
Algebra Universalis, 24 (1987) !-20 0002-5240/87/020001-20501.50 + 0.20/0 
O 1987 Birkh~iuser Verlag, Basel 

Decidable  unary varieties 

~V[ATI'HEW A. VALERIOTE 

O. Introduction 

Recently R. McKenzie and the author [5] have shown that in order for a locally 
finite variety to be decidable it must decompose into the varietal product of three 
special subvarieties; an affine subvariety, a discriminator subvariety, and a 
strongly abelian subvariety. A variety is locally finite if every finitely generated 
member is finite. An important element of the proof is the characterization of the 
decidable locally finite strongly abelian varieties. 

The class of strongly abelian algebras was first defined by McKenzie in [4]. An 
algebra A is said to be strongly abelian if for all terms t ( X l  . . . .  , x n ) ,  

A ~  V a i  . . . . .  a ~ ,  b l  . . . . .  b , ,  c 2  . . . . .  c ~ [ t ( a l ,  . . . , a , ) ~ - t ( b l ,  . . o , b , )  

--->t(a,, c2 , . . . ,  c,)~-t(b,, c2 , . . . ,  c,,)]. 

The simplest kind of strongly abelian algebra is the multi-unary algebra, and so 
any characterization of the decidable strongly abelian varieties must thus include 
a characterization of the decidable multi-unary varieties. 

The problem of characterizing the locally finite, decidable multi-unary 
varieties is addressed and solved in this paper. Two notable results which precede 
this paper are those of Ehrenfeucht [3] where it is announced that the variety of 
all mono-unary algebras is decidable, and Trakhtenbrot [9] where the variety of 
all bi-unary algebras is shown to be undecidable. Our Theorem 4.1 includes the 
theorem of Trakhtenbrot and relies on Ehrenfeucht's result. The reader may wish 
to consult [6] and [7] as alternate sources for the work of Ehrenfeucht and 
Trakhtenbrot just mentioned. A generalization of our main theorem to heteroge- 
neous algebras is used by the author in his Ph.D. thesis to characterize the 
decidable locally finite strongly abelian varieties. 
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For those readers not familiar with interpretations and decidability proofs 
consult Burris and McKenzie [1] Part 1, Chapter 3, and Burris, Sankappanavar 
[2]. For the most part our notation follows that of the two works just cited. A few 
new concepts will be introduced. 

DEFINITION 0.1. 
i) We say that a class 7/" is decidable if the full first order theory of V', Th (~) ,  

is recursive, i.e., there is an algorithm for deciding whether a given first 
order formula in the language of ~V is true for all members of ~V. 

ii) We say ~ is hereditarily undecidable if ~V is undecidable (not decidable) 
for all classes ~ ~ ~ 

We now focus our attention on multi-unary varieties of finite type, and define 
a monoid associated with such a variety. 

DEFINITION 0.2. Let ~V be a multi-unary variety of finite type, and let 
F = Fv-(x) be the ~ algebra on one generator. Let M(~V)= (F , - ,  1) be the 
monoid with universe F and multiplication defined by: re(x) �9 n(x) --m(n(x)) .  Let 

l = x .  

Notice that M(7/) is finite iff W is locally finite, and M(~V) is finitely generated, 
since V is of finite type. For convenience we will not distinguish between 
elements of M(~V), and the corresponding terms in the language. Often elements 
of M(~V) will be regarded as actual terms, especially in the first order formulas 
constructed for our interpretations. 

DEFINITION 0.3. Let A be a set, andf:A---~A a function on A. 

i) For a,b c A ,  we say af-~b if b = f " ( a )  for some n - 0 .  
f 

ii) We say a ~ A is f-initial if for all c ~ A,  c-*a implies c = a. 

f . 
The relation --~ is a transitive, reflexive relation, but not necessarily a partial 

ordering. Evidently an element a e A  is f-initial iff f - l ( a ) c _ { a } .  For the 
remainder of this paper, let ~V be some fixed locally finite unary variety of finite 
type. 

1. Monoids  

Associated with any monoid is the ordering of rightsided divisability. This 
ordering, along with a related one, will be examined in this section, paying special 



Vol 24, 1987 Decidable unary varieties 3 

attention to the case in which the monoid is finite. For the remainder  of this 

section, let M be some fixed, finite monoid.  Let G c__ M be the set of invertible 

elements of M. It is clear that G is nonempty,  and G is a submonoid of M. 

D E F I N I T I O N  1.1. 

(1) For x, y c M ,  we write x<-y  if for some w e M ,  x = w y ,  and we write 

x <- y if for some g ~ G, x <--yg. 

(2) F o r x ,  y c M ,  we w r i t e x - = y  i f x - < y  a n d y < - x ,  andx} -4y  i f x < - y  and 

y<_x. 

(3) M is said to be linear (quasi-linear) if for every x, y e M, x -< y or y -< x 

(x _<y or y <-x). 

P R O P O S I T I O N  1.2. 

(1) Both <- and <_ define transitive, reflexive relations on M. 

(2) Both = and }-~ define equivalence relations on M. Modulo the respective 
equivalence relations, <- and <_ define partial orderings. 

(3) M is linear (quasi-linear) i f f<-modulo =-(<_modulo }~ ) is a linear 
ordering. 

(4) For x, y ~ M, if  x <-- y, then x <_ y. 

(5) I f  rn ~ M is left or right invertible, then m is invertible. 

Proof. The proof  of this proposit ion is straightforward, and so will not be 
given. [] 

D E F I N I T I O N  1.3. For x c M, let Gx = {g e G :x <-xg}. 

P R O P O S I T I O N  1.4. 

(1) For each x ~ M, Gx is a subgroup o f  G, and if  g e Gx, then x =-xg =-xg -1. 

(2) M is a linear monoid iff G, = G for all x e M and M is quasi-linear. 

Proof. 

(1) This follows f rom the fact that G is finite, and any subset of a finite group 
which is closed under  �9 is a subgroup. 

(2) ~ If  M is linear, then M is quasi-linear, since _< is a refinement of -<. If  

x ~ M, and g e G, we have either x <- xg or xg <- x. If  the former  holds 
then g c Gx, and if the latter holds, we have that xg = wx for some w ~ M, 
and so x <-xg -1. Thus g-1 ~ Gx, and as Gx is a subgroup of G, we must 
also have that g ~ Gx. Therefore  Gx = G. 

Suppose M is quasi-linear and G~ = G for all x e M. Let  x, y ~ M and 
assume without loss of generality that x _< y. Then for some g ~ G, x <-yg, 
and as yg <-y, we conclude that x - y .  Thus M is linear. [] 
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We will see in the following two sections that in order for 7/" to be decidable, it 

is necessary and sufficient for the finite monoid M(Tf) to be linear. 

2. Decidability and linearity 

Throughout  this section, assume that M = M(V)  is linear. Let Card ( M ) =  
/( .  

D E F I N I T I O N  2.1. Let  A e ~ / ,  and a e A .  The orbit of a in A, 0~, is de- 

fined by 

G~ = { m A ( a ) m  6 M } .  

Oa will denote the subalgebra of A with universe Ga. 

P R O P O S I T I O N  2.2. Let A e ~ and a e A. 

(1) I f  B c_ 0~ is a nonempty subuniverse o f  A, then B = Ub for some b ~ B. 

(2) The set of  subuniverses of  A contained in Oa is linearly ordered by 

inclusion. 

e r o o f  . 

(1) If  B ___ Q is a nonempty  subuniverse, then for some left ideal N of M, 

B = (nA(a ) :n  6 N) .  Choose m c N maximal with respect to - .  Then 

B=G, , (a ) ,  for if c ~ B  then c = n ( a )  for some n - m  in N, and so 
n = wm for some w ~ M. Then 

c = n(a) = (wrn)(a) = w(m(a))  ~ Um(,). 

(2) 

Clearly Gm(a) C_ B, and so B = Gm(a). 
NOW let B, C be nonempty  subuniverses of A contained in G,, say 

B = Go and C = Cc for some b ~ B and c ~ C. Since b, c ~ Q,  there are 
m, h e M  with b = m ( a )  and c = n ( a ) .  If re -<n ,  then it follows that 
bEGc,  and thus B__C.  n --- m leads to C___B. [] 

D E F I N I T I O N  2.3. Let  A 6 ~/', and a 6 A. 
(1) A function f :  Ga-+ (?a is a coding function for O,  if 

i) for all b ~ 0~, f(Gb) ~ Gb, and 

f 
ii) the relation --~ on ~a, defined in Section 0, is a linear ordering. 
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(2) A function f : A - - ~ A  is a coding function for A if for all a e A ,  f ( Q )  c_ 
O~, and f restricted to G,, is a coding function for O~. 

To establish the decidability of ~ we will interpret ~V into the variety of all 
mono-unary algebras, and so in some sense, each algebra of ~V will be encoded by 
a single unary function on some set. The coding functions just defined will be 
used to construct our interpretation. 

We present a few elementary facts about coding functions, without proof, in 
the next proposition. 

PROPOSITION 2.4. Let A ~ ~ be one-generated. 
(1) There is a coding function for A. 
(2) If  b ~ A, and g:~b ~ Gb is a coding function .for Oh, then g can be 

extended to a coding function for A. Conversely, if f : A ~ A is a coding 
function for A,  then f restricted to ~b is a coding function for Oh. 

(3) I f  f is a coding function for A and a' ~ A is the unique f-initial element of 
A, then ~ ,  = A. 

(4) I f  f is a coding function for A,  and b, c ~ A with bf-~c, then c ~ Gb. 

L E M M A  2.5. For every A c ~ there is a coding function for A. 

Proof. This proof involves the use of Zorn's  Lemma, since the algebra A may 
be infinite. Let 

Yf = {(B; g)  :B is a subalgebra of A, and g is a coding function for B}. 

For {B, ;g , ) ,  {Bz;g2) 6Y(, we say 

( B , ; g ~ ) c { B z ; g 2 )  if B~cB2 and g2[B,=g,. 

This defines a partial ordering on K such that any ascending chain has an upper 
bound in 5'(, namely the union of the chain. Thus by Zorn's Lemma, there is 
( B ; f )  in Y{ maximal with respect to c .  B must be equal to A, for if a e A \ B ,  
we can extend f to a coding function on the subalgebra B' with universe B U 0a as 
follows. 

If B N Ga = Q ,  then for h:Q--~ Q any coding function for O,,  if we set 
f '  = f U h ,  we see that f '  is a coding function for B' ,  and so ( B ; f )  c ( B ' ; f ' )  in 
~{, contrary to our choice of ( B ; f ) .  

If B VI 6, r then B Cl Q = ~c for some c e B, by Proposition 2.1. Sincef[e, 
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is a coding function for O~, we can extend it to a coding function h : ~ ~ 0~ for 

O~,. Setting f '  = f  U h, we again conclude that f '  is a coding function for B' ,  and 

( B ; f )  ~ ( B ' ; f ' )  in Y{. 
Therefore  B = A, and f :A--~ A is a coding function for A. V1 

L E M M A  2.6. Let A s  7/ be one-generated, and Iet h:A--~A be a coding 
function for A,  with h-initial element a. For all m ~ M, there is a first order 
formula Ohm(X; y, Z) in. the language of one unary operation such that for all b, 
c e A ,  

A ~ m ( b ) = c  iff ( A , h ) ~ ( a ; b , c ) .  

Furthermore, if B ~ ~V is one-generated, g : B-+ B is a coding function .fOr B, with 
g-initial element b, and the structures (A; h } and (B; g ) are isomorphic, then for 
any u, v ~ B, 

B ~ m ( u ) = v  iff ( B , g ) ~ O ~ ( b ; u , v ) .  

Proof. To prove this we first define some auxilliary formulas. Let 

do(x,y)  be x ~ y  

and for i -> 0, let 

di+l(X , y) be ~di(x, y)/, ,  d i ( f (x) ,  y). 

Thus for u, y e A ,  ( A , h } ~ d i ( u , v )  for some i i f f u & v .  Also, for each u c A ,  

there is a unique number,  call it a(u) such that 

(A, h } V do(u)(a, u). 

We can now define O~(x;y,  z) to be 

uEA 

This is indeed a first order  formula in the language of one unary operation, since 
A is finite, and { a ( u ) ' u  e A} is a finite collection of natural numbers. 
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This formula does the job since for u,v cA ,  

(A ,h}gdo( , ) (a ,v )  iff u = v ,  

and so, 

( A , h } ) @ h ( a ; u , v )  iff m(u)=v .  

If the structure (B ;g}  is isomorphic to ( A ; h )  via the map q0, and b is the 
g-initial element,  then q)(b) = a, and for any m e M and u, v e B, we have: 

B,~m(u)=v  iff A~rn(cp(u))=cp(v) 

iff (A, h} ~@hn(a; Cp(u), cp(V)) 

iff (B,g)~@)~(b;u ,v) .  [] 

Since ~ is a locally finite variety, the ~V-free algebra on one generator is finite, 
and in fact is equal in size to M. So, up to isomorphism, there are only finitely 
many one-generated algebras in ~ It follows that up to isomorphism there are 
only finitely many structures of the type ( A ; f ) ,  where A e ~V is one-generated, 
and f : A - - ,  A is a coding function for A. Let  

be a collection of these structures so that if (B; g)  is also such a structure, then it 
is isomorphic to ( A i ; f )  for some unique i<-l. We say that the type of g as a 
coding function is i. 

L E M M A  2.7. ~ is a decidable variety. 

Proof. We'll construct formulas that give an interpretation of ~ into the 
decidable variety of mono-unary algebras. Let A e ~V and let f :A---~A be a 
coding function for A. To make the presentation neater, assume that A N 
(A x co) = ~ .  

Setting I to be the set off- ini t ia l  elements of A, we see that I is a generating 

set for A, since for all b ~ A, af-->b for some a e I, implying b e Oa. In fact I is a 
minimal generating set for A. 

For each a e 1, rio;,: 0~---> Q is a coding function for Oa, and so has some type 
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i - l, which we'll denote by tp(a). Let 

Fl(a) = {(a, y): 1 -<j -< tp(a)}, 

and let 

A' = A U U Fl(a). 

Extend f to a function f '  :A ~ ---> A' by 

f ' ( ( a , j ) ) = a  for a e L  and j - t p ( a ) .  

A ' =  (A', f '> is the mono-unary algebra into which we will interpret A 
Consider the following formulas; 

U n ( x )  : 3 y ( f ( y ) ~ x )  

Flag (x) : -TUn (x) 

Init (x):  3y(Flag ( y ) A f ( y ) ~ x )  

for 1<-i<-l, 

Tp,(x)'Init(x)ABy~ . . . . .  y~ ~ x  A( A YjCYk 
1 \ l ~ j < k ~ i  

f ~ ~7 A Vz (z)~-x--. V z~y j j j  
1 s j ~ i  

Orb(x'y,z)'Init(x), A (/_~V di(x, y)) A (V  dj(x, z)) 

and for m e M, 

Fro(y, Z)" :Ix(Orb, (x; y, z) A A [Tp/(x)--~ @t~(x; y, z)]). 
O~i<~l 

CLAIM. For b e A ' ,  
1) A ' ~ U n ( b )  i f f b e A ,  
2) A' ~ Flag (b) iff b = ( a, ]) for some a e t and j -< tp(a), 
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3) &' ~ Init (b) iff b ~ I, 
4) A'  ; Tp,(b) iff b ~ I and tp(b) = i. 
5) For a, b, c e A ' ,  A '  ~ Orb(a; b, c) iff a e l and b, c e Q.  
6) F o r m r  andb,  c e A ' ,  A ' e F m ( b , c ) i f f b ,  c e A ,  and A k m ( b ) = c .  

Proof. The first four claims follow immediately from our construction of A' .  
For (5), if A '  ~ Orb(a; b, c), then a e 1, and A'  ~ di(a, b)/x dj(a, c) for some i, 

j and so b, c c Oa. Conversely, if b, c ~ ~a for some a El,  then since flo~ is a 
coding function for Oa, and a is flo;,-initial, there are i, j -<K such that 
A'  k di(a, b) ^ dj(a, c). We should point out that since Card(M) = K then every 
one-generated member of U will have cardinality at most ~c. 

Finally, for m ~ M, and b, c e A' ,  

A' ~ rm(b, c) 

implies b, c ~ Oa for some a ~ I, with tp(a) = i, and 

A'  ~ lOre(a; b, c). 

But then 

( G ,  f%~) ~ ' ~ , ( a ;  b, c), 

since 6', is a subuniverse of A'  containing a, b and c, and ~ L  is preserved under 
subuniverses. This is equivalent to 

O ~ m ( b ) = c  

by Lemma 2.6, since a is f'l%-initial, and tp(a) = i. Thus 

A ~ re(b) = c. 

The converse of 6) is handled similarly. 
Thus we have interpreted A into A' ,  and it follows that we can interpret any 

algebra of ~ into some mono-unary algebra, using the formulas given above. 
Therefore since Y" is finitely axiomatizable, it is decidable. [] 

C O R O L L A R Y  2.8. ~/is interpretable into the theory of one unary operation. 
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3. Undecidability and nonlinearity 

For this section M = M(OF) is nonlinear. Proposition 1.4 demonstrated that 
linearity can fail for two distinct reasons, either; 

i) G, ~ G for some u e M or, 
ii) M is not quasi-linear, 
In either case, we will establish the (hereditary) undecidability of ~/" by 

interpreting the theory of two equivalence relations into OF. 

LEMMA 3.1. I f  M is not quasi-linear, but Gx -- G for all x ~ M, then OF is 
hereditarily undecidable. 

Proof. Since M is not quasi-linear, then for some u, v c M, we have u ~ v 
and v ~ u. It follows that u, v ~ G, and that the variety OF cannot satisfy any 
equation of the form 

ug(x) ~ wv(x)  

o r  

vg(x) ~ wu(x) 

for a n y w c M ,  a n d g ~ G .  
The basic idea of the proof is that since u and v are not _<-comparable, then 

as unary operations acting on oF-free algebras, they are somewhat unrelated, and 
so the two equivalence relations defined by the kernels of these operations are 
also unrelated. This allows us to semantically embed the undecidable theory of 
two equivalence relations into OF. 

Let the structure A = (A, El, E2) be a set with two equivalence relations El 
and E 2 on it, and let F = F,-(A) be the ~ algebra freely generated by the set 
A. Consider the sets 

$1 = {(u(a),  u(b)) :a ,  b cA,  and {a, b) e EI} 

S~= {<v(a), v(b)} :a, b cA ,  and <a, b)  cE2} 

and the congruence O on F generated by $1 and $2. 

CLAIM 1. For a c A  and g c G, we have 
i) g(a) /O = {g(a)}, 

ii) ug(a) /O= {ug(b):b c A  and (a, b) e E l } ,  
iii) vg (a ) /O= {vg(b):b c A  and (a, b) eE2}. 
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Proof. i) If Card(g(a)/O) > 1, then since $1 and $2 generate O, we can find 

some b c A ,  and w e M  such that g(a) = w(u(b)) or g(a) = w(v(b)). From this it 
follows that g = wu or g = wv in rvl, and so either u ~ G or v ~ G, a contradiction. 

ii) Since G , = G ,  then for g c G ,  there is some w e M  such that ug=wu.  
From this it follows that 

B = {ug(b):b c A  and (a, b) c E , }  c_ug(a)/O 

since for (a, b) e E l ,  

(ug(a), ug(b)) = (w(u(a)), w(u(b))),  and (u(a), u(b)) eS1. 

Thus to establish equality, it will suffice to show that B is a block of the 
congruence O. To do this it will be enough to show that if (/~, v ) e S 1  US2, 

w ~ M, and w(/~) e B, then so is w(v). 
First of all, if (/~, v) e $2, say (/~, v) = (v(b), v(c)), and w ~ M, then it is 

impossible for wv(b) to be equal to ug(d) for any d c A ,  for this would imply that 

~ ug(x) ~ wv(x)  

forcing 

ug = wv in M 

and so 

a contradiction. 
Now suppose (U, v) eS , ,  say (#, v) = (u(b), u(c)), and w ~ M  with 

wu(b) = ug(d) for some d e a/E1. If b = d, then 

~ wu(x)  ~- ug(x),  

implying 

wu(c) = ug(c) e B 

since ( a, c) e El. 
On the other  hand, if b 4: d, then 

~" ~ wu(x ) ~ ug(y ) 
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implying 

wu(x) u(y), 

since g is invertible. But then 

u(y), 

implying 

u = uv in 1VI 

and so 

u _'5 v, a contradiction. 

Therefore B = ug(a ) /O .  

iii) The proof is similar to the one given for ii). 
Let A* = F / O  6 ~,  and consider the following formulas. Let 

Un (x) be V Y ~ m l ~ \ c , m ( y )  ~ x , 

Eq (x, y) be V g(x) ~y,  
g~G 

E1 (x, y) be Un (x) A Un (y)  A 3 x ' y ' ( E q  (x, x ' )  A Eq (y, y ' )  A u(x ' )  ~- u ( y ' ) )  

and 

E2 (x, y) be Un (x)/~ ldn (y)  A 3x ' y  ' (Eq (x, X') A Eq (y, y ' )  A V(X') ~ v ( y ' ) ) .  

We propose that these formulas provide a way to interpret A into A*. The 
following claim shows this. 

CLAIM 2. 
i) For ~ e A*, A* ~ Un (#) iff  # = g(a )/ O for  some a e A and g e G. 

ii) E q ( x , y )  defines an equivalence relation on A* such that i f  u. v cA*,  

AI,GEBRA UNIV. 
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then 

A* ~ Un (~) ^ Un (v) ^ Eq (~, v) 

Cf 

# = g ( a ) / O  and v = h ( a ) / O  

for some a e A,  and g, h e G. 
iii) For i = 1, 2, and I~, v e A*, 

A* ~ E~ (~, v) 

if/ 

# = g ( a ) / O  and v = h ( b ) / O  

for some h, g e G, and a, b e A with (a, b > e Ei. 

Proof. i) If/~ =g(a) /O ,  and m ( w ( b ) / O )  = #  for some m e M \ G ,  then 

(row(b), g(a) ) �9 0 

implying 

row(b) = g(a) in F 

and so 

m w =  g in M 

contradicting 

m ~ G .  

Thus 

A * ~ U n ( # ) ,  if ~ = g ( a ) / O .  

13 
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Conversely, if u = w(a)/O for some w ~M\G, and a c A ,  then clearly 

A* I~ Un (#). 
ii) Since G is a group, Eq (x, y) defines an equivalence relation on A*, and if 

=g(a)/O and v = h(b)/O, then 

iff 

iff 

A* ~ Eq (/~, v) 

g(a)/O=kh(b)/O for some k � 9  G 

a=b in A 

since g(a)/O = {g(a)}. 
iii) Let  i = 1 ,  and #=g(a)/O, v=h(b)/Ofor  some g, h~G, and a, b~A 

with (a, b)  ~ El.  Se t t ing /~ '=  a/O, and v ' =  b/O, we see that 

A* ~Eq (~, ~')/,  Wq (v, v') A . (~ ' )  = u(v'), 

since (u(a), u(b)) ~ 0. Thus A* ~E1 (/~, v). 
Conversely, if 

A* ~ E1 (/~, v), 

then 

~z=g(a)/O and v=h(b)/O 

for some g, h ~ G, a, b ~A,  and 

ug'(a)/O = uh'(b)/O 

for some g' ,  h '  ~ G. 
But then it follows from the previous claim that 

ug'=uh' inM,  and ( a , b ) 6 E l .  

The case i = 2 is identical. 



Vol 24, 1987 Decidable unary varieties 15 

Thus the structures 

A = (A, El, E2) and (Un A*, E1A*, E~*}/Eq A* 

are isomorphic via the map which sends a in A to the Eq class in A* that contains 
a/O. Since the structure A was arbitrary, we have provided a scheme for 
interpreting the theory of two equivalence relations into ~ Since this theory is 
finitely axiomatizable and undecidable, it follows that ~ is hereditarily 
tmdecidable. [] 

We now present the final lemma needed to prove our main result. 

LEMMA 3.2. If  for some u �9 M, Gu v s G, then ~ is hereditarily undecidable. 

Proof. The proof is similar, but more subtle than the proof of the previous 
temma. As in that proof, we will interpret the theory of two equivalence relations 
into ~. 

The hypothesis implies that M is non-linear, and that G \Gu is nonempty. A 
useful observation is that 

(,) W~u(x)=u(y), 

for otherwise, we would have u = u m  for all m �9 M, and in particular, u <- ug for 
all g �9 G \ G,, a contradiction. 

Let A = (A, E~, E2) be a nonempty set with two equivalence relations E~, 
and E2. Let A'  be a set disjoint from, but in bijective correspondence with A via 
the map a ~--~a', and let F = Fv(A U A'). Consider the sets 

Si = {(ug(a),  ug(b)) :a ,  b � 9  g �9 G. and (a, b) �9 El} 
$2 = { <ug(a), ug(b))  :a, b � 9  g 6 G \ G .  and (a, b) �9 
& = {(g(a') ,  h (a ' ) ) :a  � 9  and g, h �9 G} 
& =  { {ug(a'), ug(a)) :a e A  and g e G\G, ,}  

and the congruence O on F generated by S~ U $2 U & U &. 

CLAIM 1. For a � 9  and g �9 G, 

i) g(a)/O = { g ( a ) } ,  
ii) g ( a ' ) / O =  {h(a ' ) :h  �9 G}. 

iii) If g �9 G,,  then ug(a) /O = {ug(b):b � 9  and (a, b) �9 El}. 
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iv) I f  g ~ G \ G,, then 

ug(a) /O= {uh(b):b � 9  h �9 G \ G ,  and (a, b) �9 Ez} 

U{uk(b ' ) :b  � 9  k e G  and (a, b) ~E2}. 

Proof. This claim is similar to one from the previous lemma. A complete 
proof of iii) will be given in order to illustrate the techniques needed to prove this 

claim. 
It is clear that if g �9 G, and a �9 A, then 

B = {ug(b):b � 9  and (a, b) � 9  c_ug(a)/O. 

In order to establish equality it suffices to show that B is a block of @. To do this 
it will be enough to show that if ( /~ ,v ) � 9  w � 9  and 
w(~) �9 B, then so is w(v). A case by case study is required. 

Let ( # , v ) = ( u h ( b ) , u h ( c ) ) � 9  with h � 9  and ( b , c ) � 9  If w ( g ) =  
a,g(d) �9 B for w e M, then 

wuh(b) = ug(d) in F. 

Now, b ~ d would force u(x) ~ u~y) to hold in ~V, since F is ~ 
are generators. This is contrary to (*) ,  and so b must equal d. 

Then ~V ~ wuh(x) ~ ug(x), and thus 

and b and d 

w ( v ) = w u h ( c ) = u g ( c ) � 9  since b = d  implies ( a , c ) � 9  

Let (~, v) = (uh(c), uh(d))  �9 S2US4US4, with h �9 G \ G ,  and c, d � 9  U A'. 
If w(/~) = ug(d) �9 B for w �9 M, then 

~# ~ wuh(x ) ~- ug(x ), 

and so 

wuh = ug i nM.  

Then u <- uhg -1 implying hg -1 c G,. But then h �9 G~, since g �9 G,, contrary to 
h � 9  

Finally, let (/~, v) = (h(b') ,  k (b ' ) )  e &  with b e A  and h, k c G. If w(#) = 
ug(d) �9 B, then 

~ wh(x) ~-- ug(y), 
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since b' 4: d are generators of F. This implies, since g is invertible, that 

7/~ u(x) -~ u(y), contrary to ( * ). 

Thus we have established that B is a block of O, and so have shown that 
ug(a)/O = B. 

Let A'  = F / O  in Y', and consider the following formulas. Let 

Gen (x )be  Vy(m/~M\Gm(Y ) CX) 

Eq (x, y) be V g(x) ~ y  
gEG 

Un(x)  be Gen (x)/~ 3y(Eq (x, y) AX C y )  

G.(x)  be Un (x) A Vy([Gen (y) A TUn (y)]---> u(x) r u(y))  

El(x, y) be Un (x) A Un (y) A 3x 'y ' (Eq  (x, x ')  A Eq (y, y') A 

G~(x') A G . ( y ' )  A U(X') -= u(y')) 

and 

E2(x, y) be Un (x)/x Un (y) A 3x'y'(Eq (x, x') A Eq (y, y') A 

TG~(x') A 7 G . ( y ' )  A U(X') ~ u(y')) 

CLAIM 2. Let #, v e A*. 
i) A* ~Gen (/~) iff ~ =g(a)/O or g(a')/O for some a c A  and g e G. 

ii) Eq (x, y) defines an equivalence relation on A*. 
iii) A* ~ Un (#) iff ~t = g(a)/O for some a ~ A and g ~ G. 
iv) A* ~ Un (U) A Un (v) A Eq (~, v) iff/~ =g(a)/O and v = h(a)/O for some 

a ~ A a n d g ,  h 6 G .  
v) A* ~ G, (# )  iff # = h(a)/O for some a 6 A and h c G,. 

vi) For i = 1, 2, A* ~Ei(#, v) iff p = g ( a ) / O ,  v =h(b) /O for some g, h ~ G 
and a, b c A  with (a, b) 6Ei. 

Proof. 
i) This is similar to clause i) of Claim 2 in Lemma 3.1. 

ii) That Eq (x, y) defines an equivalence relation follows from the fact that G 
is a group. 

iii) Let A* PUn (#). Then # =g(a)/O or g(a')/O for some a c A  and g ~ G. 
If #=g(a ' ) /O,  then for all )~eA* with A*~Eq( /~ , ; . )  we have )~= 
hg(a')/O for some h 6 G. But then /~ = ,~ in A*, since (g(a'), hg(a')} c 
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O. Thus A* PUn (/~) forces # =g(a)/O. The converse is easier, and 
follows from Claim 1. 

iv) This follows from ii) and iii). 
v) Let A * ~ G , ( # ) .  Then # = g ( a ) / O  for some a e A  and g e G .  if g ~ G , ,  

then setting 3. = a' /O we have A* ~Gen (~.)/x ~Un (;.)/\  u(g) = u(~), 
since {ug(a), u(a')) e 0 when g ~ G \ G ,  and a e A. But this is contrary to 
A* ~G,(~) ,  and therefore g e G,. The converse is similar, and uses the 
facts about O proved in Claim 1. 

vi) If A*~EI(# ,  v) then #=g(a) /O,  v = h ( b ) / O  for some h, g e G  and a, 
b e A, and for some g', h' e G,, ug'(a)/O = uh'(b)/O in A*. But then 
{ug'(a), uh'(b)) ~ O, and so by Claim 1, we conclude that {a, b} e E l .  
The converse is easier, and the claim for E2(x, y) is handled similarly. 

Thus the structures 

A = (A, El,  E2) and {Un A*, El,A* EA*\/E2 ~ qA* 

are isomorphic via the map which sends a in A to the Eq class in A* that contains 

a/O. 
As in Lemma 3.1, we can conclude that ~V is hereditarily undecidable. 

C O R O L L A R Y  3.3. If M is nonlinear, then T" is hereditarily undecidab/e. 

Proof. This follows from the characterization of linearity given by Proposition 

1.4. [] 

4. Conclusion 

The main result of the paper can now be given. Let 7 /be  a multi-unary, locally 
finite variety of finite type. ~ will denote the class of finite algebras in ~V. 

T H E O R E M  4.1. The following are equivalent: 

1) ~ is undecidable 
2) ~ is hereditarily undecidab/e 
3) ~ Fin is hereditarily undecidable 
4) M(~V) is nonlinear. 

Proof. The only part left to prove is 4) implies 3). We stated above that the 
theory of two equivalence relations is undecidable, when in fact the class of finite 
models of this theory is undecidable. Our constructions in Lemmas 3.! and 3.2 
preserve finiteness, and so they actually prove that ~VFin is hereditarily 
undecidable. 
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COROLLARY 4.2. 
1) If  ~V is decidable, then ~ & interpretable into the theory of one unary 

function. 
2) If  7/" is undecidable, then the theory of two unary functions is interpretable 

into 7/. 

Proof. This follows since the theory of two functions is interpretable into the 
theory of two equivalence relations and interpretability is a transitive 
relation. [] 

COROLLARY 4.3. Given a fixed finite type of unary algebras, there is an 
algorithm to determine whether a finite algebra of that type (appropriately' coded) 
generates a decidable variety. 

After learning of the above results, Professor Lampe of the University of 
Hawaii informed the author of Professor Sichler's work on multi-unary varieties. 
Combining Theorem 4.1 with the main result of [8], we obtain the following 
surprising result. 

DEFINITION 4.4. A variety 7J/ is group universal if for all groups G, there is 
some A ~ 74# with G ~ A n t  ( A ) .  

THEOREM 4.5. The following are equivalent: 
I) 7/is undecidable 
2) 7# is group universal 
3) M(7/') is nonlinear. 

Although Professor Sichler proved the equivalence of 2) and 3) without the 
assumption that T" is locally finite, this assumption is necessary for Theorems 4.1 
and 4.5. A counterexample can be constructed using the fact that there is a 
finitely presented group G with an undecidable word problem. The multi-unary 
variety 5~[G] of G-sets has an undecidable equational theory (using a suitable 
finite language), and so is undecidable, but M(5~[G]) ~ G is linear. 

The complete connection between undecidability and group universality is not 
yet known. Professor McKenzie has provided the following example which 
demonstrates that a locally finite undecidable variety of finite type need not be 
group universal. Let G be a finite 2 step nilpotent group that satisfies x3= l. Let 
~tt/" be the variety generated by G. Then 

~W~x 3-~- 1 
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and 

" [y ,  z ] = t y ,  z ]  ' x .  

Since H is nonabelian then it is hereditarily undecidable. One can show that if 
H e  H,  and Aul (I-l) is simple, then Aut (I-l) is abelian, and so H cannot be 
group universal. 
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