

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

In search of the Minsky moment

M. R. Grasselli

Mathematics and Statistics - McMaster University Joint work with O. Ismail and B. Costa Lima

Imperial College London, March 09, 2011

Outline

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

1 Introduction

- Dynamic General Equilibrium
- Minskyian views
- 2 Asset Price Bubbles
 - Rational bubbles
 - Market inefficiencies
 - The role of credit

3 Banks

- Liquidity preferences
- Bank formation
- 4 Modelling Minsky
 - Basic Goodwin's model
 - Keen's model
 - Ponzi financing

Dynamic General Equilibrium views

In search of the Minsky moment

M. R. Grasselli

Introduction

Dynamic General Equilibrium Minskyian views

Asset Price Bubbles

Banks

- Seek to explain the aggregate economy using theories based on strong microeconomic foundations.
- Collective decisions of rational individuals over a range of variables for both present and future.
- All variables are assumed to be simultaneously in equilibrium.
- The only way the economy can be in disequilibrium at any point in time is through basing decisions on wrong information.
- Money is neutral in its effect on real variables.
- Largely ignore uncertainty by simply subtracting risk premia from all risky returns and treat them as risk-free.

Minsky's alternative interpretation of Keynes

In search of the Minsky moment

M. R. Grasselli

Introduction

Dynamic General Equilibrium Minskyian views

Asset Price Bubbles

Banks

- Neoclassical economics is based on barter paradigm: money is convenient to eliminate the double coincidence of wants.
- In a modern economy, firms make complex portfolios decisions: which assets to hold and how to fund them.
- Financial institutions determine the way funds are available for ownership of capital and production.
- Uncertainty in valuation of cash flows (assets) and credit risk (liabilities) drive fluctuations in real demand and investment.
- Economy is fundamentally cyclical, with each state (boom, crisis, deflation, stagnation, expansion and recovery) containing the elements leading to the next in an identifiable manner.

Minsky's Financial Instability Hypothesis

In search of the Minsky moment

M. R. Grasselli

Introduction

Dynamic General Equilibrium Minskyian views

Asset Price Bubbles

Banks

- Start when the economy is doing well but firms and banks are conservative (perhaps because of memory of previous crisis).
- Most projects succeed "Existing debt is easily validated and units that are heavily in debt prospered: it pays to lever".
- Revised valuation of cash flows, exponential growth in credit, investment and asset prices.
- Highly liquid, low-yielding financial instruments are devalued, rise in corresponding interest rate.
- Beginning of "euphoric economy": increased debt to equity ratios, development of Ponzi financier.
- Viability of business activity is eventually compromised.
- Ponzi financiers have to sell assets, liquidity dries out, asset market is flooded.
- Euphoria becomes a panic.

Defintion

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Rational bubbles

Market inefficiencies The role of credit

 Banks

Modelling Minsky • Consider a representative agent solving

$$\sup_{c} E_t \left[\sum_{j=1}^{\infty} \beta^{j-t} u(c_j) \right]$$

for exogenously given (e_t, d_t) .

• Denoting $q_t = u'(e_t + d_t)p_t$, the FOC for optimality give

$$q_t - \beta E_t [q_{t+1}] = \beta E_t [d_{t+1}u'(e_{t+1} + d_{t+1})]$$

• The general solution is of the form $q_t = F_t + B_t$ where

$$F_t = \sum_{j=1}^{\infty} \beta^j E_t \left[d_{t+j} u' (e_{t+j} + d_{t+j}) \right]$$

is the fundamental price and B_t is a bubble term satisfying $E_t[B_{t+1}] = \beta^{-1}B_t$ (1)

Consequences

- In search of the Minsky moment
- M. R. Grasselli
- Introduction
- Asset Price Bubbles
- Rational bubbles
- Market inefficiencies The role of credit
- Banks
- Modelling Minsky

- $B_t \ge 0$ for all t.
- Any nonzero rational bubble must start with $B_0 > 0$.
- If $T < \infty$, $B_t = 0$ for all $0 \le t \le T$, and this result is robust with respect to diverse information (Tirole 1982).
- If *T* = ∞, bubbles can exit in a myopic rational expectations equilibrium.
- Rational bubbles cannot exist in a fully dynamic REE with finitely many infinitely lived agents.
- They can exit in an overlapping generations models provided 0 < r

 g, where r
 is the asymptotic real interest rate and g is the rate of growth of the economy (Tirole 1985).

The Efficient Markets Hypothesis

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Rational bubbles

Market inefficiencies

The role of credit

Banks

Modelling Minsky

- Denote $R_{t+1} = \frac{p_{t+1} p_t + d_{t+1}}{p_{t+1}}$.
- As we have seen, a first-order rational expectations condition for risk-neutral agents leads to

$$E_t[R_{t+1}] = 1 + r.$$
 (2)

• Solving this recursively leads to

$$p_t = \sum_{j=1}^{\infty} \frac{1}{(1+r)^j} E_t[d_{t+j}],$$
(3)

plus a possible rational bubble term satisfying $E_t[B_{t+1}] = (1+r)B_t$.

- Either (2) or (3) can be taken as an EMH.
- Statistical tests on actual returns indicate that they are not *very* forecastable, leading to the conclusion that the EMH cannot be rejected.

Volatility bounds

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Rational bubbles

Market inefficiencies

The role of credit

Banks

- Suppose that $p_t = E_t[p_t^*]$, where p_t^* is a perfect foresight price.
- Then $p_t^* = p_t + \varepsilon_t$, where ε_t is the forecast error and is uncorrelated with p_t .
- It follows that $\sigma(p_t) \leq \sigma(p_t^*)$.
- This, however, is found to be dramatically violated by data (Shiller 1981).

Violation of Volatility Bounds

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Rational bubbles Market

inefficiencies The role of

credit

Banks

Modelling Minsky

Figure 1

Note: Real Standard and Poor's Composite Stock Price Index (solid line p) and ex posr rational price (dotted line p), 1871–1979, both detrended by dividing a longrun exponential growth factor. The variable p^* is the present value of actual subsequent real detrended dividends, subject to an assumption about the present value in 1979 of dividends thereafter. Data are from Data Set 1, Appendix.

FIGURE 2

Note: Real modified Dow Jones Industrial Average (solid line p) and ex post rational price (dotted line p^*), 1928-1979, both detrended by dividing by a long-run exponential growth factor. The variable p^* is the present value of actual subsequent real detrended dividends, subject to an assumption about the present value in 1979 of dividends thereafter Data are from Data Set 2, Appendix.

Figure: Source: Shiller (1981)

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Rational bubbles

Market inefficiencies

The role of credit

Banks

Modelling Minsky

Alternative models (Shiller, 1984)

• Consider a model where sophisticated investors have a demand function (portion of shares) of the form

$$Q_t^i = \frac{E_t[R_{t+1}] - \alpha}{\phi}.$$
 (4)

- In addition, suppose there are noise traders who react to fads Y_t through a demand function $Q_t^n = Y_t/p_t$.
- In equilibrium we have $Q_t + \frac{Y_t}{p_t} = 1$.
- Inserting this into (4) and solving recursively leads to

$$p_t = \sum_{j=1}^{\infty} \frac{E_t[d_{t+j}] + \phi E_t[Y_{t-1+j}]}{(1+\alpha+\phi)^j}.$$
 (5)

• This is also consistent with prices being not very forecastable.

Other sources of inefficiencies

In search of the Minsky moment

M. R. Grasselli

Introduction

- Asset Price Bubbles
- Rational bubbles

Market inefficiencies

The role of credit

Banks

- Noise trader risk (DeLong, Shleifer, Summers and Waldmann 1990): prices deviate from fundamental value because of uncertainty created by noise traders, who can in some cases earn higher expected returns than sophisticated investors.
- Limits of arbitrage (Shleifer and Vishny 1997): performance based arbitrage lead to fund managers leaving the market exactly when they are needed to restore fundamental value.
- No short-sales and diverse beliefs (Miller 1977, Harrison and Kreps 1978): pessimists sit on sidelines and optimists overbid leading to prices higher than fundamentals.
- Overconfidence (Scheinkman and Xiong 2003): mean reverting confidence levels lead to prices that contain an option to re-sell the asset at a later time.

Financial Intermediation (Allen and Gale, 2000)

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Rational bubbles Market inefficiencies

The role of credit

 Banks

- Suppose there is a continuum of small, risk-neutral investors with no wealth of their own and a continuum of small, risk-neutral banks with B > 0 funds to lend at rate r trading at t = 1, 2.
- Consider a safe asset (s) with return (1 + r) and a risky asset (R) with price at t = 2 given by a random variable p₂ with density h(p₂) on [0, p₂^{max}] and mean p₂.
- In addition, there is a production function f(x) for the economy and an investment cost c(x).

Existence of bubbles

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Rational bubbles Market inefficiencies

The role of credit

Banks

Modelling Minsky

- A representative investor needs to choose quantities Q₁^s and Q₁^R of the safe and unsafe assets at time t = 1 at prices 1 and p₁, respectively.
- The equilibrium price in the presence of banks is then

$$p_1 = \frac{1}{1+r} \left[\frac{\int_{(1+r)p_1}^{p_2^{\max}} p_2 h(p_2) dp_2 - c'(1)}{\Prob[p_2 \ge (1+r)p_1]} \right].$$
(6)

- Define the fundamental value as the price that an investor would pay if he had to use his own money B > 0.
- This leads to

$$p_1^F = \frac{\overline{p_2} - c'(1)}{1 + r}.$$
 (7)

• We can then show that $p_1 \ge p_1^F$ with strict inequality iff $\operatorname{Prob}[p_2 < (1+r)p_1] > 0$

Liquidity preferences

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Liquidity preferences Bank formation

Modelling Minsky

- An asset is illiquid if its liquidation value at an earlier time is less than the present value of its future payoff.
- For example, an asset can pay $1 \le r_1 \le r_2$ at dates T = 0, 1, 2.
- Let $(r_1 = 1, r_2 = R)$ be an illiquid asset and $(r_1 > 1, r_2 < R)$ be a liquid one.
- At time *t* = 0, consumers don't know in which future date they will consume.
- The expected utility for consumers is

$$pU(r_1) + (1-p)U(r_2),$$

where p is the proportion of early consumers.

- Sufficiently risk-averse consumers prefer the liquid asset.
- A similar story holds for entrepreneurs.

A model for a bank, Diamond and Dybvig (1983)

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Liquidity preferences Bank formation

- Banks borrow short and lend long.
- Suppose a bank offers a liquid asset $(r_1 = 1.28, r_2 = 1.813)$ to 100 depositors each with \$1 at t = 0.
- In addition, the bank can invest in an illiquid asset $(r_1 = 1, r_2 = 2)$.
- If w = 1/4, the bank needs to pay $25 \times 1.28 = 32$ at t = 1.
- At t = 2 the remaining depositors receive $\frac{68 \times 2}{75} = 1.813$ and the bank is solvent.
- This is a Nash equilibrium is *all* depositors expect only 25 to withdraw at *t* = 1.
- *But* liquidity preferences are unverifiable private information.
- Another Nash equilibirum consisting of *all* depositors forecasting that everyone will withdraw at *t* = 1.

Our model - the summarized story

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Liquidity preferences Bank formation

- Society
- Liquidity Preference
- Searching for partners
- Learning and Predicting
- Bank birth
- Interbank Links
- Contagion

Society

In search of the Minsky moment

- M. R. Grasselli
- Introduction
- Asset Price Bubbles
- Banks

Liquidity preferences Bank formation

- We have a society of individuals investing at the beginning of each period (t = 0).
- For each individual *i*, an initial preference is drawn from a continuous uniform random variable U_i : the investor is deemed to have short term liquidity preferences if $U_i < 0.5$ and long term liquidity preferences otherwise.
- There is a shock to their preferences at the middle of the period (*t* = 1).
- If the shock is big enough the individual would have wished he made his investment differently.
- At time t = 1, $W_i = \left| \frac{U_i + (-1)^{ran_i} \epsilon_i}{2} \right|$
- If $W_i < 0.5$ the investor wants to become a short term investor, otherwise he wants to be long term investor
- Because of anticipated shocks, individuals explore the society searching to partners to exchange investments.

Searching for partners

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Liquidity preferences Bank formation

- We impose some constrains on the individual capacity to go around and seek other individuals to trade.
- This reflects the inherited limited capability of information gathering and environment knowledge of individual agents.
- We use a combination of von Neumann and Moore neighborhoods:
 - 5 1 6 2 X 3
 - 7 4 8

To join or not to join a bank

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Liquidity preferences Bank formation

- Assume a bank offers a fixed contract promising a payment of $c_1 > 1$ at t = 1 for each unit (dollar) deposited and $1 < c_2 < R$ for t = 2 under the assumption there is no bank run.
- Then agents will join the bank if they have:
 - short term preferences and expect not to change preferences in the next period
 - Short term preferences, expect to change preference and not find a partner to trade
 - Iong term preferences and expects to change preference
- Agents will not join the bank if they have:
 - short term preferences, expect to change and believes he can find a partner
 - Ong term preferences and are confident they will not change

Bank birth

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Liquidity preferences Bank formation

- We follow the work of Howitt and Clower (1999,2007) on the emergence of economic organizations
- With probability 0 < h < 1 an agent will have the 'idea of entrepreneurship'
- Market search for an opportunity to establish a bank
- Establish a bank if he can find x and y such that $x + y \le 1$ and

$$y = c_1 W_i$$
$$Rx = c_2 (1 - W_i)$$

- Individuals become aware of bank existence only if the bank lies in their neighbourhood.
- In addition we give the bank the reach of its new members.

Experiment: bank formation

In search of the Minsky
M. R. Grasselli
Introduction
Asset Price Bubbles
Banks
Liquidity preferences
Bank formation
Modelling Minsky

Experiment (continued): established banks

Figure: Banks at T=100 with h = 0.9, $c_1 = 1.1$, $c_2 = 1.5$ and R = 2.

Experiment (continued): number of depositors

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Liquidity preferences Bank formation

Next steps

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Liquidity preferences Bank formation

Modelling Minsky

- Need to incorporate bank run
- Individuals moving between banks
- Banks form a new kind of agents that can in turn trade with each other to distribute the risk of asymmetric liquidity shocks a la Allen and Gale (2000):

Figure: Networks, complete connected (left), incomplete connected (middle), incomplete disconnected (right)

Goodwin's Model

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Ponzi financing

- Let $N = n_0 e^{\beta t}$ be the labour force, $a = a_0 e^{\alpha t}$ be its productivity and $\lambda = L/N$ be the employment rate.
- Define the total output Y = aL and total capital as $K = \nu Y$.
- Assume that wages satisfy

$$\frac{dw}{dt}=F_w(\lambda)w,$$

where $F_w(\lambda)$ is a Phillips curve.

- Let the wages share of total output be ω and profit share be $\pi=1-\omega.$
- Suppose further that the rate of new investment is given by

$$I = \frac{dK}{dt} = (1 - \omega)Y - \gamma K$$

Differential Equations

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Ponzi financing • It is easy to deduce that this leads to

$$\frac{d\omega}{dt} = \omega(F_w(\lambda) - \alpha) \tag{8}$$

$$\frac{d\lambda}{dt} = \lambda \left(\frac{1-\omega}{\nu} - \alpha - \gamma - \beta \right)$$
(9)

• This system is globally stable and leads to endogenous cycles of employment.

Example 1: basic Goodwin model

In search of the Minsky
M. R. Grasselli
Introduction
Asset Price Bubbles
Banks
Modelling
Minsky Basic Goodwin's
model
Keen's model
r onzi mancing

Example 1 (continued): basic Goodwin model

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Ponzi financing

Keen's extended model

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Ponzi financing • Consider the same model as before, but with a nonlinear investment function $I_g = F_i(\pi_n)$ of the net profit share is

$$\pi_n = 1 - \omega - rd,$$

where d = D/Y and the absolute debt level D evolves according to

$$\frac{dD}{dt} = I_g - \pi_n = rD + F_i(\pi_n) - (1 - \omega)$$

Differential Equations

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Ponzi financing • The corresponding dynamical systems now reads

$$\frac{d\omega}{dt} = \omega(F_w(\lambda) - \alpha) \tag{10}$$

$$\frac{d\lambda}{dt} = \lambda \left(\frac{F_i(\pi_n)}{\nu} - \alpha - \gamma - \beta \right)$$
(11)

$$\frac{dd}{dt} = F_i(\pi_n) - (1 - \omega) - d\left(\frac{F_i(\pi_n)}{\nu} - \gamma\right)$$
(12)

• This system is locally stable but globally unstable.

Example 2: convergent Goodwin model with banks

In search of the Minsky moment
M. R. Grasselli
Introduction
Asset Price Bubbles
Banks
Modelling
Minsky
Basic Goodwin's model
Keen's model
Ponzi financing

Example 2 (continued): convergent Goodwin model with banks

In search of

Example 3: divergent Goodwin model with banks

the Minsky moment			
M. R. Grasselli			
Introduction			
Asset Price Bubbles			
Banks			
Modelling Minsky			
Basic Goodwin's model			

Keen's model Ponzi financing

Example 3 (continued): divergent Goodwin model with banks

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Ponzi financing

Basin of convergence for Goodwin model with banks

lambda

Ponzi financing

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Ponzi financing • To introduce the destabilizing effect of purely speculative investment consider a modified version of the previous model with

$$\frac{dD}{dt} = I_g - \pi_n + P_k,$$

where

$$\frac{dP_k}{dt} = F_p(g)$$

 Here F_p(·) is a increasing nonlinear function of the growth rate of capital assets given by

$$g=\frac{F_i(\pi_n)}{\nu}-\gamma.$$

Effect of Ponzi financing

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Ponzi financing

Next steps

In search of the Minsky moment

M. R. Grasselli

Introduction

Asset Price Bubbles

Banks

Modelling Minsky

Basic Goodwin's model Keen's model Ponzi financing

- Add government (regulatory) sector.
- Model asset prices explicitly.
- Introduce noise (stochastic interest rates, risk premium, etc)
- Thanks !