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Definitions

◮ A stock loan is a contract between a bank and a client.

◮ The client borrows an amount L at t0 and leaves one share
with current market value V0 as collateral.

◮ At any time t before maturity T the client can redeem the
stock by repaying the amount eα(t−t0)L.

◮ The bank collects any dividends paid by the stock for the
duration of the loan.

◮ The client pays a one off fee c for the loan at t0.



Risk–neutral valuation

◮ In Xia and Zhou (2007), the loan repayment is modeled as a
perpetual American option with a time varying strike
eα(t−t0)L.

◮ Denoting the price of this option by Ct , the fair values for the
loan parameters at time t0 are related by

c = L+ Ct0 − Vt0 . (1)

◮ They were then able to obtain explicit expressions for Ct0 using
probabilistic methods in standard Black–Scholes framework.



Market Incompleteness
◮ The risk–neutral paradigm implicit assumes that the option

can be replicated by trading in the underlying stock and the
money market.

◮ This is plausible from the bank’s point of view, but arguable
for the client.

◮ If the client had unrestricted access to the money market, he
would not have to post collateral in the form of a stock.

◮ If the client could freely trade the stock, he should simply sell
it instead of taking the loan.

◮ Presumably the client faces selling restrictions, while at the
same time being in need of available funds to attend to
another financial operation.

◮ Moreover, the risk neutral price yields the fair price at which
the option itself can be traded in the market without
introducing arbitrage opportunities.

◮ But a stock loan typically cannot be sold or bought in a
secondary market once it is initiated.



Model set up

◮ We consider two correlated assets S and V with discounted

prices given by

dSt = (µ1 − r)Stdt + σ1StdW
1
t

dVt = (µ2 − r)Vtdt + σ2Vt(ρdW
1
t +

√
1− ρ2dW 2

t ),
(2)

◮ The client can hold Ht units of the asset St and investing the
remaining of his wealth in a bank account Bt = er(t−t0).

◮ His discounted wealth then satisfies

dX π
t = πt(µ1 − r)dt + πtσ1dW

1
t , t0 ≤ t ≤ T , (3)

where πt = HtSt .

◮ The client is a risk–averse economic agent with exponential
utility function U(x) = −e−γx .



Problem formulation

◮ At t0, the client borrows an amount L from the bank leaving
Vt0 as a collateral and pays a fee c .

◮ The bank collects the dividends at a rate δ for the duration of
the loan.

◮ The client can redeem the asset with value er(t−t0)Vt at time
t ≤ T by paying an amount eα(t−t0)L.

◮ At the maturity time T , the client needs to decide between
repaying the loan or forfeiting the underlying asset indefinitely.

◮ We want to compute the indifference value pt0 for the
repayment option as well as the optimal repayment strategy.

◮ Based on that, we can calculate the cost Ct0 of this option for
the bank.

◮ As before, the loan parameters are then related by

c = L+ Ct0 − Vt0 (4)



Part I – Infinite maturity
◮ Let T = ∞ and that α = r .
◮ Having taken the loan at time t0, we assume that the

borrower needs to solve the following optimization problem:

G (x , v) = sup
(τ,π)∈A

Ex ,v

[
− e

(µ1−r)2

2σ2 τ
e−γ(Xπ

τ
+(Vτ−L)+)

]
.

◮ Here A is a set of admissible pairs (τ, π), where τ ∈ [0,∞] is
a stopping time and π is a portfolio process.

◮ Because of time–homogeneity, the borrower should decide to
pay back the loan at the first time that V reaches a stationary
threshold V ∗, that is

τ∗ = inf{s ≥ t0 : Vs = V ∗}.

◮ We follow Hodges and Neuberger (1989) and define the
indifference value for the option to pay back the loan as the
amount p(v) satisfying

G (x , 0) = G (x − p(v), v). (5)



The Henderson (2007) solution
◮ Let β = 1− 2

σ2

(
µ2−r

σ2
− ρµ1−r

σ1

)
. If β > 0, the threshold

V ∗ > L is the unique solution to

V ∗ − L =
1

γ(1− ρ2)
log

[
1 +

γ(1− ρ2)V ∗

β

]
(6)

and

G(x , v) =





− e−γx

[
1− (1 − e−γ(V∗

−L)(1−ρ2))
( v

V ∗

)β
] 1

1−ρ2

, v < V ∗

− eγxe−γ(v−L), v ≥ V ∗.

(7)
◮ In this case, the indifference value p(v) is given by

p(v) =





−
1

γ(1− ρ2)
log

[
(e−γ(V∗

−L)(1−ρ2) − 1)
( v

V ∗

)β
+ 1

]
, v < V ∗

(v − L), v ≥ V ∗.

(8)

◮ Alternatively, if β ≤ 0, then V ∗ = ∞ and the option to repay
the loan is never exercised.



Cost for the bank
◮ Assume that S is the discounted price of the market portfolio.
◮ It follows from CAPM that

µ2 − r

σ2
= ρ

µ1 − r

σ1
, (9)

where µ2 is the equilibrium rate of return on the asset V .
◮ The dividend rate paid by V is then δ = µ2 − µ2 and

β = 1−
2

σ2

(
µ2 − r

σ2
− ρ

µ1 − r

σ1

)
= 1 +

2δ

σ2
2

> 0. (10)

◮ Proposition

Assuming that the borrower exercises the repayment option

optimally. Then the cost of this option for the bank is given by

C (v) =





(V ∗ − L)EQ
[
1{τ∗<∞}

]
= (V ∗ − L)

( v

V ∗

)β

, v < V ∗

v − L, v ≥ V ∗



Loan fee

◮ We can now use (1) and the previous proposition to determine
the loan fee c .

◮ Proposition
The loan fee:

1. decreases as the risk aversion γ increases;

2. decreases as the dividend rate δ increases;

3. increases as ρ2 increases.

Moreover, its limiting values either as ρ2 → 1 or γ → 0 coincide

and are given by

c =





L+ (Ṽ − L)

(
Vt0

Ṽ

)β

− Vt0 , if Vt0 < V ∗

0, if Vt0 ≥ V ∗.

(11)

where Ṽ = β
β−1L =

(
1 +

σ2
2

2δ

)
L.



Numerical Examples

Table: Loan fee c as for different loan amounts L (infinite maturity)

L 50 60 70 80 90 100 110 120

Case 1 c 50 60 70 80 90 100 110 120

Case 2
c 31 40 48 57 66 75 84 93
V ∗ 264 293 320 346 370 394 417 440

Case 3
c 0 0 0 0 2 7 15 23
a0 61 74 86 98 110 122 135 147

Case 4
c 0 0 0 0 2 7 15 23
V ∗ 61 73 85 98 110 122 134 146

1. (complete) σ2 = 0.15, δ = 0, r = α = 0.05,V0 = 100.

2. (incomplete)
σ2 = 0.15, δ = 0, r = α = 0.05,V0 = 100, ρ = 0.9,γ = 0.01.

3. (complete) σ2 = 0.15, δ = 0.05, r = α = 0.05,V0 = 100.

4. (incomplete) σ2 = 0.15, δ = 0.05, r = α = 0.05,V0 =
100, ρ = 0.9,γ = 0.01.



Fee behavior
For the next figure, σ2=0.15, δ=0.05, r = α = 0.05, L=90,
V0 = 100, ρ = 0.9 and γ = 0.01.
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Part II - Finite maturity

◮ Let T < ∞ and define

M(t, x) = sup
π∈A[t,T ]

E[−e−γXπ

T |X π
t = x ] = −e−γxe

−
(µ1−r)2

2σ2 (T−t)
,

◮ The borrower now needs to solve:

u(t0, x , v) = sup
τ

sup
π

Ex ,v [M(τ,X π
τ + (Vτ − e(α−r)(τ−t0)L)+)].

◮ The indifference value for the repayment option is p satisfying

M(t0, x) = u(t0, x − p, v).



The free boundary problem

◮ It follows from DP that u solves




∂u

∂t
+ sup

π
Lπu ≤ 0,

u(t, x , v) ≥ Λ(t, x , v),
(
∂u

∂t
+ sup

π
Lπu

)
· (u − Λ) = 0,

(12)

◮ Here Lπ is the infinitesimal generator of (X π,V ) and

Λ(t, x , v) = M(t, x + (v − e(α−r)(t−t0)L)+)

is the utility obtained from exercising the repayment option at
time t.

◮ The boundary conditions are

u(T , x , v) = −e−γ[x+(v−e(α−r)(T−t0)L)+]

u(t, x , 0) = −e−γxe
−

(µ1−r)2

2σ2 (T−t)
.

(13)



The Zariphopoulou transformation
◮ Use the factorization

u(t, x , v) = M(t, x)F (t, v)
1

1−ρ2 . (14)

◮ The problem for F becomes




∂F

∂t
+ L0F ≥ 0,

F (t, v) ≤ κ(t, v),
(
∂F

∂t
+ L0F

)
· (F − κ) = 0,

(15)

◮ Here

L0 =

[
µ2 − r − ρ

µ1 − r

σ1
σ2

]
v
∂

∂v
+

σ2
2v

2

2

∂2

∂v2

and
κ(t, v) = e−γ(1−ρ2)(v−e(α−r)(t−t0)L)+ . (16)

◮ The boundary conditions for Problem (15) are

F (T , v) = e−γ(1−ρ2)(v−e(α−r)(T−t0)L)+ F (t, 0) = 1.



Optimal exercise

◮ Since problem (15) is independent of X and S , we define the
borrower’s optimal exercise boundary as the function

V ∗(t) = inf {v ≥ 0 : F (t, v) = κ(t, v)} (17)

and the optimal repayment time as

τ∗ = inf {t0 ≤ t ≤ T : Vt = V ∗(t)} . (18)

◮ It follows from the definition (13) and the factorization (14)
that the indifference value for the repayment option is given
by p = p(t0,Vt0) where

p(t, v) = −
1

γ(1− ρ2)
log F (t, v). (19)



Cost for the bank
◮ Once we find V ∗(t), we can calculate the cost for the bank as

Ct0 = EQ
v

[
e−r(τ−t0)

(
er(τ−t0)V ∗(t)− eα(τ−t0)L

)+
1{τ∗<∞}

]

= EQ
v

[
e−r̂(τ−t0)

(
V̂ ∗(t)− L

)+
1{τ∗<∞}

]

where r̂ = r − α and V̂ ∗(t) = e r̂(τ−t0)V ∗(t).
◮ Denoting V̂t = e(r−α)(τ−t0)Vt , we have

τ∗ = inf {t : Vt = V ∗(t)} = inf
{
t : V̂t = V̂ ∗(t)

}
(20)

◮ Therefore C (t, v) satisfies the Black–Scholes PDE

∂C

∂t
+ (r − α− δ)v

∂C

∂v
+

σ2
2v

2

2

∂2C

∂v2
= (r − α)C (21)

with boundary conditions

C (t, 0) = 0, C (t, V̂ ∗(t)) = (V̂ ∗(t)− L)+,

C (T , v) = (v − L)+, 0 ≤ v ≤ V̂ ∗(T )



Properties of the fee

◮ We now fix r , µ1, σ1,α, and L and vary γ, δ, ρ, and σ2.

◮ Observe that µ2 is given by the CAPM condition as

µ2 = ρ
µ1 − r

σ1
σ2 + r − δ. (22)

◮ Using the same technique as Leung and Sircar (2009) we have:

◮ Proposition
The loan fee c:

1. decreases as the risk aversion γ increases;

2. decreases as the dividend rate δ increases;

3. increases as ρ2 increases;

◮ Proposition

If α = r , the loan fee is an increasing function of the maturity T .



Numerical results

◮ We first we use finite differences with projected
successive–over–relaxation (PSOR) to solve the linear free
boundary problem (15).

◮ This yields a threshold function V ∗(t), which we then use to
solve equation (21) subject to the boundary conditions (17),
again by finite differences.

◮ For the next table we use σ2 = 0.4, ρ = 0.4, γ = 0.01, δ =
0.05, r = 0.05, α = 0.07,Vt0 = 100 and T = 5 (in years).

Table: Loan fee c for different loan amounts L (finite maturity)

L 50 60 70 80 90 100 110 120

c 0 0 0 1 4 9 16 24



Fee behavior
For the next figure we use T = 5, L = 80, σ2 = 0.4, r = 0.05,
α = 0.07, δ = 0.05, ρ = 0.4 and V0 = 100.
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Fee behavior (continued)
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Figure: Dependence on model parameters for finite maturity



Concluding remarks

◮ We have extended the analysis of Xia and Zhou (2007) for
stock loans in incomplete markets.

◮ An explicit expression for the loan fee can still be found in the
infinite–horizon case provided r = α.

◮ In the finite–horizon case, the loan fee can be characterized in
terms of a free–boundary problem and calculated numerically.

◮ In both cases, we analyzed how the loan fee depends on the
underlying model parameters.

◮ We found that the complete–market, risk–neutral value of a
stock loan is an upper bound for the fee to be charged by the
bank.

◮ By following our model a bank can quantify the effects of the
restrictions faced by the client and charge a smaller fee for the
loan, presumably increasing its competitiveness.

◮ Thank you !


