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1. Introduction

This paper will summarize many of the ideas from logic and set theory that are
needed in order to follow Paul Cohen's proof that the Continuum Hypothesis is not
implied by the axioms of Zermelo-Fraenkel set theory with Choice. We will then
trace the majority of his proof, in which we will see the technique of forcing and
how it is used to build a model in which the Continuum Hypothesis fails.

2. History

Georg Cantor began development of set theory in the 1870s while investigating
trigonometric series and the structure of the real numbers. Cantor used the exis-
tence of one-to-one correspondences between the elements of sets to compare their
sizes, or cardinalities. His �rst major results regarding the comparison of cardinali-
ties of sets came in 1874 when he published a paper containing a proof that the set
of algebraic numbers could be put in one-to-one correspondence with the natural
numbers and another proof that there was no such correspondence between the real
numbers and the naturals. The latter of these proofs established for the �rst time
that there are in�nite sets of di�erent sizes.

Over the next two decades, Cantor expanded his theory, and by the 1890s had de-
veloped the trans�nite cardinal and ordinal numbers, which serve as representatives
for the di�erent sizes and order types of sets, respectively. Among his publications
were proofs that the cardinality of the reals is the same as the cardinality of the
power set of the naturals, P(N), and that for any set X, its power set P(X) has a
larger cardinality. Cantor proved that by taking successive power sets, one could
always �nd higher cardinality sets. However, it was unclear whether or not the
cardinality of P(X) is the next cardinal, κ+, whenever the cardinality of X is some
in�nite cardinal κ. That is, it was unclear whether the power set operation always
gives the next in�nite cardinal, or if there might be some cardinal between |X| and
|P(X)|. He proposed that the cardinality of the reals |R|, and equivalently |P(N)|,
was indeed the next smallest cardinal after the size of N, but he was unable to prove
this. This claim is known as the Continuum Hypothesis.

The trans�nite cardinals begin at the cardinality of the naturals, which is de-
noted by the cardinal number ℵ0. Sets with cardinality ℵ0 are called countable.
Assuming the Axiom of Choice, we have that the next smallest cardinal after ℵ0

is the cardinality of the set of all ordinals with cardinality less than or equal to
ℵ0, that is, the set of all at-most countable ordinals. This next smallest cardinal is
denoted ℵ1. We also know that the size of P(X) for any set X is the cardinality of

the set of functions from X to the set {0, 1}, which is 2|X|. Thus we can write the
Continuum Hypothesis (CH) quite succinctly as

ℵ1 = 2ℵ0

This can be read as stating that the next cardinality after ℵ0 is the size of the
power set of any set with cardinality ℵ0. It can also be read as saying that the
set of all ordinals with cardinality ≤ ℵ0 is the same size as the collection of all
subsets of a set with cardinality ℵ0. More tangibly, this claims that the size of the
set of reals is the next smallest cardinality after the size of the naturals. Cantor
made a general version of this claim, reasonably named the Generalized Continuum
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Hypothesis (GCH), which is written as

ℵα+1 = 2ℵα for all ordinals α

This says that the next cardinality after |X| is always the size of the power set,
|P(X)|. In the absence of the Axiom of Choice, we do not know what the smallest
cardinal after ℵα is, so the GCH would be stated as follows.

Given an in�nite cardinal κ, there exists no cardinal λ such that κ < λ < 2κ

In the years after Cantor's development of what would later became known
as naive set theory, work was done to axiomatize the intuitive idea of sets. In
1908, Ernst Zermelo put forth his axiomatic set theory, which eventually became
Zermelo-Fraenkel set theory with the Axiom of Choice. Zermelo-Fraenkel set theory
is commonly abbreviated as ZF when treated without the Axiom of Choice, and
abbreviated ZFC when the Axiom of Choice is included. We will abbreviate the
Axiom of Choice as AC when thought of as a statement on its own. The major
work regarding the Continuum Hypothesis following Cantor's investigations would
later all take place within ZF and ZFC.

Little progress was made regarding the truth of the Continuum Hypothesis until
1938 when Kurt Gödel established that if the set ZF of statements that serve as
the axioms of ZF set theory is consistent, then there is a model of ZF in which the
Generalized Continuum Hypothesis and the Axiom of Choice are both true. As a
result of Gödel's completeness theorem from logic, the existence of such a model
implies that neither GCH nor CH can be disproven in either ZF or ZFC set theory,
provided that ZF set theory is consistent. This however did not demonstrate that
either form of the Continuum Hypothesis is true or provable, just that they cannot
be disproven in these theories.

The question of the Continuum Hypothesis again went without much progress
until 1963 when Paul Cohen showed that if the set of statements ZF which make
up the axioms of ZF set theory is consistent, then there is a model of ZF in which
the Generalized Continuum Hypothesis fails but the Axiom of Choice holds. For
the same reason that Gödel's result shows that ¬GCH cannot be proven, Cohen's
result shows that CH cannot be proven in ZFC set theory either.

The end result of Gödel and Cohen's work is that regardless of whether we are
working in ZF or ZFC set theory, both the Continuum Hypothesis and Generalized
Continuum Hypothesis cannot be proven or disproven. Statements such as these
which cannot be proven true or false in some theory are called independent of the
theory.

3. Models, Consistency, and Independence

We will begin with several concepts from mathematical logic which will allow us
to better understand exactly what it means for the Continuum Hypothesis to be
independent and what the proofs by Gödel and Cohen actually say.

De�nition 3.1. A theory is a set of sentences in a formal language.

For example, we may have a theory TO intended to represent strictly ordered
sets which has only the following two statements as elements.

• The Axiom of Asymmetry: there are no a, b such that a < b and b < a.
• The Axiom of Transitivity: for all a, b, c, if a < b and b < c, then a < c.
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De�nition 3.2. A model for a theory T is a structure that tells how to interpret
the non-logical symbols of the language that T is in, so that every statement in the
theory T is true.

Models provide a domain for variables to range over and provide de�nitions for the
relations like the < sign that appears in our above sentences. To continue with our
example theory TO, consider the structure M where we let our variables range over
the set {0, 1, 2} and we de�ne < as the usual less-than relation on integers. We can
see that M is a model for TO because

• The Axiom of Asymmetry holds: for any two numbers selected from {0, 1, 2},
at least one of them is not less than the other.

• The Axiom of Transitivity holds: for any a, b, c in {0, 1, 2}, if a is less than
b and b is less than c, then a is less than c.

However, if we consider the structure N where the variables range over the same
set {0, 1, 2} but the relation < is de�ned by a < b if and only if b = a + 1, then
we see that N is not a model for TO because the Axiom of Transitivity is false; we
have 0 < 1 and 1 < 2, yet 0 < 2 is false since 2 6= 0 + 1.

De�nition 3.3. We say that a statement S is provable in a theory T if there
exists a proof of S which may contain the statements in T as assumptions. That
is, S is provable in T if there exists a �nite sequence of statements (S1, S2, ..., Sn)
such that each statement Si is either a statement in T or follows from the previous
statements by some rule of logic.

The following theorem relates the provable statements of a theory to the models
of that theory.

Theorem 3.4. (The Soundness Theorem): If a statement S is provable in a
theory T , then S is true in every model of T .

Simply put, this says that if we can deduce a statement from a set of assump-
tions, then that statement is true in every structure satisfying those assumptions.
Equivalently, this theorem tells us that if we have a theory T and a model for it in
which some statement S is false, then there cannot be a proof of S in T .

Now, given a statement and a theory, we might wonder if we can prove that
statement in that theory. Consider again our theory TO of strictly ordered sets. If
we were to propose an additional axiom for our theory, we would be interested in
whether or not the axiom was already provable in TO or if it con�icted with the
axioms we already have in the theory. Suppose the following axiom is suggested.

• The Axiom of Trichotomy: for all a, b, we have a < b or a = b or b < a.

By the Soundness Theorem, if we could prove the Axiom of Trichotomy in TO, then
the axiom would have to be true in any model of TO. But, consider the structure
M1 where variables range over the set S = {{}, {0}, {1}, {0, 1}} and our relation
< is taken to be the proper subset relation ⊂ between sets, as indicated in the
diagram below.
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This structure is a model for TO, because no two of the elements in S are proper
subsets of each other, and the subset relation is transitive. However, the Axiom
of Trichotomy fails in M1, because we have {0} and {1} in S, but {0} 6⊂ {1},
{0} 6= {1}, and {1} 6⊂ {0}. Thus, because the Axiom of Trichotomy fails in a
model of TO, the Soundness Theorem tells us that the Axiom of Trichotomy is not
provable in TO.

Since the axiom is not provable in TO, and we have seen that it fails in at
least one model, we might wonder if we could disprove it. That is, we would be
interested in whether we could deduce the negation of the Axiom of Trichotomy
in our theory. However, if we consider again our earlier model M where variables
range over {0, 1, 2} and our relation is simply the usual < from the integers, we
see that the Axiom of Trichotomy holds. The Soundness Theorem now tells us
that the negation of the axiom is not provable in TO, because if the negation were
provable, then the axiom would have to be false in every model, but here we have
a counterexample.

De�nition 3.5. We say that a theory T is consistent if there is no statement S
such that both S and its negation, ¬S, are provable in T . That is, T is consistent
if no contradiction can be deduced from it. We extend this notion and say that a
statement S is consistent with a theory T if the theory T ∪ {S} is consistent.

Another theorem establishes the relationship between models and consistency.

Theorem 3.6. (The Completeness Theorem): A theory is consistent if and
only if it has a model.

Thus we can quickly see from our above examples that both the Axiom of Tri-
chotomy and its negation are consistent with the theory of strictly ordered sets,
because we have found a model for both TO∪{the Axiom of Totality} and TO∪{the
negation of the Axiom of Totality}. This leads us to our next de�nition.

De�nition 3.7. We call a statement S independent of a theory T when both S
is consistent with T and ¬S is consistent with T .

Equivalently, in light of the above theorem, we can say that a statement S is
independent of a theory T if and only if there exists a model MS for T ∪{S} and a
model M¬S for T ∪{¬S}. Remembering that having a model in which a statement
fails means that the statement cannot be proven from the theory, we can state this
in yet one more equivalent way: a statement is independent of a theory if and only
if it cannot be proven or disproven from the theory.

So, we can now see exactly what is meant by the independence of the Continuum
Hypothesis. It is a statement CH such that both ZFC∪{CH} and ZFC∪{¬CH}
are consistent, and as such, neither ¬CH nor CH is provable in ZFC.
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Gödel's consistency proof builds a model of ZF ∪ {GCH, AC}, that is, a model
where all of the axioms of ZF set theory hold, the Generalized Continuum Hypothe-
sis is true, and the Axiom of Choice is true. This establishes both the consistency of
ZF ∪{GCH} and ZFC ∪{GCH}, and thus that GCH and CH cannot be proven
false in either ZF or ZFC set theory. Cohen's model establishes the consistency of
ZF ∪ {¬CH, AC}, and thus that CH cannot be proven in ZF or ZFC set theory.
Since GCH implies CH, this additionally means that GCH cannot be proven in
these theories either.

Both Gödel and Cohen assume the existence of some model of ZF at the start
of their proofs, and as such, both of their proofs are contingent on the consistency
of ZF . However, note that if ZF is not consistent, then it contains a contradiction
and thus any statement is provable in it anyway.

4. Some Concepts from Set Theory

Before we can begin �nding the models we need, we require a few de�nitions and
properties relating to ordinal numbers.

De�nition. A relation < orders a set S if

(1) For all x, y in S, exactly one of the following holds.

x = y, x < y, y < x

(2) If x < y and y < z, then x < z.

De�nition. A relation < well-orders a set S if < orders S and for any nonempty
subset B ⊆ S, there exists an x ∈ B such that for any y ∈ B, we have either x = y
or x < y.

A relation thus well-orders a set if every non-empty subset has a least element
with respect to that relation. We say that a set S is well-ordered if S is a set
with a relation < such that < well-orders S.

A familiar example of a well-ordered set is the set of natural numbers N =
{0, 1, 2, ...} under its usual ordering. Given a well-ordered set S we can see that
any nonempty subset X ⊆ S is also well-ordered, since if Y is a nonempty subset
of X, then Y is a nonempty subset of S, and so Y has a least element since S is
well-ordered. Thus, any nonempty subset of the natural numbers will also serve as
an example.

De�nition. A set x is transitive if z ∈ y and y ∈ x implies that z ∈ x.

A simple example of a transitive set is the set x = {∅, {∅}}. The only elements
of this set are y0 = ∅ and y1 = {∅}. To see that x is a transitive set, we need to
check that every element of yo is in x and that every element of y1 is in x. We can
see that y0 has no elements, and we see that the only element z ∈ y1 is the set ∅,
which is an element of x.

De�nition. An ordinal is a set α which is transitive and well-ordered by the set
membership relation ∈. We denote that a set α is an ordinal by On(α).
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In set theory, we develop natural numbers by induction in the following way.

0 = ∅
1 = {∅}
2 = {∅, {∅}}
3 = {∅, {∅}, {∅, {∅}}}

and in general

n+ 1 = n ∪ {n}

Since each successive number contains all of the elements of the previous number,
we see that each n is transitive. This development also ensures that each natural
number is a set well-ordered by ∈. Thus, each natural number is an ordinal. This
construction causes ∈ to act identically like the usual less-than relation between
natural numbers, and so when the entire set N = {0, 1, 2, ...} is considered, we can
see that it is also an ordinal.

In a similar way to how the cardinal numbers generalize the natural numbers
and convey information about size, the ordinals generalize the natural numbers and
convey information about order. Sets have the same cardinality when there is a
one-to-one, onto function between them. Two sets with order relations, (X,<X)
and (Y,<Y ), have the same order type when there is a one-to-one, onto function f
between them such that x1 <X x2 if and only if f(x1) <Y f(x2). One example of the
distinction between these ideas can be seen by comparing the cardinalities and order
types of the natural and rational numbers. Both N and Q have the same cardinality,
because there is a one-to-one correspondence between these sets. However, they
have di�erent order types when considered under their usual orderings, because
any one-to-one, onto function f between N and Q which preserves order as required
would have to assert the existence of some n ∈ N such that 1 < n < 2, since 1 < 2
implies f(1) < f(2), but f(1) and f(2) are distinct rational numbers, and so there
is some rational between them that is the output for some n ∈ N. This rational
f(n) is such that f(1) < f(n) < f(2), and so we must have 1 < n < 2, which is
impossible. This example demonstrates that there are distinct ordinals with the
same cardinality.

The ordinals serve as representatives for the order types of sets, similarly to how
cardinals serve as representatives for the sizes of sets. An important thing for us to
know as we move forward is that we can perform trans�nite induction on ordinals.
This lets us extend the idea of strong induction on the integers to any well-ordered
set, including in�nite sets with cardinality larger than ℵ0. The models we consider
will involve inductively building up structures by starting at 0, and then worrying
about what happens at some ordinal α when every earlier ordinal β < α has been
taken care of.

5. Concepts from Gödel's Model

In order to carry out his consistency proof, Gödel builds a model featuring only
certain kinds of sets that arise in a particular way. The ideas and theorems involved
in Gödel's proof play a signi�cant role in Cohen's work.

The Axiom of Replacement in ZF set theory allows very liberal use of properties
to de�ne new sets. These properties can do things such as range over collections
of sets including even the set that is currently being de�ned. Gödel's idea was
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essentially to restrict the properties that are acceptable for this axiom so that they
range only over the sets that were already de�ned. By starting out with the empty
set, and iteratively building up new sets in this way, we end up with what are called
the constructible sets.

De�nition 5.1. Let A be a formula, and let X be a set. We denote by AX the
formula A with all of its variables which are bound by a quanti�er restricted so
that they range only over the set X. We say that AX is the formula A restricted

to X.

What the above de�nition says is that, starting with the formula A that contains
some quanti�ers such as �for all x� and �there exists y� in it, AX is the formula one
gets when A is changed so that each quanti�er is instead read as �for all x ∈ X�
and �there exists y ∈ X�.

De�nition 5.2. Let X be a set. We de�ne X ′ as the union of X and the set of
all sets Y for which there is some formula A(z, t1, ..., tk) in ZF such that for some
t∗1, ..., t

∗
k in X, we have Y = {z ∈ X | AX(z, t∗1, ..., t

∗
k).

This de�nition gives us that X ′ contains all of the elements of X, along with all
of the sets Y that can be built by using a formula which has variables ranging only
over X. This is the set of everything that can be built from X using a formula
restricted to X.

De�nition 5.3. Given an ordinal α, de�neMα byM0 = ∅ andMα = (
⋃
β<αMβ)′.

Note that in the above de�nition, the set Mα is of the form X ′. We start with
M0 = ∅, then iteratively make these Mα which consist of all of the elements of
the previous sets along with all of the new sets that can be created using formulas
restricted to the previous sets. This de�nition ensures that each Mα is transitive,
since it continues to include every element of Mα into all future sets, each of which
is only adding subsets of the previous sets.

De�nition 5.4. A set x is constructible if there is an ordinal α such that x ∈Mα.
We say that x is constructed at α or at stage α when this is the case.

So, the constructible sets are the sets gained in this method of iteratively building
up new sets from the empty set using only formulas restricted to the sets which
were already constructed at a previous stage.

De�nition 5.5. Given an ordinal α, we de�ne Xα as
⋃
β<αMβ . We say that a set

x is constructed before stage α if we have x ∈ Xα.

Note that we could now also write Mα = (Xα)′ for each ordinal α. The Xα

are the sets of elements that exist by the time stage α of the construction is taking
place, butXα does not yet include the new elements that will be added at this stage.
The Xα collect up all the existing elements by the time we get to α, the Mα collect
up the elements, and additionally include the new sets that can be constructed.
We de�ne these terms separately so that we can more easily speak about when an
element is constructed. Note, however, that elements which are constructed before
α are also in a sense �reconstructed� at α, because we have Xα ⊆ Mα. These
phrases do not necessarily refer to the minimal α for which x begins to appear.

Notation 5.6. We denote by L the class of all constructible sets, and we denote by
V the class of all sets.
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Gödel's proof that ZF ∪ {GCH} is consistent if ZF is consistent comes as the
result of three theorems. The �rst theorem is the veri�cation that L satis�es the
axioms of ZF set theory and thus is a model of ZF . The next theorem veri�es
that L additionally satis�es the statement V = L; that is, when the relativized
constructible sets are built inside of the actual class of constructible sets, the result
is the same as when the constructible sets are built in ZF set theory as a whole.
The �nal theorem establishes that (V = L) → (AC & GCH) holds within ZF
set theory. Taken together, these theorems establish that the Axiom of Choice
and the Generalized Continuum Hypothesis hold within L, and thus they are both
consistent with the axioms of ZF set theory.

Before we move on to developing Cohen's model, there are a couple more de�-
nitions we will need which relate to constructibility.

De�nition 5.7. The transitive closure of a setX is the set
⋃
nXn whereX0 = X

and Xn+1 =
⋃
Xn.

That is, the transitive closure of X is the union over all successive unions starting
at X, then

⋃
X, then

⋃
(
⋃
X), and so on. This ensures that the transitive closure

of a set is actually transitive by adding the necessary elements.

De�nition 5.8. Given a set y, we de�ne Mα(y) inductively by setting M0(y) as
the transitive closure of y, andMα(y) = (

⋃
β<αMβ(y))′. Likewise, we de�ne Xα(y)

as
⋃
β<αMβ(y). We say that an element x ∈Mα(y) is constructed from y at α,

and similarly we say that an element x ∈ Xα(y) is constructed from y before α.

The above de�nition just generalizes the earlier de�nitions about constructibility
by allowing the process to begin at a set other than the empty set. We will however
continue to simply say that x is constructible if it is constructed from the empty
set at some ordinal. Note that a set which is constructible from some set is not
necessarily constructible from the empty set, and so we may have that a set x is
constructible from a set a, and yet x is not in L, the class of constructible sets.
This distinction is important to keep in mind when Cohen's model is considered,
because we will see that there are nonconstructible sets which are nevertheless
constructed from some other set. This allows Cohen's model to fail V = L while
still maintaining a convenient structure.

6. The Minimal Model

Within Cohen's proof that there is a model for ZF ∪ {¬CH}, we will assume
the following additional axiom.

Axiom 6.1. The Standard Model Axiom (SM): There is a set M with a relation
R = {(x, y) | x ∈ y & x ∈ M & y ∈ M} such that M is a model for ZF under the
relation R.

This axiom gives us not just the existence of a model for ZF, but a model where
the relation ∈ in the axioms of ZF is interpreted simply as the usual set membership
relation restricted to the elements of some set M . A model which interprets ∈ in
such a way is called standard. The above axiom allows us to infer the existence
of a particular model which will be useful.

Theorem 6.2. ZF ∪ {SM} implies that there exists a unique transitive countable
modelM such that if N is any standard model, then there is an isomorphism from
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M onto a subset of N which preserves the ∈ relation. Furthermore, M satis�es
V = L.

Notation. Throughout the rest of this paper, M will refer to the unique minimal
model of ZF whose existence is given by the above theorem. We have that M is
standard, transitive, and countable, and it satis�es V = L. Additionally, α0 will
denote sup{α | α ∈M}, the supremum of the ordinals inM.

There is one more theorem concerning this model which will be useful later on.

Theorem 6.3. For each element x inM, there is a formula A(y) in ZF such that
x is the unique element ofM that satis�es AM(x), the formula A restricted to the
elements of the modelM.

This theorem asserts that there is a way to uniquely identify each of the x inM
using formulas in ZF .

7. Motivation for Cohen's Model

Gödel's proof of the consistency of the Generalized Continuum Hypothesis in-
volved establishing that (V = L) → (AC & GCH) holds within ZF set theory.
This tells us that if we are to �nd a model where GCH fails, that model must fail
to satisfy V = L. So, we will need to build a model which contains sets that are
not constructible relative to that model.

Moreover, the following theorem tells us that we cannot hope to �nd such a
model by restricting the sets of ZF to those which satisfy some formula.

Theorem 7.1. Let A(x) be any formula in ZF set theory. It cannot be proven in
ZF that the axioms of ZF and the statement ¬(V = L) hold when restricted to the
class of all sets x which satisfy A(x).

Proof. Assume we have a formula A(x) for which it can be proven that the class
of all x for which A(x) is true satis�es ZF ∪ {¬(V = L)}. We will show that this
leads to a contradiction.

Recall thatM is the unique minimal model, and letM∗ = {x | x ∈M&AM(x)}.
Now, sinceM is a standard model of ZF , and using the assumption, we have that
M∗ is a standard model of ZF which also satis�es ¬(V = L).

We have that M∗ ⊆ M by de�nition, and by Theorem 6.2 there is an iso-
morphism from M onto a subset of M∗, so we must have that M and M∗ are
isomorphic. Thus, since V = L holds in M, it must also hold in M∗. Hence M∗
satis�es both V = L and ¬(V = L), which is impossible. �

The above two results make it clear that if we wish to �nd a model for ZF ∪
{¬CH}, we will need sets that appear non-constructible relative to the model, and
we cannot �nd this model by restricting some collection of sets or by looking inside
a model likeM; we will have to add new sets. Cohen's forcing technique gives us
a way to introduce the new sets we need.

8. Forcing

Plainly, forcing will allow us to introduce a new set by using a sequence of �nite
sets of membership statements. The idea is similar to trying to specify the set of
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even natural numbers E = {0, 2, 4, ...} by the following sequence.

P0 = {0 ∈ E}
P1 = {0 ∈ E, 2 ∈ E}
P2 = {0 ∈ E, 2 ∈ E, 4 ∈ E}

...

Pn = {2 ·m ∈ E | m ≤ n & m ∈ N}
Note that for no single n does Pn contain enough information to uniquely determine
the set, and it is this vagueness in the determination of the set that we want to
take advantage of. Forcing will allow us to add sets to the modelM for which any
question about membership will be eventually resolved, and yet a set determined
in this way provides a minimal enough amount of information so that relative to
the model, it will not appear constructible.

The following concept is necessary because as we are building our new model, we
will need a way to refer to its members before the model has been explicitly de�ned.
To facilitate this, we will essentially label formulas that will later be satis�ed by
the elements of the new model.

De�nition 8.1. A labeling is a mapping de�ned in ZF, which assigns to each
ordinal 0 < α < α0

• a set Sα called a label space,
• a function φα de�ned over Sα

We de�ne S =
⋃
α Sα, and we have a subset G ⊂ S whose elements are called the

generic sets. The sets Sα are mutually disjoint, and if c ∈ Sα, then φα(c) is a
formula A(x) which may contain elements from Sβ with β < α as constants. We
will eventually denote by c̄ the set of elements that that satisfy the formula given
by φα(c).

In our usage of this idea, each c ∈ S will act as a label for a unique formula
de�ned over the variables and constants that came before c. Since each Sα is
required to be disjoint from the others, we have that each c ∈ S is in a unique Sα.
The set G of generic sets is a collection of labels, some of which will refer to the
sets that we will use forcing to identify and introduce to our model.

Notation. We will write ∀
α
x or ∃

α
x to indicate that a variable x bound by a

quanti�er is restricted to the set Xα.

De�nition 8.2. A limited statement is a statement in ZF in which every quan-
ti�er is of the form ∀α or ∃α for some ordinal α < α0 and in which elements of S
may appear as constants.

De�nition 8.3. An unlimited statement is a statement in ZF in which elements
of S may appear as constants.

De�nition 8.4. Given a generic set G, a forcing condition P is a �nite set of
limited statements each of the form n ∈ a or ¬(n ∈ a) , where n ∈ N and a ∈ G,
and where for any such n and a, at most one of (n ∈ a) and ¬(n ∈ a) is in P.
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The last part of the above de�nition ensures that no forcing condition contains
con�icting information as to whether something is an element of one of the sets a.

De�nition 8.5. A condition set is a set U of forcing conditions de�ned in M
and a relation < on U , also de�ned inM, such that < is re�exive and transitive,
along with a map ψ inM such that for all forcing conditions P ∈ U , ψ(P ) is some
set of statements of the form c1 ∈ c2 with c2 in G, and if c2 ∈ Sα, then c1 ∈ Sβ
for some β < α. The relation < is required to satisfy the property that whenever
P < Q, we have ψ(P ) ⊆ ψ(Q).

Now we will de�ne a hierarchy on the limited statements which will be used for
induction in the de�nitions and proofs that follow.

De�nition 8.6. Given a limited statement A, we de�ne rank(A) = (α, i, r) where
• α is the least ordinal such that whenever ∀β or ∃β appear in A, we have
β ≤ α, and whenever c ∈ Sβ appears in A, we have β < α.

• i = 0 if α = β + 1 for some ordinal β and neither ∀α nor ∃α appear in A,
and no term of the form c ∈ x, c = x, or x = c appears in A with c ∈ Sβ .
Otherwise, i = 1.

• r is the length of the statement A; i.e., it is the number of symbols in A.

The way α is chosen in the above de�nition is directly tied to the de�nition of
Xα and ensures that if rank(A) = (α, i, r), then A only references variables and
constants from Xα.

Now, with rank(A) de�ned, we can de�ne the forcing of statements.

De�nition 8.7. Given a labeling with S =
⋃
α Sα, a generic set G ⊂ S, and a

condition set U , we de�ne P forces A, where P is a forcing condition in U and A
is a limited statement, by induction on rank(A) as follows.

(1) P forces ∃αx B(x) if for some c ∈ Sβ with β < α, P forces B(c).
(2) P forces ∀αx B(x) if for all forcing conditions Q ⊇ P and all c ∈ Sβ with

β < α, we have that Q does not force ¬B(c).
(3) P forces ¬B if for all Q ⊇ P we have that Q does not force B.
(4) P forces B&C if P forces B and P forces C.
(5) P forces B ∨ C if P forces B or P forces C.
(6) P forces A→ B if P forces ¬A or P forces B.
(7) P forces A↔ B if P forces A→ B and P forces B → A.
(8) P forces c1 = c2, where c1 ∈ Sα, c2 ∈ Sβ , and γ = max(α, β), if either

γ = 0 and c1 = c2 as elements in S0, or if γ > 0 and P forces ∀γx (x ∈
c1 ↔ x ∈ c2).

(9) P forces c1 ∈ c2, where c1 ∈ Sα, c2 ∈ Sβ with α < β, if
(a) ¬c2 ∈ G and P forces A(c1) where A(x) = φβ(c2), the unique formula

corresponding to c2 in the labeling.
(b) c2 ∈ G and for some c3 ∈ Sγ with γ < β, we have {c3 ∈ c2} ∈ ψ(P )

and P forces c1 = c3.
(10) P forces c1 ∈ c2 where c1 ∈ Sα and c2 ∈ Sβ with α ≥ β, if for some c3 ∈ Sγ

with γ < β, we have P forces ∀αx (x ∈ c1 ↔ x ∈ c3) & (c3 ∈ c2).

We will soon see an analogous list of de�nitions for unlimited statements, but
�rst we will consider two examples that explore the consequences of the de�nition
of forcing.
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Example 8.8. Suppose we have the following sequence that is intended to describe
a set a.

P0 = {1 ∈ a}
P1 = {1 ∈ a, 2 ∈ a}

...

Pn = {m ∈ a | 0 < m ≤ n}
The sequence of conditions �rst asserts 1 ∈ a and then at each step asserts that

the next natural number is also in a, along with all of the assertions from the
previous condition. We can see that for no n does Pn ever contain the statement
0 ∈ a, and so for every n we have that Pn does not force 0 ∈ a. Yet, we do
not have that any Pn forces ¬(0 ∈ a) either, because each Pn could be contained
in a forcing condition Qn which forces 0 ∈ a. In particular, we can simply let
Qn = Pn ∪ {0 ∈ a}. Interestingly, this means that every Pn in this sequence fails
to force (0 ∈ a) ∨ ¬(0 ∈ a).

On the other hand, every Pn in the sequence forces 1 ∈ a, and also forces
¬¬(1 ∈ a) because for any Q ⊇ Pn, we have (1 ∈ a) ∈ Q, and so there exists an
R ⊇ Q which forces (1 ∈ a) since R contains this statement; Q itself can serve as
this R. Thus Q does not force ¬(1 ∈ a) for any Q ⊇ Pn, and we have that Pn forces
¬¬(1 ∈ a).

We will later only consider certain sequences which eventually, for any statement
A, force either A or ¬A at some step in the sequence.

Example 8.9. Consider the statement �a is in�nite� written as ∀1x ∃1y (y >
x & y ∈ a). Cohen notes that while > is not an admissible symbol in our statements,
we can informally see how every forcing condition P would force that �a is in�nite�.
This is because for any natural number n, no P forces the statement �there is no
element of a greater than n�, ¬∃1y (y > n & y ∈ a), since P can always be contained
in a larger forcing condition Q which has a statement y ∈ a where y is larger than
n.

We now proceed with the de�nition of forcing for unlimited statements.

De�nition 8.10. P forces A, where P is a forcing condition and A is an unlimited
statement, is de�ned by induction on the length of A by the following.

(1) P forces ∃x B(x) if for some c ∈ S, P forces B(c).
(2) P forces ∀x B(x) if for all c ∈ S, if Q ⊇ P , then Q does not force ¬B(c).

The de�nitions for P forces ¬B, B&C, B∨C, B → C, B ↔ C, c1 ∈ c2, and c1 = c2
are exactly as in the case for limited statements.

9. Properties of Forcing Conditions

In this section we will prove a few results regarding when a condition forces
a statement, and we will prove the existence of a sequence which, given some
statement A, will force either A or ¬A after a �nite number of steps. It is this sort
of sequence with which we are primarily concerned.

Throughout this section, A denotes a statement which is either limited or un-
limited, and P,Q denote forcing conditions.
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Lemma 9.1. For any P and any A, we do not have both P forces A and P forces
¬A.

Proof. If P forces ¬A, then by De�nition 8.7.3, since P ⊇ P , we have that P does
not force A. �

Lemma 9.2. If P forces A and Q ⊇ P , then Q forces A.

Proof. We prove this for limited statements A by induction on rank(A).
If P forces ∃αx B(x), then P forces B(c) for some c ∈ Sβ with β < α. By

induction, Q forces B(c) and so also forces ∃αx B(x).
If P forces ∀αx B(x), then if R ⊇ Q, we have that R ⊇ P , so by the de�nition

of forcing, R does not force ¬B(c) for any c ∈ Sβ with β < α. So, Q also forces
∀αx B(x).

If P forces ¬B, then if R ⊇ Q, we have R ⊇ P and so by the de�nition of forcing
R does not force B. Thus, Q also forces ¬B.

The remaining cases of P forces A where A is of some other form reduce to P
forces B where B has a lower rank than A, and so they hold by induction. The
base cases, where the rank is lowest, are simple membership statements. The lemma
holds here since if P forces (c1 ∈ c2), then we have that (c1 ∈ c2) is a statement
in P , but P ⊆ Q, so (c1 ∈ c2) is a statement in Q and so Q forces (c1 ∈ c2). The
proof for unlimited statements is similar, but inducts on the length of A. �

Lemma 9.3. For all P and A, there is a Q ⊇ P such that either Q forces A or Q
forces ¬A.

Proof. If P does not force ¬A, then by De�nition 8.7.3, there is some Q ⊇ P such
that Q forces A. Thus, either P ⊇ P forces ¬A, or some Q ⊇ P forces A. �

De�nition 9.4. A complete sequence is a sequence {Pn} of forcing conditions
such that for every n, we have Pn ⊆ Pn+1, and for each A, there is an n such that
either Pn forces A or Pn forces ¬A.

Lemma 9.5. A complete sequence exists.

Proof. Since M is countable, we can enumerate all statements An de�ned in M.
We can construct a complete sequence inductively by �rst setting P0 as a forcing
condition that forces either A0 or ¬A0, and then selecting Pn+1 as any forcing
condition Q ⊇ Pn such that Q forces An+1 or Q forces ¬An+1.

Intuitively, we have created the sequence by picking each successive forcing con-
dition so that it decides one way or the other on the next membership statement.
Thus we have a sequence where each condition is a subset of the next condition,
and for any statement An, we know that either An or ¬An is forced by Pn. �

10. Cohen's Model N

Recall that the cardinality of the continuum is the cardinality of the set of subsets
of N. So, if we are to build a model where the continuum hypothesis fails, then we
need to ensure that in our model, there are more than ℵ1 subsets of N. We will
accomplish this by selecting an arbitrary cardinal ℵτ with τ ≥ 2 and introducing
ℵτ many subsets toM which are identi�ed by a sequence of forcing conditions.

First, �x some cardinal ℵτ in M with τ ≥ 2. We now select our labeling and
generic sets. Our goal with this labeling is to eventually be able to use a label
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W ∈ S such that W̄ is the set of ordered pairs consisting of elements δ < ℵτ paired
with the new subsets aδ that we will introduce to the model. Ordered pairs (δ, aδ)
in set theory are sets of the form {{δ}, {δ, aδ}}, so getting to the point where we
can refer to the ordered pairs will require a few steps of building up.

For each ordinal α < ℵτ , we set Sα = {cα} where cα will later be sent by φ to a
formula A which de�nes the set c̄α = α. We include each cα in our set G of generic
sets. For α = ℵτ , we include ℵτ many elements in Sα and denote these elements by
aδ with δ < ℵτ . Each aδ is included in G, and each is such that āδ will be a subset of
the natural numbers. Still with α = ℵτ , we set Sα+1 as the union of two sets, each
containing ℵτ many elements. The �rst set contains elements denoted by c{β} with
β < ℵτ , which will be eventually be such that ¯c{β} = {β}. The second contains
elements denoted c{δ,aδ} with δ < ℵτ , which will be such that ¯c{δ,aδ} = {δ, aδ}. All
of these elements are also included in G. The label space Sα+2 is where the labels
for the ordered pairs appear; it has ℵτ many elements c(δ,aδ) with δ < ℵτ , each such
that ¯c(δ,aδ) = (δ, aδ). These are again included in G. The next space, Sα+3 consists

of a single element denoted by W , which is such that W̄ = {(δ, aδ) | δ < ℵτ}, and
once more, we include this element W in G. For α > ℵτ + 3, we have that Sα
contains no elements of G and that Sα is in one-to-one correspondence with the set
of formulas that range over

⋃
(Sγ | γ < α).

We will use only use forcing conditions which contain statements of the form
n ∈ aδ or ¬n ∈ aδ where n is a natural number and δ < ℵτ . So, the forcing
conditions will be �nite sets of statements saying that a natural number is or is
not a member of one of our aδ, which are each a generic set in G. As a reminder,
there are ℵτ many of these elements aδ, and we are introducing them to the model
M as new subsets of the natural numbers. This is what will cause the Continuum
Hypothesis to fail: there will be at least ℵτ many subsets of the natural numbers
in our model, and so the cardinality of the continuum, which is the cardinality of
P(N), will be at least ℵτ , which was selected to be greater than ℵ1.

Our condition set will consist of the above forcing conditions, and our ordering
< will be de�ned by P < Q whenever P ⊆ Q. We de�ne our function ψ by setting
ψ(P ) equal to the union of the following sets

{cn ∈ aδ | (n ∈ aδ) ∈ P}
{cα ∈ cβ | α < β < ℵτ}
{cα ∈ c{α} | α < ℵτ}
{cδ ∈ c{δ,aδ} | δ < ℵτ}
{aδ ∈ c{δ,aδ} | δ < ℵτ}
{c{δ} ∈ c(δ,aδ) | δ < ℵτ}
{c{δ,aδ} ∈ c(δ,aδ) | δ < ℵτ}
{c(δ,aδ) ∈W | δ < ℵτ}

Let {Pn} be any complete sequence of forcing conditions. We will now de�ne all
of the c̄ corresponding to the elements of our label spaces. We proceed by induction
on the ordinal index α of the label spaces Sα as follows. For c ∈ S0, let c̄ = ∅. For
c ∈ Sα when all previous c ∈ Sβ with β < α have had their c̄ de�ned, there are two
cases.
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(1) If c is not also in G, then c̄ is the set of x̄ such that x̄ sati�es the formula
A = φα(c) and such that x ∈ Sβ for some β < α. That is, c̄ is the set of
already de�ned elements which satisfy the formula that corresponds to c.

(2) If c is in both Sα and G, then c̄ = {x̄ | ∃n ∈ N s.t. (x ∈ c) ∈ ψ(Pn)}.
Essentially, this means that if c is a generic set, then c̄ contains exactly the
elements that the forcing conditions in our complete sequence tell us belong
to c.

Note that since each aδ is one of the elements of Sα ∩G, they fall into the second
case above, and the de�nition of ψ ensures that each āδ will be exactly the subset
of the natural numbers which our forcing sequence says belong to āδ.

We can now �nally build our new model, which we call N . We will use the usual
set membership relation in our structure, since our intention is to extend the model
M, which is a standard model. Let G∗ = {āδ | δ < ℵτ} and de�ne the domain of
the new structure N to be ⋃

{Mα(G∗) | α < α0}
or equivalently⋃
{Xα0(G∗)}

Recall that α0 is the supremum of the ordinals in the unique minimal modelM.
The above set is thus the set of elements that can be constructed before stage α0

from our new sets, each of which is de�ned by our complete sequence of forcing
conditions.

Lemma 10.1. A statement A is true in the model N if and only if for some n, Pn
forces A.

Proof. We prove the lemma for limited statements A by induction on rank(A).
If A is of the form ∃αx B(x) and Pn forces A, then we have that Pn forces B(c)

where c ∈ Sβ with β < α. By induction, since β < α, we have B(c̄) is true in N
and so A is true in N . Conversely, if A is true in N , then we have that for some
c ∈ Sβ with β < α, B(c̄) is true. By induction, there is a Pn which forces B(c) and
thus also forces A.

If A is of the form ∀αx B(x) and Pn forces A, then for some c ∈ Sβ with β < α,
some Pm with m > n forces B(c), because for ∀αx B(x) to be forced by Pn, no Pm
can force ¬B(c), but our conditions are in a complete sequence. Induction gives
that B(c̄) is true in N and so A is also true in N . Conversely, if A is true in N ,
then no Pn can force ∃αx ¬B(x) since that would imply that for some c ∈ Sβ with
β < α, Pn forces ¬B(c). Then ¬B(c̄) would hold in N and A would be false in N .
So, since no Pn can force ∃αx ¬B(x), but our sequence is complete, we have that
some Pn forces ¬∃αx ¬B(x). By the de�nition of forcing, this gives that for every
Q ⊇ Pn, Q does not force ∃αx ¬B(x). This means that every Q ⊇ Pn does not
force ¬B(c) for any c ∈ Sβ with β < α, which again by the de�nition of forcing
means that Pn forces ∀αx B(x).

If A is of the form ¬B and Pn forces A, then if ¬B were false in N , B is true in
N and so by induction, some Pm forces B. However, by Lemma 9.2, we would have
that Pmax(n,m) forces B and forces ¬B, which Lemma 9.1 tells us is impossible.
Thus, ¬B must be true in N . Conversely, if ¬B is true in N , then supposing ¬B
is not forced by any Pn, we have that B is forced by some Pn since our sequence
is complete. But B is a lower rank statement than ¬B, so by induction this means
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that B is true in N , which is impossible. So, we must have that some Pn forces
¬B.

The other cases just reduce the rank of A and are covered by induction, and the
base cases are membership statements, for which the lemma holds because our c̄
and āδ have been de�ned so that the membership statements that are true about
them are exactly the statements contained in some ψ(Pn). The proof for unlimited
statements is similar but inducts on the length of A. �

We can now see that the sets we are introducing to the model will be distinct
within the model.

Theorem 10.2. Given aδ1 , αδ2 with δ1 6= δ2, we have that āδ1 and āδ2 will give
distinct sets in N .

Proof. Any forcing condition P is �nite and can be contained in a forcing condition
Q which has (m ∈ aδ1) and ¬(m ∈ aδ2) for some m ∈ N, and thus no P forces the
elements of the two sets to be the same. The de�nition of forcing tells us that this
means each of the Pn in our complete sequence actually forces ¬(aδ1 = aδ2), and
so by the above lemma, the sets are not equal in N . �

Theorem 10.3. N is a model of ZF .

Proof. We have to verify that each of the axioms of ZF set theory is true in N . We
do so by checking that the axioms hold when they are restricted to N . That is,
for each axiom A in ZF , we show that AN holds. Throughout the proof, we are
permitted to use the usual axioms of ZF set theory.

(1) The Axiom of the Null Set
We want to show that ∅ ∈ N , or in other words that ∅ is constructible

from G∗ at some stage before α0. We can easily obtain ∅ as the set of x
in M0(G∗) satisfying the property x 6= x. This property ranges only over
M0(G∗) and so ∅ appears in M1(G∗). Hence, ∅ is in N .

(2) The Axiom of Extensionality
We must show that if x, y are two sets in N which share the same

elements in N , then x = y. If x and y are in N , then x ∈ Mα1(G∗)
and y ∈ Mα2(G∗) for some α1, a2 < α0. Let α be the larger of α1, α2

and note that by de�nition Mα(G∗) = (
⋃
β<αMβ(G∗))′ and thus Mα(G∗)

contains both x and y. Since every Mβ(G∗) is transitive, all elements of x
and all elements of y are also inside Mα(G∗). Thus, if x and y share the
same elements inside N , then they truly share all of their elements, and so
by the usual Extensionality of ZF, we have x = y.

(3) The Axiom of Unordered Pairs
Given x, y in N , we have that x ∈Mα1(G∗) and y ∈Mα2(G∗) for some

α1, a2 < α0. Both x and y are thus in Mα(G∗) where α is the larger of
α1, α2. So, we can obtain the set {x, y} as the set

{z | z ∈Mα(G∗) & (z = x or z = y)}
This is a set de�ned by a property restricted to Mα(G∗), and so {x, y} will
be an element of Mα+1(G∗). Thus, {x, y} is in N .

(4) The Axiom of Union
Given x in N , we have that x ∈ Mα(G∗) with α < α0. Since Mα(G∗)

is transitive, we have that all elements y ∈ x are also in x ∈ Mα(G∗). We
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can obtain the union over x as the set

{z | z ∈Mα(G∗) & ∃y(y ∈Mα(G∗) & z ∈ y & y ∈ x}
which is de�ned by a property containing variables restricted to Mα(G∗)
and thus is an element of Mα+1(G∗).

(5) The Axiom of In�nity
We will show this by showing the stronger condition that every ordinal

α is in the set Mα+1(G∗), and hence the least in�nite ordinal ω is in N .
If we have a set x inside a transitive set X, then x has the same elements
when membership is restricted to X as it does when membership is unre-
stricted. The de�nition of an ordinal refers only to the elements of the set
in question, and so, x will be an ordinal when the de�nition is restricted
to X if and only if it is actually an ordinal. Written with the restricted
formula notation, this means that for any transitive set X and any element
x ∈ X, we have On(x) if and only if OnX(x).
By our argument for (1), we know that 0 = ∅ is in M1(G∗). Assume α is
the least ordinal for which α 6∈ Mα+1(G∗). We will �nd a contradiction.
Since α is assumed to be least, we have that β < α implies β ∈Mβ+1(G∗)
where β + 1 ≤ α. If we let X =

⋃
γ≤αMγ(G∗) then this means that for

β < α, we have β ∈ X. We now consider the set γ = {x ∈ X | OnX(x)}.
We can see that X is transitive, and so by the above paragraph, we have
that γ is a set of ordinals and is actually itself an ordinal itself. The or-
dinal γ is larger than any ordinal it contains, and it contains all β < α,
since each β < α is an ordinal in X. So we have that γ ≥ α and hence
either γ = α or γ contains α. Now we observe that the set X is Xα+1 and
thus X ′ is transitive and is a subset of Mα+1(G∗). Since γ is de�ned by a
property ranging over Xα+1, we have that γ is in Mα+1(G∗). So, if γ = α,
we are done, and if γ contains α, then we have that α is in Mα+1(G∗) by
transitivity.
We have established that α ∈Mα+1(G∗) for every ordinal α. We now sim-
ply note that the least in�nite ordinal ω is an element of Mω+1(G∗) and
hence is an element in N , so the Axiom of In�nity holds.

(6) The Axiom of Regularity
We are required to show that any x in N has a member y, also in N ,

which contains no elements from x. So, suppose we have some x ∈Mα(G∗).
Since we are able to use the usual Axiom of Regularity from ZF, we know
that x has an element y containing no elements from x, and we need only
show that this y is in N . But, we know that Mα(G∗) is transitive, and so
y ∈ x and x ∈Mα(G∗) implies that y ∈Mα(G∗). Thus, the y that we want
is in N .

(7) The Power Set Axiom
The proof for this axiom requires using some properties of M, but we

have intentionally made our new sets very vague from the perspective ofM,
so we have to try to infer enough information from the forcing conditions
to �nd the power set of our set.
Let x̄ be a set in N . We have that x̄ ∈ Sα with α < α0. We want to show
that the power set of x̄ is also in N . Note that all of the labels from our
label spaces and all of the forcing conditions are statements in ZF and so
they are statements inM since it is a model of ZF . Our �rst goal will be
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to �nd some bound for the label spaces that could contain elements that
refer to the elements of our power set. For each c ∈ S, de�ne the following
sets inM.

R(c) = {P | P forces c ⊆ x}
T (c) = {(P, c∗) | P forces (c∗ ∈ c) where c∗ ∈ Sβ with β < α}
U(c) = {(R(c), T (c))}

Each R(c) is a set of forcing conditions, so it is an element of the power set
of the set of all forcing conditions relative toM. Each T (c) is similarly an
element of the power set of the set of pairs of elements from the set of all
forcing conditions and the set

⋃
β<α Sα. These sets of forcing conditions

and labels are all elements of M, so we have that each U(c) will be an
element in M. So, we can de�ne the set U∗ = {U(c) | c ∈ S} in M. We
de�ne a function f such that for every u ∈ U∗, f(u) is the least ordinal β
such that there exists a c ∈ Sβ for which U(c) = u, or f(u) = 0 is there is
no such ordinal. We then let β0 = sup{f(u) | u ∈ U∗}. We have that β0 is
inM.
Now, if c̄ ⊆ x̄, then some Pn forces c ⊆ x. The function f will send U(c) to
the least β for which some c1 ∈ β is such that U(c1) = U(c). Such a β will
exist, and so by the way we have de�ned β0, we have a c1 ∈ β with β < β0

for which U(c) = U(c1). If c̄ 6= c̄1 were true, then either some element of
c̄ is not in c̄1 or some element of c̄1 is not in c̄. We will assume the �rst
without loss of generality, so there is some c2 ∈ Sβ with β < α such that
c̄2 ∈ c̄ and not c̄2 ∈ c̄1. Then, by Lemma 10.1, some Pn forces c2 ∈ c. But
U(c) = U(c1) implies T (c) = T (c1), so Pn must also force c2 ∈ c1. Again
by Lemma 10.1, this means that c̄2 ∈ c̄1,which contradicts our assumption.
Thus, we have that c̄ = c̄1. So, we now know that any subset of x̄ will be c̄
for some c ∈ Sβ with β < β0.
Any subset of x̄ will thus be an element of Xβ0(G∗) in N . So, we can obtain
the powerset of x̄ as the set {y | y ∈ Xβ0 & y ⊆ x̄} which is de�ned over
Xβ0 and thus will be an element in (Xβ0(G∗))′ = Mβ0(G∗), and as such is
an element in N .

(8) The Axiom of Replacement
We need to show that given some function f de�ned in N , the image of

f on any set is also a set in N . So, suppose we have a formula A(x, y) which
de�nes a function f in N that gives y as a function of x. Let c0 ∈ Sα be
�xed. In a way similar to the above proof, we will �nd a bound for which
label spaces Sβ the range of f will hit.
De�ne in M the function g which sends any pair of a forcing condition
and an element c ∈ S to the least β for which there is some c′ ∈ β such
that P forces f(c) = c′, or if no such β exists, then g(P, c) = 0. Let β0 be
sup{g(P, c) | P is a forcing condition & c ∈ Sβ , β < α}. So, in a similar
way to the above proof, we know that the range of f on c0 will be contained
in Mβ0(G∗). This tells us where the elements of the range are, but we still
need to know that we can obtain the range of f on c0 as a set in N .
What follows will allow us to conclude that the formula A can be restricted
to some set c̄ and still de�ne the range of f in N . The formula A will be
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of the form

Q1y1 · · ·Qmym B(x1, ..., xm, y1, ..., ym)

where the Qi are quanti�ers, and the formula B contains no quanti�ers.
For every r with 1 ≤ r ≤ m, there is a function fr(P, c1, ..., cn, c′1, ..., c

′
r−1),

de�ned on ci, c
′
j in

⋃
δ<α Sα, such that

(a) if Qr is ∃, then fr maps each tuple to the least γ such that P forces

Qr+1yr+1 · · ·Qmym B(c1, ..., cn, c′1, ..., c
′
r−1, yr+1, ..., ym)

for some cγ ∈ S, or to 0 if there is no such γ.
(b) if Qr is ∀, then fr maps each tuple to the least γ such that P forces

¬Qr+1yr+1 · · ·Qmym B(c1, ..., cn, c′1, ..., c
′
r−1, yr+1, ..., ym)

for some cγ ∈ S, or to 0 if there is no such γ.
Now, for each r, let gr be the function such that gr(c1, ..., cn, c′1, ..., c

′
n)

is the supremum of {fr(P, c1, ..., cn, c′1, ..., c′r−1) | P is a forcing condition}.
De�ne another function, h, such that h(γ) is the supremum of the range of
gr across all r with 1 ≤ r ≤ m and all ci, c

′
j in

⋃
δ<γ Sγ . The function h is

still de�nable inM.
Let β1 = β and βn+1 = h(βn), and take β′ = sup{Bn}. If we take c̄1 as
the set de�ned by the formula that says c̄1 is

⋃
γ<β′ Mγ(G∗), then c̄1 will

contain the range of f on c̄0. So, we can obtain the range of f on c̄0 as the
set {c̄ | ∃x̄ ∈ c̄0 Ac̄1(x, c̄)}.

�

The following lemma is useful because constructibility provides a natural well-
ordering on the elements that are constructed. We needed to design a model in
which V = L failed, but in order to have the Axiom of Choice in N , we need to
have that all sets can be well-ordered. The Axiom of Choice is desirable because it
makes some of the remaining theorems easier to prove, and because satisfying AC
will mean that our model demonstrates the consistency of ¬CH with ZFC, which
is a stronger condition than consistency with ZF .

Lemma 10.4. Every element in N is constructible from W̄ .

Proof. We want to verify that every x in N is a member of Mα(W̄ ) for some
ordinal α. In other words, we want to show the underlying set of N is a subset of⋃{

Mα(W̄ ) | α ∈M
}
.

Remember that we de�ned N as the set of elements constructible from the
collection of our new subsets āδ before stage α0, and recall that W̄ is the set of
ordered pairs of the form (δ̄, āδ) = {{δ̄}, {δ̄, āδ}}. It is clear that all of the āδ are in
the transitive closure of W̄ , and so the set of elements that are constructible from
W̄ contains the set of elements that are constructible from the set of āδ, which was
the set of elements in N . �

We can see also see now why the āδ are not constructible in N . Fix one of the
āδ and some ordinal α. Let cα ∈ S be the label such that c̄α = α. Let x be the
constructible set constructed at step α in some well-ordering of the construction
process (for example, ordered by Mβ , then by formulas). The construction process
will be the same in N as it is in ZF set theory, so within N , x is the α-th element
constructed. Any forcing condition P is �nite and so can be contained in a condition
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Q such that for some n ∈ N, either n ∈ x is true and ¬(n ∈ aδ) is in Q or ¬(n ∈ x)
is true and (n ∈ aδ) is in Q. That is, P can be contained in a Q that makes āδ
di�erent from x. If āδ were the α-th element constructed in N , then some Pn would
have to force this to be true. Any of the Q containing Pn which cause āδ to di�er
from x would then also have to force that statement, but if we consider a complete
sequence {Qn} starting with Q0 = Q, we see that in a model de�ned by it in the
same way that we have made our N , we would have that both x and āδ are the
α-th element constructed, of which there can only be one, and yet x 6= āδ.

Theorem 10.5. The Axiom of Choice is true in N . (So N is also a model of
ZFC.)

Informally, the above theorem holds since every element being constructible from
W̄ provides us with a well-ordering on the elements of N . The elements can be
ordered based on the stage at which they are constructed, an ordering on the
formulas used to de�ne them, and the well-ordering of W̄ itself. This in turn makes
every set well-ordered in our model, which is a condition equivalent to the Axiom
of Choice.

Since we know that we have a model of ZFC in which we have at least ℵτ many
distinct subsets of N, our only concern is whether by introducing new sets toM we
have made some bijective functions available which were not already present, and
so perhaps may have made it so that some ordinals that appeared to have di�erent
cardinalities in M due to the lack of a one-to-one correspondence now have the
same cardinality in N . This would be a problem because it could potentially result
in the cardinalities between ℵ1 and ℵτ collapsing together. We need to know that
ℵτ > ℵ1 still actually holds in N . We will see that, in fact, every pair of ordinals
with di�erent cardinalities inM still have di�erent cardinalities in N , but �rst we
need two more lemmas.

De�nition 10.6. Let P and Q be forcing conditions. We call P and Q incom-

patible if there is no forcing condition R such that both P < R and Q < R.

In our case, since we have chosen ⊆ as the relation for our condition set, we have
that P andQ are incompatible when they cannot both be a subset of another forcing
condition. This happens simply when P and Q contain contrasting membership
statements, for example if 1 ∈ a were in P and ¬(1 ∈ a) were in Q.

Lemma 10.7. If B is a set inM of mutually incompatible P , then B is countable
inM.

Proof. Assume B is uncountable. De�ne Bn to be

{P ∈ B | P contains fewer than n statements}
for each n ∈ N. SinceM satis�es V = L, it also satis�es the Axiom of Choice, and
so we know that the union of countably many countable sets is a countable set in
M. We have that B =

⋃
n∈N Bn, and so, since B is uncountable, but

⋃
n∈N Bn is the

union of countably many sets, we must have that some Bn is uncountable. Now,
let k be the largest integer such that for some P0, not in B, containing exactly
k statements, there are uncountably many P ∈ Bn where P0 < P . Let BP0 be
the set of those P ∈ B such that P0 < P . Take any condition P1 ∈ B and let
A1, A2, ..., Am be the statements in P1 − P0, of which there are �nitely many since
all forcing conditions are �nite, and of which there is at least one since P0 6= P1
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and P0 < P1. Since BP0 is still a set of mutually incompatible conditions, P1 is
incompatible with every other P ∈ BP0 . Also, every P ∈ BP0 contains P0 by
de�nition of BP0 . So, we must have that one of the Ai is such that uncountably
many P ∈ BP0 contain ¬Ai, because if there were no such Ai, then only countably
many sets would be incompatible with P1. However, ¬Ai cannot be in P0 since
we have P0 < P1, and so P0 ∪ {¬Ai} is a condition with k + 1 elements which is
contained in uncountably many P ∈ Bn. This contradicts our selection of k, and
thus we have that B must be countable. �

The next lemma will allow us to conclude that if a function de�ned in N has
a domain with cardinality κ in N , then the cardinality of its range cannot exceed
ℵ0 · κ in M. This is what prevents any new functions in N from bridging a gap
between cardinals.

Lemma 10.8. Let f be a function de�ned in N . There is a function g, de�ned in
M, which sends each c ∈ S to a countable subset g(c) ⊆ S and such that for all c,
f(c̄) = c̄′ for some c′ ∈ g(c).

Proof. In N , set c′ as the earliest element of S for which f(c̄) = c̄′. The de�nition
of each Sα can be carried out in N , and a well-ordering on S can be found in N ,
so there is an unlimited statement T which says that c′ is the �rst element of S for
which f(c) = c′. Since this statement is true in N due to our selection of c′, and
since f is a function in N , both the statement T and that f is a function must be
forced by some Pn according to Lemma 10.1.

InM, for every c, c′ in S, de�ne A(c, c′) to be the set of all forcing conditions P
such that P forces f to be a function and such that c′ is the earliest element of S
under some well-ordering so that for all Q > P , we have that Q forces f(c) = c′. We
can see that if c′, c′′ are distinct elements of S, then each of the elements in A(c, c′)
must be incompatible with each of the elements in A(c, c′′), since if P ∈ A(c, c′)
and Q ∈ A(c, c′′), then any R such that P < R and Q < R would have to force
f(c) = c′ = c′′. Since the Axiom of Choice holds in M, and by Lemma 10.7,
there can be at most countably many c′ such that A(c, c′) 6= φ, the function from
our labeling. Let g(c) be the countable set of these c′. We have that A(c, c′) is
nonempty because of the condition Pn we found above, and we have that the c′

such that f(c̄) = c̄′ holds is in g(c). �

Theorem 10.9. Given in�nite ordinals α, β such that inM, the cardinality of α,
denoted |α|, is less than the cardinality of β, denoted by |β|, we have that |α| < |β|
in N as well.

Proof. Suppose that f is a function in N from |α| onto |β|. De�ne

Zγ =
⋃
{Sδ | δ < γ}

for every ordinal γ, and note that γ ∈ Zγ+3 for all γ. In particular, we have that
α ∈ Zα+3. Extend the function f to a function f ′ on Xα+3 such that f ′(x) = 0 for
all x 6∈ α and f ′(x) = f(x) for all x ∈ α. Lemma 10.8 tells us that the range of f ′

is contained in T̄ where T is a subset of Zβ =
⋃
{Sδ | δ < β} and the cardinality of

T is inM is at most ℵ0 · |α| and so is at most |α| since α is in�nite. Now, because
|T | ≤ |α| < |β| in M, there is an ordinal γ < β such that T ⊆ {Sδ | δ < γ}.
However, this means that T̄ is constructed earlier than β, and so cannot contain



INDEPENDENCE OF THE CONTINUUM HYPOTHESIS 23

β, and thus f cannot be onto. So, there are no onto functions from α to β in the
model N , which means that |α| < |β| in N . �

So, we have introduced ℵτ many subsets of N into our model, which views each
of these subsets as distinct sets, and we know that the cardinals are still distinct, so
ℵτ ≥ ℵ2 inN as we intended. Thus, the cardinality of the continuum inN is at least
ℵτ , which is strictly greater than ℵ1, and so the Continuum Hypothesis is false.
This establishes the consistency of ZF ∪ {¬CH & AC}. Together with Gödel's
work, this demonstrates that both the Continuum Hypothesis and Generalized
Continuum Hypothesis are independent of the axioms of ZF and ZFC set theory.
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