Stock loans in incomplete markets

M. R. Grasselli

Mathematics and Statistics - McMaster University
Joint work with C. G. Velez - Universidad Nacional de Colombia
Nomura Seminar
University of Oxford, October 29, 2010

Definitions

- A stock loan is a contract between a bank and a client.
- The client borrows an amount L at t_{0} and leaves one share with current market value V_{0} as collateral.
- At any time t before maturity T the client can redeem the stock by repaying the amount $e^{\alpha\left(t-t_{0}\right)} L$.
- The bank collects any dividends paid by the stock for the duration of the loan.
- The client pays a one off fee c for the loan at t_{0}.

Risk-neutral valuation

- In Xia and Zhou (2007), the loan repayment is modeled as a perpetual American option with a time varying strike $e^{\alpha\left(t-t_{0}\right)} L$.
- Denoting the price of this option by C_{t}, the fair values for the loan parameters at time t_{0} are related by

$$
\begin{equation*}
c=L+C_{t_{0}}-V_{t_{0}} . \tag{1}
\end{equation*}
$$

- They were then able to obtain explicit expressions for $C_{t_{0}}$ using probabilistic methods in standard Black-Scholes framework.

Market Incompleteness

- The risk-neutral paradigm implicit assumes that the option can be replicated by trading in the underlying stock and the money market.
- This is plausible from the bank's point of view, but arguable for the client.
- If the client had unrestricted access to the money market, he would not have to post collateral in the form of a stock.
- If the client could freely trade the stock, he should simply sell it instead of taking the loan.
- Presumably the client faces selling restrictions, while at the same time being in need of available funds to attend to another financial operation.
- Moreover, the risk neutral price yields the fair price at which the option itself can be traded in the market without introducing arbitrage opportunities.
- But a stock loan typically cannot be sold or bought in a secondary market once it is initiated.

Model set up

- We consider two correlated assets S and V with discounted prices given by

$$
\begin{align*}
d S_{t} & =\left(\mu_{1}-r\right) S_{t} d t+\sigma_{1} S_{t} d W_{t}^{1} \\
d V_{t} & =\left(\mu_{2}-r\right) V_{t} d t+\sigma_{2} V_{t}\left(\rho d W_{t}^{1}+\sqrt{1-\rho^{2}} d W_{t}^{2}\right) \tag{2}
\end{align*}
$$

- The client can hold H_{t} units of the asset S_{t} and investing the remaining of his wealth in a bank account $B_{t}=e^{r\left(t-t_{0}\right)}$.
- His discounted wealth then satisfies

$$
\begin{equation*}
d X_{t}^{\pi}=\pi_{t}\left(\mu_{1}-r\right) d t+\pi_{t} \sigma_{1} d W_{t}^{1}, \quad t_{0} \leq t \leq T \tag{3}
\end{equation*}
$$

where $\pi_{t}=H_{t} S_{t}$.

- The client is a risk-averse economic agent with exponential utility function $U(x)=-e^{-\gamma x}$.

Problem formulation

- At t_{0}, the client borrows an amount L from the bank leaving $V_{t_{0}}$ as a collateral and pays a fee c.
- The bank collects the dividends at a rate δ for the duration of the loan.
- The client can redeem the asset with value $e^{r\left(t-t_{0}\right)} V_{t}$ at time $t \leq T$ by paying an amount $e^{\alpha\left(t-t_{0}\right)} L$.
- At the maturity time T, the client needs to decide between repaying the loan or forfeiting the underlying asset indefinitely.
- We want to compute the indifference value $p_{t_{0}}$ for the repayment option as well as the optimal repayment strategy.
- Based on that, we can calculate the cost $C_{t_{0}}$ of this option for the bank.
- As before, the loan parameters are then related by

$$
\begin{equation*}
c=L+C_{t_{0}}-V_{t_{0}} \tag{4}
\end{equation*}
$$

Part I - Infinite maturity

- Let $T=\infty$ and that $\alpha=r$.
- Having taken the loan at time t_{0}, we assume that the borrower needs to solve the following optimization problem:

$$
G(x, v)=\sup _{(\tau, \pi) \in \mathcal{A}} \mathbb{E}_{x, v}\left[-e^{\frac{\left(\mu_{1}-r\right)^{2}}{2 \sigma^{2}} \tau} e^{-\gamma\left(X_{\tau}^{\pi}+\left(V_{\tau}-L\right)^{+}\right)}\right]
$$

- Here \mathcal{A} is a set of admissible pairs (τ, π), where $\tau \in[0, \infty]$ is a stopping time and π is a portfolio process.
- Because of time-homogeneity, the borrower should decide to pay back the loan at the first time that V reaches a stationary threshold V^{*}, that is

$$
\tau^{*}=\inf \left\{s \geq t_{0}: V_{s}=V^{*}\right\}
$$

- We follow Hodges and Neuberger (1989) and define the indifference value for the option to pay back the loan as the amount $p(v)$ satisfying

$$
\begin{equation*}
G(x, 0)=G(x-p(v), v) . \tag{5}
\end{equation*}
$$

The Henderson (2007) solution

- Let $\beta=1-\frac{2}{\sigma_{2}}\left(\frac{\mu_{2}-r}{\sigma_{2}}-\rho \frac{\mu_{1}-r}{\sigma_{1}}\right)$. If $\beta>0$, the threshold $V^{*}>L$ is the unique solution to

$$
\begin{equation*}
V^{*}-L=\frac{1}{\gamma\left(1-\rho^{2}\right)} \log \left[1+\frac{\gamma\left(1-\rho^{2}\right) V^{*}}{\beta}\right] \tag{6}
\end{equation*}
$$

and

$$
G(x, v)=\left\{\begin{array}{l}
-e^{-\gamma x}\left[1-\left(1-e^{-\gamma\left(V^{*}-L\right)\left(1-\rho^{2}\right)}\right)\left(\frac{v}{V^{*}}\right)^{\beta}\right]^{\frac{1}{1-\rho^{2}}}, v<V^{*} \tag{7}\\
-e^{\gamma x} e^{-\gamma(v-L)}, v \geq V^{*} .
\end{array}\right.
$$

- In this case, the indifference value $p(v)$ is given by

$$
p(v)=\left\{\begin{array}{l}
-\frac{1}{\gamma\left(1-\rho^{2}\right)} \log \left[\left(e^{-\gamma\left(V^{*}-L\right)\left(1-\rho^{2}\right)}-1\right)\left(\frac{v}{V^{*}}\right)^{\beta}+1\right], v<V^{*} \tag{8}\\
(v-L), v \geq V^{*} .
\end{array}\right.
$$

- Alternatively, if $\beta \leq 0$, then $V^{*}=\infty$ and the option to repay the loan is never exercised.

Cost for the bank

- Assume that S is the discounted price of the market portfolio.
- It follows from CAPM that

$$
\begin{equation*}
\frac{\bar{\mu}_{2}-r}{\sigma_{2}}=\rho \frac{\mu_{1}-r}{\sigma_{1}} \tag{9}
\end{equation*}
$$

where $\bar{\mu}_{2}$ is the equilibrium rate of return on the asset V.

- The dividend rate paid by V is then $\delta=\bar{\mu}_{2}-\mu_{2}$ and

$$
\begin{equation*}
\beta=1-\frac{2}{\sigma_{2}}\left(\frac{\mu_{2}-r}{\sigma_{2}}-\rho \frac{\mu_{1}-r}{\sigma_{1}}\right)=1+\frac{2 \delta}{\sigma_{2}^{2}}>0 . \tag{10}
\end{equation*}
$$

- Proposition

Assuming that the borrower exercises the repayment option optimally. Then the cost of this option for the bank is given by

$$
C(v)=\left\{\begin{array}{l}
\left(V^{*}-L\right) \mathbb{E}^{Q}\left[\mathbf{1}_{\left\{\tau^{*}<\infty\right\}}\right]=\left(V^{*}-L\right)\left(\frac{v}{V^{*}}\right)^{\beta}, v<V^{*} \\
v-L, \\
v \geq V^{*}
\end{array}\right.
$$

Loan fee

- We can now use (1) and the previous proposition to determine the loan fee c.
- Proposition

The loan fee:

1. decreases as the risk aversion γ increases;
2. decreases as the dividend rate δ increases;
3. increases as ρ^{2} increases.

Moreover, its limiting values either as $\rho^{2} \rightarrow 1$ or $\gamma \rightarrow 0$ coincide and are given by

$$
c= \begin{cases}L+(\widetilde{V}-L)\left(\frac{V_{t_{0}}}{\widetilde{V}}\right)^{\beta}-V_{t_{0}}, & \text { if } V_{t_{0}}<V^{*} \tag{11}\\ 0, & \text { if } V_{t_{0}} \geq V^{*}\end{cases}
$$

where $\widetilde{V}=\frac{\beta}{\beta-1} L=\left(1+\frac{\sigma_{2}^{2}}{2 \delta}\right) L$.

Numerical Examples

Table: Loan fee c as for different loan amounts L (infinite maturity)

L		50	60	70	80	90	100	110	120
Case 1	c	50	60	70	80	90	100	110	120
Case 2	c	31	40	48	57	66	75	84	93
	V^{*}	264	293	320	346	370	394	417	440
Case 3	c	0	0	0	0	2	7	15	23
	a_{0}	61	74	86	98	110	122	135	147
Case 4	c	0	0	0	0	2	7	15	23
	V^{*}	61	73	85	98	110	122	134	146

1. (complete) $\sigma_{2}=0.15, \delta=0, r=\alpha=0.05, V_{0}=100$.
2. (incomplete)

$$
\sigma_{2}=0.15, \delta=0, r=\alpha=0.05, V_{0}=100, \rho=0.9, \gamma=0.01
$$

3. (complete) $\sigma_{2}=0.15, \delta=0.05, r=\alpha=0.05, V_{0}=100$.
4. (incomplete) $\sigma_{2}=0.15, \delta=0.05, r=\alpha=0.05, V_{0}=$ $100, \rho=0.9, \gamma=0.01$.

Fee behavior

For the next figure, $\sigma_{2}=0.15, \delta=0.05, r=\alpha=0.05, L=90$, $V_{0}=100, \rho=0.9$ and $\gamma=0.01$.

Part II - Finite maturity

- Let $T<\infty$ and define

$$
M(t, x)=\sup _{\pi \in \mathcal{A}_{[t, T]}} \mathbb{E}\left[-e^{-\gamma X_{T}^{\pi}} \mid X_{t}^{\pi}=x\right]=-e^{-\gamma x} e^{-\frac{\left(\mu_{1}-r\right)^{2}}{2 \sigma^{2}}(T-t)}
$$

- The borrower now needs to solve:

$$
u\left(t_{0}, x, v\right)=\sup _{\tau} \sup _{\pi} \mathbb{E}_{x, v}\left[M\left(\tau, X_{\tau}^{\pi}+\left(V_{\tau}-e^{(\alpha-r)\left(\tau-t_{0}\right)} L\right)^{+}\right)\right] .
$$

- The indifference value for the repayment option is p satisfying

$$
M\left(t_{0}, x\right)=u\left(t_{0}, x-p, v\right)
$$

The free boundary problem

- It follows from DP that u solves

$$
\left\{\begin{align*}
& \frac{\partial u}{\partial t}+\sup _{\pi} \mathcal{L}^{\pi} u \leq 0 \tag{12}\\
& u(t, x, v) \geq \Lambda(t, x, v) \\
&\left(\frac{\partial u}{\partial t}+\sup _{\pi} \mathcal{L}^{\pi} u\right) \cdot(u-\Lambda)=0
\end{align*}\right.
$$

- Here \mathcal{L}^{π} is the infinitesimal generator of $\left(X^{\pi}, V\right)$ and

$$
\Lambda(t, x, v)=M\left(t, x+\left(v-e^{(\alpha-r)\left(t-t_{0}\right)} L\right)^{+}\right)
$$

is the utility obtained from exercising the repayment option at time t.

- The boundary conditions are

$$
\begin{align*}
u(T, x, v) & =-e^{-\gamma\left[x+\left(v-e^{(\alpha-r)\left(T-t_{0}\right)} L\right)^{+}\right]} \\
u(t, x, 0) & =-e^{-\gamma x} e^{-\frac{\left(\mu_{1}-r\right)^{2}}{2 \sigma^{2}}(T-t)} \tag{13}
\end{align*}
$$

The Zariphopoulou transformation

- Use the factorization

$$
\begin{equation*}
u(t, x, v)=M(t, x) F(t, v)^{\frac{1}{1-\rho^{2}}} \tag{14}
\end{equation*}
$$

- The problem for F becomes

$$
\left\{\begin{array}{c}
\frac{\partial F}{\partial t}+\mathcal{L}^{0} F \geq 0 \\
F(t, v) \leq \kappa(t, v) \tag{15}\\
\left(\frac{\partial F}{\partial t}+\mathcal{L}^{0} F\right) \cdot(F-\kappa)=0
\end{array}\right.
$$

- Here

$$
\mathcal{L}^{0}=\left[\mu_{2}-r-\rho \frac{\mu_{1}-r}{\sigma_{1}} \sigma_{2}\right] v \frac{\partial}{\partial v}+\frac{\sigma_{2}^{2} v^{2}}{2} \frac{\partial^{2}}{\partial v^{2}}
$$

and

$$
\begin{equation*}
\kappa(t, v)=e^{-\gamma\left(1-\rho^{2}\right)\left(v-e^{(\alpha-r)\left(t-t_{0}\right)} L\right)^{+}} . \tag{16}
\end{equation*}
$$

- The boundary conditions for Problem (15) are

$$
F(T, v)=e^{-\gamma\left(1-\rho^{2}\right)\left(v-e^{(\alpha-r)\left(T-t_{0}\right)} L\right)^{+}} \quad F(t, 0)=1
$$

Optimal exercise

- Since problem (15) is independent of X and S, we define the borrower's optimal exercise boundary as the function

$$
\begin{equation*}
V^{*}(t)=\inf \{v \geq 0: F(t, v)=\kappa(t, v)\} \tag{17}
\end{equation*}
$$

and the optimal repayment time as

$$
\begin{equation*}
\tau^{*}=\inf \left\{t_{0} \leq t \leq T: V_{t}=V^{*}(t)\right\} \tag{18}
\end{equation*}
$$

- It follows from the definition (13) and the factorization (14) that the indifference value for the repayment option is given by $p=p\left(t_{0}, V_{t_{0}}\right)$ where

$$
\begin{equation*}
p(t, v)=-\frac{1}{\gamma\left(1-\rho^{2}\right)} \log F(t, v) \tag{19}
\end{equation*}
$$

Cost for the bank

- Once we find $V^{*}(t)$, we can calculate the cost for the bank as

$$
\begin{aligned}
C_{t_{0}} & =E_{v}^{Q}\left[e^{-r\left(\tau-t_{0}\right)}\left(e^{r\left(\tau-t_{0}\right)} V^{*}(t)-e^{\alpha\left(\tau-t_{0}\right)} L\right)^{+} \mathbf{1}_{\left\{\tau^{*}<\infty\right\}}\right] \\
& =E_{v}^{Q}\left[e^{-\widehat{r}\left(\tau-t_{0}\right)}\left(\widehat{V}^{*}(t)-L\right)^{+} \mathbf{1}_{\left\{\tau^{*}<\infty\right\}}\right]
\end{aligned}
$$

where $\widehat{r}=r-\alpha$ and $\widehat{V}^{*}(t)=e^{\widehat{r}\left(\tau-t_{0}\right)} V^{*}(t)$.

- Denoting $\widehat{V}_{t}=e^{(r-\alpha)\left(\tau-t_{0}\right)} V_{t}$, we have

$$
\begin{equation*}
\tau^{*}=\inf \left\{t: V_{t}=V^{*}(t)\right\}=\inf \left\{t: \widehat{V}_{t}=\widehat{V}^{*}(t)\right\} \tag{20}
\end{equation*}
$$

- Therefore $C(t, v)$ satisfies the Black-Scholes PDE

$$
\begin{equation*}
\frac{\partial C}{\partial t}+(r-\alpha-\delta) v \frac{\partial C}{\partial v}+\frac{\sigma_{2}^{2} v^{2}}{2} \frac{\partial^{2} C}{\partial v^{2}}=(r-\alpha) C \tag{21}
\end{equation*}
$$

with boundary conditions

$$
\begin{array}{cc}
C(t, 0)=0, & C\left(t, \widehat{V}^{*}(t)\right)=\left(\widehat{V}^{*}(t)-L\right)^{+} \\
C(T, v)=(v-L)^{+}, & 0 \leq v \leq \widehat{V}^{*}(T)
\end{array}
$$

Properties of the fee

- We now fix $r, \mu_{1}, \sigma_{1}, \alpha$, and L and vary γ, δ, ρ, and σ_{2}.
- Observe that μ_{2} is given by the CAPM condition as

$$
\begin{equation*}
\mu_{2}=\rho \frac{\mu_{1}-r}{\sigma_{1}} \sigma_{2}+r-\delta . \tag{22}
\end{equation*}
$$

- Using the same technique as Leung and Sircar (2009) we have:
- Proposition

The loan fee c :

1. decreases as the risk aversion γ increases;
2. decreases as the dividend rate δ increases;
3. increases as ρ^{2} increases;

- Proposition

If $\alpha=r$, the loan fee is an increasing function of the maturity T.

Numerical results

- We first we use finite differences with projected successive-over-relaxation (PSOR) to solve the linear free boundary problem (15).
- This yields a threshold function $V^{*}(t)$, which we then use to solve equation (21) subject to the boundary conditions (17), again by finite differences.
- For the next table we use $\sigma_{2}=0.4, \rho=0.4, \gamma=0.01, \delta=$ $0.05, r=0.05, \alpha=0.07, V_{t_{0}}=100$ and $T=5$ (in years).

Table: Loan fee c for different loan amounts L (finite maturity)

L	50	60	70	80	90	100	110	120
c	0	0	0	1	4	9	16	24

Fee behavior

For the next figure we use $T=5, L=80, \sigma_{2}=0.4, r=0.05$, $\alpha=0.07, \delta=0.05, \rho=0.4$ and $V_{0}=100$.

Fee behavior (continued)

Figure: Dependence on model parameters for finite maturity

Concluding remarks

- We have extended the analysis of Xia and Zhou (2007) for stock loans in incomplete markets.
- An explicit expression for the loan fee can still be found in the infinite-horizon case provided $r=\alpha$.
- In the finite-horizon case, the loan fee can be characterized in terms of a free-boundary problem and calculated numerically.
- In both cases, we analyzed how the loan fee depends on the underlying model parameters.
- We found that the complete-market, risk-neutral value of a stock loan is an upper bound for the fee to be charged by the bank.
- By following our model a bank can quantify the effects of the restrictions faced by the client and charge a smaller fee for the loan, presumably increasing its competitiveness.
- Thank you !

