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Real options beyond monopoly

I Traditional real option valuation assumes a monopoly right to
invest in a project.

I The option value of waiting produces wider price ranges for
investment/abandonment.

I This leads to a more conservative attitude than predicted by a
NPV approach.

I With competition, the value of waiting should decrease
because of opportunity cost.

I How can we incorporate this effect into the real options
approach ?

I How does it affect the results ?



“Grief and rage, along with other outbursts of passion, were
mistakes easily committed by a mind lacking in refinement. And
the Count was certainly not a man who lacked refinement.

Just let matters slide. How much better to accept each sweet drop
of the honey that was Time, than to stoop to the vulgarity latent
in every decision. However grave the matter at hand might be, if
one neglected it for long enough, the act of neglect itself would
begin to affect the situation, and someone else would emerge as an
ally. Such was Count Ayakura’s version of political theory.”

Spring Snow, Yukio Mishima



Combining options and games

I A systematic application of both real options and game theory
in strategic decisions has been proposed in the literature (see
Smit and Trigeorgis (2004) for a review).

I The essential idea can be summarized in two rules:

1. whenever the outcome of a given game involves a
“wait–and–see” strategy, its pay-off should be calculated as
the value of a real option;

2. whenever the pay-off of a given involves a game, its value
should calculated as the equilibrium solution to the game.

I In this way, option valuation and game theoretical equilibrium
become dynamically related in a decision tree.

I In what follows, we denote the NE solution for a given game
in bold face within the matrix of outcomes.

I For convenience of notation we will round all number to the
nearest integer.



One–stage investment: single firm

I As a first example, suppose that a single firm can make an
investment of I = 90 either at t = 0 or at t = 1.

I Let the underlying project values be V0 = 100 at time t = 0,

then either V
h

= 120 or V
`

= 80 at time t = 1 with equal
probabilities.

I If V is perfectly correlated with a traded financial asset S ,
then the option to invest can be valued using standard
risk–neutral pricing.

I For a one–period risk–free rate R = 0.06, the risk–neutral

probability in this case is q = (1+R)−h
h−` = 0.65.

I If the firm postpones investment until t = 1 it realizes an
option value c0 = 18.40.

I Since c0 ≥ V0 − I = 10, a firm acting in isolation should
postpone the investment.



One–stage investment: two firms

I Suppose now that two symmetric firms A and B face the
same investment problem as before.

I Let us assume that if a firm invests in the project alone, then
the payoff for the other firm is zero, whereas the payoff is
divided equally between them if both firms reach the same
decision.

I We then have the following matrix of outcomes:

HHH
HHHA

B
invest wait

invest (5, 5) (10, 0)

wait (0, 10) (9.20, 9.20)

I Notice the “prisoner’s dilemma” character of this game.



Two–stage investment: one firm
I Using the same setting as in the previous example, let the

project value be V0 = 100 at time t = 0 , then either 120 or
80 at time t = 1 , and finally either 144, 96, or 64 at time
t = 2, leading to the following option values :

22.73

3.70

35.09

0

6

54



Two–stage investment: two firms

I Suppose now that two firms A and B face the same
investment problem as before.

I The games played at time t = 1 are:

H
HHH

HHA
B

invest wait

invest (15, 15) (30, 0)

wait (0, 30) (17.55, 17.55)
H
HHHHHA

B
invest wait

invest (−5,−5) (−10, 0)

wait (0,−10) (1.84, 1.84)



Two–stage investment: two firms (continued)

I Using the previous values to calculate the option value at time
t = 0 leads to:

9.81

1.84

15

I Finally, the game played at time t = 0 is:

H
HHH

HHA
B

invest wait

invest (5, 5) (10, 0)

wait (0, 10) (9.81, 9.81)



Sensitivity to model parameters
I Using R = 0.1 leads to the following matrices of outcomes at

time t = 1:
H
HHH

HHA
B

invest wait

invest (15, 15) (30, 0)

wait (0, 30) (19.09, 19.09)
H
HHH

HHA
B

invest wait

invest (−5,−5) (−10, 0)

wait (0,−10) (2.05, 2.05)

I This results in an option value of 10.69 at time t = 0, leading
to:

HH
HHHHA

B
invest wait

invest (5, 5) (10, 0)

wait (0, 10) (10.69, 10.69)



Incomplete Markets

I Consider the two–factor market where the discounted project
value V and the discounted a correlated traded asset S follow:

(ST ,VT ) =


(uS0, hV0) with probability p1,
(uS0, `V0) with probability p2,
(dS0, hV0) with probability p3,
(dS0, `V0) with probability p4,

(1)

where 0 < d < 1 < u and 0 < ` < 1 < h, for positive initial
values S0,V0 and historical probabilities p1, p2, p3, p4.

I Let the risk preferences be specified through an exponential
utility U(x) = −e−γx .

I An investment opportunity is model as an option with
discounted payoff Ct = (V − e−rt I )+, for t = 0,T .



European Indifference Price
I Without the opportunity to invest in the project V , a rational

agent with initial wealth x will try to solve the optimization
problem

u0(x) = max
H

E [U(X x ,H
T )], (2)

where
X x ,H
T = ξ + HST = x + H(ST − S0). (3)

is the wealth obtained by keeping ξ dollars in a risk–free cash
account and holding H units of the traded asset S .

I An agent with initial wealth x who pays a price π for the
opportunity to invest in the project will try to solve the
modified optimization problem

uC (x − π) = max
H

E [U(X x−π,H
T + CT )] (4)

I The indifference price for the option to invest in the final
period as the amount πC that solves the equation

u0(x) = uC (x − π). (5)



Explicit solution

Denoting the two possible pay-offs at the terminal time by Ch and
C`, the European indifference price defined in (5) is given by

πC = g(Ch,C`) (6)

where, for fixed parameters (u, d , p1, p2, p3, p4) the function
g : R× R→ R is given by

g(x1, x2) =
q

γ
log

(
p1 + p2

p1e−γx1 + p2e−γx2

)
(7)

+
1− q

γ
log

(
p3 + p4

p3e−γx1 + p4e−γx2

)
,

with

q =
1− d

u − d
.



Early exercise

I When investment at time t = 0 is allowed, it is clear that
immediate exercise of this option will occur whenever its
exercise value (V0 − I )+ is larger than its continuation value
given by πC .

I That is, from the point of view of this agent, the value at
time zero for the opportunity to invest in the project either at
t = 0 or t = T is given by

C0 = max{(V0 − I )+, g((hV0 − e−rT I )+, (`V0 − e−rT I )+)}.



One–period investment revisited

I As a first example, consider again the one–period setting with
I = 90, V0 = 100, R = 0.06.

I For the dynamics of S we choose u = 1.2/1.06, d = 0.8/1.06
(so that q = 0.65 as before) and p1 = p4 = 0.4,
p2 = p3 = 0.1.

I Finally, let us set γ = 0.01.

I Therefore, using the function g to calculate the option value
for the “wait–and–see” strategy, we have the matrix of
outcomes for this game shown in Table 15.

HH
HHHHA

B
invest wait

invest (5, 5) (10, 0)

wait (0, 10) (8.02, 8.02)

I As expected, the utility–based option value is smaller than the
one obtained under risk–neutrality.



Two–period investment revisited

I For the two–period investment game we find
HHH

HHHA
B

invest wait

invest (15, 15) (30, 0)

wait (0, 30) (15.39, 15.39)
HHH

HHHA
B

invest wait

invest (−5,−5) (−10, 0)

wait (0,−10) (1.66, 1.66)

I This gives an indifference option value of 8.86 at time t = 0,
leading to

HHH
HHHA

B
invest wait

invest (5, 5) (10, 0)

wait (0, 10) (8.86, 8.86)



One–period expansion option under monopoly

I Suppose now that a firm faces the decision to expand capacity
for a product with uncertain demand:

Y1 =

{
hY0 with probability p
`Y0 with probability 1− p

, (8)

correlated with a traded asset

I The expansion requires a discounted sunk cost I .

I The state of the firm after the investment decision at time ti is

x(i) =

{
1 if the firm invests at time ti
0 if the does not invest at time ti

(9)

I The discounted cash flow per unit demand for the firm is
denoted by Dx(i).



Definition of project values

I We denote by V (x(i))(i + 1,Yi+1) the project value at time
ti+1 given that the state of the firm at time ti was x(i) and
that the firm will act optimally from time ti+1 onwards.

I Next, denote by v (x(i))(i ,Yi ) the sum of the discounted cash
flow from time ti to ti+1 plus the indifference value of the
project at time ti+1, that is

v (x(i))(i ,Yi ) = Dx(i)Yi+g(V (x(i))(i+1, hYi ),V
(x(i))(i+1, `Yi ))

I For simplicity, we assume in this section that the project
terminates one period after time t1 so that

v (x(1))(1,Y1) = Dx(1)Y1.



The NPV solution

I Assume first that the decision has to be taken at time t0.

I If no expansion occurs, then V (0)(1,Y1) = D0Y1 and

v (0)(0,Y0) = D0Y0 + g(D0hY0,D0`Y0).

I If expansion occurs, then V (1)(1,Y1) = D1Y1 and

v (1)(0,Y0) = D1Y0 + g(D1hY0,D1`Y0).

I Accordingly, the firm should expand provided v (1) − I ≥ v (0),
that is, provided Y0 ≥ Y NPV where Y NPV solves

(D1 − D0)y = g(D0hy ,D0`y)− g(D1hy ,D1`y) + I .



The Real Options solution

I Assume now that the decision can be taken either at t0 or t1.

I If expansion occurs at t0, then we still have

v (1)(0,Y0) = D1Y0 + g(D1hY0,D1`Y0).

I Conversely, if no expansion occur at t0, then
V (0)(1,Y1) = max{D1Y1 − I ,D0Y1} and

v (0)(0,Y0) = D0Y0 + g(V (0)(1, hY0),V (0)(1, `Y0)).

I Accordingly, the firm should expand provided Y0 ≥ Y RO

where Y RO solves

(D1 − D0)y = g(max{D1hy − I ,D0hy},max{D1`y − I ,D0`y})
− g(D1hy ,D1`y) + I .

I It is easy to show that Y RO ≥ Y NPV , so that the firm is less
likely to expand at time t0.



One–period expansion game under duopoly

I Consider now two firms A and B facing the same decision as
before.

I The state of the firm m after the investment decision at time
ti is

xm(i) =

{
1 if firm m invests at time ti
0 if firm m does not invest at time ti

(10)

I Let DxA(ti )xB(ti ) denote the cash–flow per unit of demand of
firm A and DxB(ti )xA(ti ) the cash–flow per unit of demand of
firm B.

I Assume that D10 > D11 > D00 > D01.

I We say that there is FMA is (D10 − D00) > (D11 − D01) and
that there is SMA otherwise.



Definition of project values

I V
(xA(i),xB(i))
m (i + 1,Yi+1) the value of the project for firm m at

time ti+1 given that the state of the firms at time ti was
(xA(i), xB(i)) and assuming that both firms will follow an
equilibrium strategy from ti+1 onwards.

I Next denote by v
(xA(i),xB(i))
m (i ,Yi ) the sum of the cash–flows

for firm m from time ti to time ti+1 with the indifference
value of the project at time ti+1, that is

v
(xA(i),xB (i))
m (i ,Yi )=Dxm(i)xm′ (i)Yi∆t+g

(
V

(xA(i),xB (i))
m (i+1,hYi ),V

(xA(i),xB (i))
m (i+1,`Yi )

)
,

where m′ = B whenever m = A and vice-versa.

I For simplicity, we still assume that the project terminates one
period after time t1 so that

v
(xA(1),xB(1))
m (1,Y1) = Dxm(1)xm′ (1)Y1.



NPV analysis
I Assume for now that firm A decides first and firm B observes

the decision of A before reaching it own (this will be dropped
later !).

I If firm A invests at t0 we have that

v
(1,1)
B (0,Y0) = D11Y0 + g(D11hY0,D11`Y0),

and
v

(1,0)
B (0,Y0) = D01Y0 + g(D01hY0,D01`Y0).

I Therefore, firm B should also invest provided Y0 ≥ Y NPV
B ,

where Y VPN
B solves

(D11 − D01)y = g(D01hy ,D01`y)− g(D11hy ,D11`y) + I

I Similarly, if firm A does not invest t0, then firm B should
invest provided Y0 ≥ Y NPV

A , where Y NPV
A solves

(D10 − D00)y = g(D00hy ,D00`y)− g(D10hy ,D10`y) + I



NPV equilibirum

Proposition

Under first mover advantage (FMA) and assuming that the
investment decision can only be made at time t0, we have that
Y NPV
A ≤ Y NPV

B and:

1. If Y0 ≥ Y NPV
B , then the optimal strategy at time zero is

(xA(0), xB(0)) = (1, 1).

2. If Y NPV
A ≤ Y0 < Y NPV

B , then the optimal strategy at time
zero is (xA(0), xB(0)) = (1, 0).

3. If Y0 < Y NPV
A , then the optimal strategy at time zero is

(xA(0), xB(0)) = (0, 0).

In other words, under FMA, the demand thresholds for firms A and
B are Y NPV

A and Y NPV
B , respectively.



Real Option analysis at time t1

I Suppose now that both firms can either invest at time t0 or
postpone investment to time t1 and are perfectly symmetric.

I We start with time t1, where

V
(1,1)
A (1,Y1) = V

(1,1)
B (1,Y1) = D11Y1 (11)

V
(1,0)
B (1,Y1) = V

(0,1)
A (1,Y1) = max{D11Y1 − I ,D01Y1} (12)

V
(1,0)
A (1,Y1) = V

(0,1)
B (1,Y1) =

{
D11Y1 if D11Y1 − I ≥ D01Y1

D10Y1 otherwise
.

(13)

I Finally, the values V
(0,0)
m (1,Y1) corresponds to the game:

H
HHH

HHA
B

invest wait

invest (D11Y1 − I ,D11Y1 − I ) (D10Y1 − I ,D01Y1)

wait (D01Y1,D10Y1 − I ) (D00Y1,D00Y1)

I When multiple equilibria occur, we select one at random with
equal probabilities.



Real Option analysis at time t0

I The conditional values at time t0 are

v (1,1)
m (0,Y0) = D11Y0 + g

(
V (1,1)
m (1, hY0),V (1,1)

m (1, `Y0)
)

v
(1,0)
B (0,Y0) = v

(0,1)
A (0,Y0) = D01Y0 + g

(
V

(1,0)
B (1, hY0),V

(1,0)
B (1, `Y0)

)
v

(1,0)
A (0,Y0) = v

(0,1)
B (0,Y0) = D10Y0 + g

(
V

(1,0)
A (1, hY0),V

(1,0)
A (1, `Y0)

)
v (0,0)
m (0,Y0) = D00Y0 + g

(
V (0,0)
m (1, hY0),V (0,0)

m (1, `Y0)
)

I Since by definition both firms still have the option to invest at
time t0, they play the game

H
HHH

HHA
B

invest wait

invest (v
(1,1)
A − I , v

(1,1)
B − I ) (v

(1,0)
A − I , v

(1,0)
B )

wait (v
(0,1)
A , v

(0,1)
B − I ) (v

(0,0)
A , v

(0,0)
B )

I Again, when multiple equilibria occur, we select one at
random with equal probabilities.



The N–period game
I Consider now a continuous-time model of the form

dSt = (µ1 − r)Stdt + σ1StdW

dYt = (µ2 − r)Ytdt + σ2Yt(ρdW +
√

1− ρ2dZ ).

I Next take ∆t = T
N and

p1 =
1

4

[
1 + ρ+

√
∆t

(
ν1

σ1
+
ν2

σ2

)]
(14)

p2 =
1

4

[
1− ρ+

√
∆t

(
ν1

σ1
− ν2

σ2

)]
(15)

p3 =
1

4

[
1− ρ+

√
∆t

(
− ν1

σ1
+
ν2

σ2

)]
(16)

p4 =
1

4

[
1 + ρ+

√
∆t

(
− ν1

σ1
− ν2

σ2

)]
(17)

u = e∆y1 = eσ1

√
∆t , d = 1/u = e−σ1

√
∆t (18)

h = e∆y2 = eσ2

√
∆t , ` = 1/h = e−σ2

√
∆t , (19)

where νi = µi − r − σ2
i /2.



Numerical experiments

I In what follows, we use I = 200, r = 0.03, T = 1, N = 500.

I For the dynamics of St we choose µ1 = 0.10 and σ1 = 0.30.

I For the demand Yt we fix σ2 = 0.20 and calculate µ2 as

µ2 = µ2 − δ, (20)

where µ2 is an equilibrium expected rate of return on the
non-traded asset and δ = 0.04 is the below-equilibirum
shortfall rate

I For the equilibrium rate µ2 we use the CAPM relation

λ =
µ1 − r

σ1
(21)

µ2 = r + λρσ2 (22)

I Finally we consider FMA with D10 = 8, D00 = 3, D01 = 0.



Dependence on risk aversion
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Figure: Project values in FMA case for different risk aversions.



Dependence on correlation.
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Figure: Project values in FMA case as function of correlation.



Conclusions

I Real options and game theory can be combined in a dynamic
framework for decision making under uncertainty and
competition.

I The effects of incompleteness and risk aversion can be
incorporated using the concept of indifference pricing.

I Analytic expressions for exponential utility lead to numerical
schemes with the same computational complexity as a
binomial model.

I We have fully implemented a generic example of two firms
and uncertain demand and finite maturity in discrete time.

I Continuous–time versions with infinite maturity are also
possible (extensions of Grenadier (1996)).

I Much more work is necessary for a large number of firms.

I Merci !


