(m(\bar{u}), m(\bar{v}), \bar{v}), p(m(\bar{v}), m(\bar{v}), \bar{v}))$$

$$= t(m(\bar{u}) - m(\bar{v}), \bar{v})$$

$$= t(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v})).$$

Thus elements of \mathbf{R}^* commute with elements of $\mathbf{R}(\mathscr{A}(\mathbf{M}))$ of the form $m(\bar{u}) - m(\bar{v})$.

Consequently we have

$$\begin{split} \phi(r(\bar{u}, \bar{v}) \cdot s(\bar{u}, \bar{v})) \\ &= \phi\Big(\Big(\sum_{m} r_{m}(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v}))\Big) + \Big(\sum_{m} s_{m}(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v}))\Big) \\ &= \phi\Big(\sum_{m, n} r_{m}(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v})) \cdot s_{n}(\bar{u}, \bar{v}) \cdot (n(\bar{u}) - n(\bar{v}))\Big) \\ &= \phi\Big(\sum_{m, n} r_{m}(\bar{u}, \bar{v}) \cdot s_{n}(\bar{u}, \bar{v}) \cdot (m(\bar{u}) - m(\bar{v})) \cdot (n(\bar{u}) - n(\bar{v}))\Big) \\ &\phi\Big(\sum_{m, n} r_{m}(\bar{u}, \bar{v}) \cdot s_{n}(\bar{u}, \bar{v}) \cdot ((mn)(\bar{u}) - (mn)(\bar{v}))\Big)\Big) \\ &= \phi(r(\bar{u}, \bar{v})) \cdot \phi(s(\bar{u}, \bar{v})). \end{split}$$

This completes the proof. \Box

REFERENCES

- [1] W. BAUR, Decidability and undecidability of theories of abelian groups with predicates for subgroups, Compos. Math. 31 (1975), 23–30.
- [2] —, Undecidability of the theory of abelian groups with a subgroup, Proc. Amer. Math. Soc. 44 (1976), 125-128.
- [3] S. BURRIS, The first-order theory of Boolean algebras with a distinguished group of automorphisms, (to appear in Algebra Universalis).
- [4] S. BURRIS and R. MCKENZIE, Decidability and Boolean Representations, Memoirs Amer. Math. Soc. No. 246, July 1981.

- [5] S. BURRIS and H. P. SANKAPPANAVAR, A Course in Universal Algebra, Graduate Texts in Math. No. 78, Springer-Verlag 1981.
- [6] S. BURRIS and H. WERNER, Sheaf constructions and their elementary properties, Trans. Amer. Math. Soc. 248 (1979), 269-309.
- [7] W. TAYLOR, Equational Logic, Houston J. of Math., Survey 1979.

University of Waterloo Waterloo, Ontario Canada