Stock loans in incomplete markets

M. R. Grasselli

Mathematics and Statistics - McMaster University Joint work with C. G. Velez - Universidad Nacional de Colombia

> Nomura Seminar University of Oxford, October 29, 2010

Definitions

- A stock loan is a contract between a bank and a client.
- ► The client borrows an amount L at t₀ and leaves one share with current market value V₀ as collateral.
- At any time t before maturity T the client can redeem the stock by repaying the amount e^{α(t−t₀)}L.
- The bank collects any dividends paid by the stock for the duration of the loan.
- ▶ The client pays a one off fee *c* for the loan at *t*₀.

Risk-neutral valuation

- In Xia and Zhou (2007), the loan repayment is modeled as a perpetual American option with a time varying strike e^{α(t−t₀)}L.
- Denoting the price of this option by C_t, the fair values for the loan parameters at time t₀ are related by

$$c = L + C_{t_0} - V_{t_0}. \tag{1}$$

They were then able to obtain explicit expressions for C_{t0} using probabilistic methods in standard Black–Scholes framework.

Market Incompleteness

- The risk-neutral paradigm implicit assumes that the option can be replicated by trading in the underlying stock and the money market.
- This is plausible from the bank's point of view, but arguable for the client.
- If the client had unrestricted access to the money market, he would not have to post collateral in the form of a stock.
- If the client could freely trade the stock, he should simply sell it instead of taking the loan.
- Presumably the client faces selling restrictions, while at the same time being in need of available funds to attend to another financial operation.
- Moreover, the risk neutral price yields the fair price at which the option itself can be traded in the market without introducing arbitrage opportunities.
- But a stock loan typically cannot be sold or bought in a secondary market once it is initiated.

Model set up

► We consider two correlated assets *S* and *V* with *discounted* prices given by

$$dS_{t} = (\mu_{1} - r)S_{t}dt + \sigma_{1}S_{t}dW_{t}^{1}$$

$$dV_{t} = (\mu_{2} - r)V_{t}dt + \sigma_{2}V_{t}(\rho dW_{t}^{1} + \sqrt{1 - \rho^{2}}dW_{t}^{2}),$$
(2)

- ▶ The client can hold H_t units of the asset S_t and investing the remaining of his wealth in a bank account $B_t = e^{r(t-t_0)}$.
- His discounted wealth then satisfies

$$dX_t^{\pi} = \pi_t(\mu_1 - r)dt + \pi_t\sigma_1 dW_t^1, \quad t_0 \le t \le T, \quad (3)$$

where $\pi_t = H_t S_t$.

► The client is a risk-averse economic agent with exponential utility function U(x) = -e^{-γx}.

Problem formulation

- ► At t₀, the client borrows an amount L from the bank leaving V_{t0} as a collateral and pays a fee c.
- The bank collects the dividends at a rate δ for the duration of the loan.
- The client can redeem the asset with value e^{r(t-t₀)}V_t at time t ≤ T by paying an amount e^{α(t-t₀)}L.
- ► At the maturity time *T*, the client needs to decide between repaying the loan or forfeiting the underlying asset indefinitely.
- We want to compute the indifference value p_{t0} for the repayment option as well as the optimal repayment strategy.
- ► Based on that, we can calculate the cost C_{t0} of this option for the bank.
- ► As before, the loan parameters are then related by

$$c = L + C_{t_0} - V_{t_0} \tag{4}$$

Part I – Infinite maturity

- Let $T = \infty$ and that $\alpha = r$.
- Having taken the loan at time t₀, we assume that the borrower needs to solve the following optimization problem:

$$G(x,v) = \sup_{(\tau,\pi)\in\mathcal{A}} \mathbb{E}_{x,v} \big[-e^{\frac{(\mu_1-r)^2}{2\sigma^2}\tau} e^{-\gamma(X^{\pi}_{\tau}+(V_{\tau}-L)^+)} \big].$$

- Here A is a set of admissible pairs (τ, π), where τ ∈ [0,∞] is a stopping time and π is a portfolio process.
- Because of time-homogeneity, the borrower should decide to pay back the loan at the first time that V reaches a stationary threshold V*, that is

$$\tau^* = \inf\{s \ge t_0 : V_s = V^*\}.$$

 We follow Hodges and Neuberger (1989) and define the indifference value for the option to pay back the loan as the amount p(v) satisfying

$$G(x,0) = G(x - p(v), v).$$
 (5)

The Henderson (2007) solution

• Let
$$\beta = 1 - \frac{2}{\sigma_2} \left(\frac{\mu_2 - r}{\sigma_2} - \rho \frac{\mu_1 - r}{\sigma_1} \right)$$
. If $\beta > 0$, the threshold $V^* > L$ is the unique solution to

$$V^* - L = \frac{1}{\gamma(1 - \rho^2)} \log \left[1 + \frac{\gamma(1 - \rho^2)V^*}{\beta} \right]$$
(6)

and

$$G(x,v) = \begin{cases} -e^{-\gamma x} \left[1 - (1 - e^{-\gamma (V^* - L)(1 - \rho^2)}) \left(\frac{v}{V^*}\right)^{\beta} \right]^{\frac{1}{1 - \rho^2}}, v < V^* \\ -e^{\gamma x} e^{-\gamma (v - L)}, v \ge V^*. \end{cases}$$
(7)

▶ In this case, the indifference value p(v) is given by

$$p(v) = \begin{cases} -\frac{1}{\gamma(1-\rho^2)} \log \left[(e^{-\gamma(V^*-L)(1-\rho^2)} - 1) (\frac{v}{V^*})^{\beta} + 1 \right], v < V^* \\ (v-L), v \ge V^*. \end{cases}$$
(8)

Alternatively, if β ≤ 0, then V* = ∞ and the option to repay the loan is never exercised.

Cost for the bank

- ► Assume that *S* is the discounted price of the market portfolio.
- It follows from CAPM that

$$\frac{\overline{\mu}_2 - r}{\sigma_2} = \rho \frac{\mu_1 - r}{\sigma_1},\tag{9}$$

where $\overline{\mu}_2$ is the equilibrium rate of return on the asset V.

▶ The dividend rate paid by V is then $\delta = \overline{\mu}_2 - \mu_2$ and

$$\beta = 1 - \frac{2}{\sigma_2} \left(\frac{\mu_2 - r}{\sigma_2} - \rho \frac{\mu_1 - r}{\sigma_1} \right) = 1 + \frac{2\delta}{\sigma_2^2} > 0.$$
 (10)

Proposition

Assuming that the borrower exercises the repayment option optimally. Then the cost of this option for the bank is given by

$$C(v) = \begin{cases} (V^* - L) \mathbb{E}^Q \left[\mathbf{1}_{\{\tau^* < \infty\}} \right] = (V^* - L) \left(\frac{v}{V^*} \right)^{\beta}, v < V^* \\ v - L, \qquad v \ge V^* \end{cases}$$

Loan fee

- ▶ We can now use (1) and the previous proposition to determine the loan fee *c*.
- Proposition

The loan fee:

- 1. decreases as the risk aversion γ increases;
- 2. decreases as the dividend rate δ increases;
- 3. increases as ρ^2 increases.

Moreover, its limiting values either as $\rho^2 \to 1$ or $\gamma \to 0$ coincide and are given by

$$c = \begin{cases} L + (\widetilde{V} - L) \left(\frac{V_{t_0}}{\widetilde{V}}\right)^{\beta} - V_{t_0}, & \text{if } V_{t_0} < V^* \\ 0, & \text{if } V_{t_0} \ge V^*. \end{cases}$$
(11)

where $\widetilde{V} = \frac{\beta}{\beta - 1}L = \left(1 + \frac{\sigma_2^2}{2\delta}\right)L.$

Numerical Examples

Ĺ		50	60	70	80	90	100	110	120
Case 1	С	50	60	70	80	90	100	110	120
Case 2	С	31	40	48	57	66	75	84	93
	V^*	264	293	320	346	370	394	417	440
Case 3	С	0	0	0	0	2	7	15	23
	a_0	61	74	86	98	110	122	135	147
Case 4	С	0	0	0	0	2	7	15	23
Case 4	V^*	61	73	85	98	110	122	134	146

Table: Loan fee c as for different loan amounts L (infinite maturity)

- 1. (complete) $\sigma_2 = 0.15, \delta = 0, r = \alpha = 0.05, V_0 = 100.$
- 2. (incomplete) $\sigma_2 = 0.15, \delta = 0, r = \alpha = 0.05, V_0 = 100, \rho = 0.9, \gamma = 0.01.$
- 3. (complete) $\sigma_2 = 0.15, \delta = 0.05, r = \alpha = 0.05, V_0 = 100.$
- 4. (incomplete) $\sigma_2 = 0.15, \delta = 0.05, r = \alpha = 0.05, V_0 = 100, \rho = 0.9, \gamma = 0.01.$

Fee behavior

For the next figure, σ_2 =0.15, δ =0.05, $r = \alpha = 0.05$, L=90, $V_0 = 100$, $\rho = 0.9$ and $\gamma = 0.01$.

Part II - Finite maturity

• Let $T < \infty$ and define

$$M(t,x) = \sup_{\pi \in \mathcal{A}_{[t,T]}} \mathbb{E}[-e^{-\gamma X_T^{\pi}} | X_t^{\pi} = x] = -e^{-\gamma x} e^{-\frac{(\mu_1 - r)^2}{2\sigma^2}(T-t)},$$

~

The borrower now needs to solve:

$$u(t_0, x, v) = \sup_{\tau} \sup_{\pi} \mathbb{E}_{x, v}[M(\tau, X_{\tau}^{\pi} + (V_{\tau} - e^{(\alpha - r)(\tau - t_0)}L)^+)].$$

The indifference value for the repayment option is p satisfying

$$M(t_0, x) = u(t_0, x - p, v).$$

The free boundary problem

It follows from DP that u solves

$$\begin{cases} \frac{\partial u}{\partial t} + \sup_{\pi} \mathcal{L}^{\pi} u \leq 0, \\ u(t, x, v) \geq \Lambda(t, x, v), \\ \left(\frac{\partial u}{\partial t} + \sup_{\pi} \mathcal{L}^{\pi} u\right) \cdot (u - \Lambda) = 0, \end{cases}$$
(12)

▶ Here \mathcal{L}^{π} is the infinitesimal generator of (X^{π}, V) and

$$\Lambda(t,x,v) = M(t,x+(v-e^{(\alpha-r)(t-t_0)}L)^+)$$

is the utility obtained from exercising the repayment option at time t.

The boundary conditions are

$$u(T, x, v) = -e^{-\gamma [x + (v - e^{(\alpha - r)(T - t_0)}L)^+]}$$

$$u(t, x, 0) = -e^{-\gamma x} e^{-\frac{(\mu_1 - r)^2}{2\sigma^2}(T - t)}.$$
 (13)

The Zariphopoulou transformation

Use the factorization

$$u(t, x, v) = M(t, x)F(t, v)^{\frac{1}{1-\rho^2}}.$$
 (14)

The problem for F becomes

$$\begin{cases} \frac{\partial F}{\partial t} + \mathcal{L}^{0}F \ge 0, \\ F(t,v) \le \kappa(t,v), \\ \left(\frac{\partial F}{\partial t} + \mathcal{L}^{0}F\right) \cdot (F-\kappa) = 0, \end{cases}$$
(15)

Here

$$\mathcal{L}^{0} = \left[\mu_{2} - r - \rho \frac{\mu_{1} - r}{\sigma_{1}} \sigma_{2}\right] v \frac{\partial}{\partial v} + \frac{\sigma_{2}^{2} v^{2}}{2} \frac{\partial^{2}}{\partial v^{2}}$$

and

$$\kappa(t,v) = e^{-\gamma(1-\rho^2)(v-e^{(\alpha-r)(t-t_0)}L)^+}.$$
 (16)

► The boundary conditions for Problem (15) are $F(T, v) = e^{-\gamma(1-\rho^2)(v-e^{(\alpha-r)(T-t_0)}L)^+} \qquad F(t, 0) = 1.$

Optimal exercise

Since problem (15) is independent of X and S, we define the borrower's optimal exercise boundary as the function

$$V^{*}(t) = \inf \{ v \ge 0 : F(t, v) = \kappa(t, v) \}$$
(17)

and the optimal repayment time as

$$\tau^* = \inf \left\{ t_0 \le t \le T : V_t = V^*(t) \right\}.$$
(18)

• It follows from the definition (13) and the factorization (14) that the indifference value for the repayment option is given by $p = p(t_0, V_{t_0})$ where

$$p(t, v) = -\frac{1}{\gamma(1-\rho^2)} \log F(t, v).$$
 (19)

Cost for the bank

• Once we find $V^*(t)$, we can calculate the cost for the bank as

$$C_{t_0} = E_v^Q \left[e^{-r(\tau - t_0)} \left(e^{r(\tau - t_0)} V^*(t) - e^{\alpha(\tau - t_0)} L \right)^+ \mathbf{1}_{\{\tau^* < \infty\}} \right]$$
$$= E_v^Q \left[e^{-\hat{r}(\tau - t_0)} \left(\widehat{V}^*(t) - L \right)^+ \mathbf{1}_{\{\tau^* < \infty\}} \right]$$
where $\hat{r} = r - \alpha$ and $\widehat{V}^*(t) = e^{\hat{r}(\tau - t_0)} V^*(t)$.
Denoting $\widehat{V}_t = e^{(r - \alpha)(\tau - t_0)} V_t$, we have

$$\tau^* = \inf \{ t : V_t = V^*(t) \} = \inf \{ t : \widehat{V}_t = \widehat{V}^*(t) \}$$
(20)

Therefore C(t, v) satisfies the Black–Scholes PDE

$$\frac{\partial C}{\partial t} + (r - \alpha - \delta)v\frac{\partial C}{\partial v} + \frac{\sigma_2^2 v^2}{2}\frac{\partial^2 C}{\partial v^2} = (r - \alpha)C \qquad (21)$$

with boundary conditions

$$C(t,0) = 0,$$
 $C(t,\widehat{V}^*(t)) = (\widehat{V}^*(t) - L)^+,$
 $C(T,v) = (v - L)^+,$ $0 \le v \le \widehat{V}^*(T)$

Properties of the fee

- We now fix r, μ_1 , σ_1 , α , and L and vary γ , δ , ρ , and σ_2 .
- Observe that μ_2 is given by the CAPM condition as

$$\mu_2 = \rho \frac{\mu_1 - r}{\sigma_1} \sigma_2 + r - \delta. \tag{22}$$

Using the same technique as Leung and Sircar (2009) we have:

Proposition

The loan fee c:

- 1. decreases as the risk aversion γ increases;
- 2. decreases as the dividend rate δ increases;
- 3. increases as ρ^2 increases;

Proposition

If $\alpha = r$, the loan fee is an increasing function of the maturity T.

Numerical results

- We first we use finite differences with projected successive-over-relaxation (PSOR) to solve the linear free boundary problem (15).
- This yields a threshold function V*(t), which we then use to solve equation (21) subject to the boundary conditions (17), again by finite differences.
- ► For the next table we use $\sigma_2 = 0.4$, $\rho = 0.4$, $\gamma = 0.01$, $\delta = 0.05$, r = 0.05, $\alpha = 0.07$, $V_{t_0} = 100$ and T = 5 (in years).

Table: Loan fee c for different loan amounts L (finite maturity)

1	L	50	60	70	80	90	100	110	120
	С	0	0	0	1	4	9	16	24

Fee behavior

For the next figure we use T = 5, L = 80, $\sigma_2 = 0.4$, r = 0.05, $\alpha = 0.07$, $\delta = 0.05$, $\rho = 0.4$ and $V_0 = 100$.

Fee behavior (continued)

Figure: Dependence on model parameters for finite maturity

Concluding remarks

- We have extended the analysis of Xia and Zhou (2007) for stock loans in incomplete markets.
- An explicit expression for the loan fee can still be found in the infinite-horizon case provided r = α.
- In the finite-horizon case, the loan fee can be characterized in terms of a free-boundary problem and calculated numerically.
- In both cases, we analyzed how the loan fee depends on the underlying model parameters.
- We found that the complete-market, risk-neutral value of a stock loan is an upper bound for the fee to be charged by the bank.
- By following our model a bank can quantify the effects of the restrictions faced by the client and charge a smaller fee for the loan, presumably increasing its competitiveness.
- ► Thank you !