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What is a graph?

e

® vertices
— edges

—
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Origins of Graph Colouring

Can a geographical map be coloured using

I only 4 colours?



In 1878, A. Cayley represented the four colour problem
using vertices and edges.

® Country

I — Border between countries
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Graphs with triangles are problematic
because:

I Not a proper colouring!



Grotzsch’s Theorem

Any triangle-free planar graph can be

properly coloured using at most 3 colours.
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Non-planar graphs are problematic
because:
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Non-planar graphs are problematic
because:

Triangle-free, but not

- 3-colourable!



Proof of Grotzsch’s Theorem
L L. Kowalik

*Any triangle-free planar graph G is 3-colourable.

* Moreover, if the boundary of the outer face of
G iIs a cycle C of length at most 6, then any
safe 3 -colouring of the boundary can be
extended to a 3-colouring of G.

—




Proof of Grotzsch’s Theorem

Safe Not Safe
(p,b,0,b,p,0) (p,b,0,p,b,0)

—



Proof of Grotzsch’s Theorem
L L. Kowalik

* I[nduction on n, the number of vertices in G.

* Assume true for n-1 or fewer vertices.

—



Case 1

G has an uncoloured vertex v with degree at most 2.




Case 1

G has an uncoloured vertex v with degree at most 2.

Remove v.
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Case 1

G has an uncoloured vertex v with degree at most 2.

Put v back
In G.




Case 1

G has an uncoloured vertex v with degree at most 2.

Colour v with an
. available colour.



Case 2

The boundary C is coloured and has a chord.

C hassize 6 and is
. safely coloured.



Case 2

The boundary C is coloured and has a chord.

If C has a chord,
It must have size
6, because

otherwise there
would be a
triangle in G.




Case 2

The boundary C is coloured and has a chord.

C hassize 6 and is
safely coloured.
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Case 2

The boundary C is coloured and has a chord.

Colour PShby
Induction.




Case 2

The boundary C is coloured and has a chord.

G Is properly
coloured.




Claim 1

If G has a separating cycle S, where S has size at most 6,
then we can complete the proof by induction.

S Is a separating

- cycle.



Claim 1

If G has a separating cycle S, where S has size at most 6,
then we can complete the proof by induction.

Removing S
disconnects the

graph.
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Claim 1

If G has a separating cycle S, where S has size at most 6,
then we can complete the proof by induction.

First colour
everything except
the interior of S
by induction.




Claim 1

If G has a separating cycle S, where S has size at most 6,
then we can complete the proof by induction.

Now colour S and
Its interior by

S Uint(S) induction



Claim 1

If G has a separating cycle S, where S has size at most 6,
then we can complete the proof by induction.

G Is now properly
coloured.




Identifying Vertices

Identifying vertices makes the graph G smaller, and allows
us to use induction.
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Identifying Vertices

Identifying vertices makes the graph G smaller, and allows
us to use induction.

U

@ ®
Must make sure
that identifying
® ® does not create

v a chord

through the
boundary C, or
a triangle.




Proof of Grotzsch’s Theorem

Kowalik uses these techniques when considering
each of the following cases.

* G has a face of size 6 or greater.
* G has a face of size 4.

* G has a face of size 5.

Once all of these cases are considered, the proof is

- complete.



What is list colouring?

- A type of graph colouring in which each vertex Is
assigned a list of potential colours.

{1,2} {1,3}

{1,3) (2,3}

{2,3} {1,2}




A graph is k-list colourable if:

« each vertex has a list size of at most k

* G can be properly coloured regardless
of which colours are assigned to each
vertex’s k-sized list.

{1,2} {1,3}

{1,3}

- {2,3} {1,2}

{2,3}




Relationship between list colouring and
regular colouring:

Reqular colouring is a special case of list colouring where
each vertex Is assigned the same list of colours.

L2y {12}

{1,2} {1,2}

. {1,2} {1,2}




Relationship between list colouring and
regular colouring:

Reqular colouring is a special case of list colouring where
each vertex Is assigned the same list of colours.

{1,2) (1,2)

{1,2}

- 1.2} 1.2} 2-colourable!
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Relationship between list colouring and
regular colouring:

{1,2} {1,3}

{1,3} {2,3}

{2,3} {1,2}

Not 2-list

. colourable!



List Colouring Proof Techniques

* Non-list colouring forces you to rely on the
known properties of planar graphs.

* List colouring allows you to manipulate the size
of a list:




List Colouring Proof Techniques

* Non-list colouring forces you to rely on the
known properties of planar graphs.

* List colouring allows you to manipulate the size
of a list:

: L Colour v.



List Colouring Proof Techniques

* Non-list colouring forces you to rely on the
known properties of planar graphs.

* List colouring allows you to manipulate the size
of a list:




List Colouring Proof Techniques

* Non-list colouring forces you to rely on the
known properties of planar graphs.

* List colouring allows you to manipulate the size
of a list:




List Colouring Proof Techniques

* Non-list colouring forces you to rely on the
known properties of planar graphs.

* List colouring allows you to manipulate the size
of a list:

Colour by
Induction.




List Colouring Proof Techniques

* Non-list colouring forces you to rely on the
known properties of planar graphs.

* List colouring allows you to manipulate the size
of a list:

Add v back in.




Proof of Grotzsch’s Theorem

|»C. Thomassen

Any triangle-free planar graph G is 3-colourable.

—



Theorem 1

Any planar graph without triangles and without
4-cycles is 3-list-colourable.

—



Theorem 1

Any planar graph without triangles and without
4-cycles is 3-list-colourable.

and 1s therefore
3 colourable!




The graph G has the following properties:

* Planar
* No triangles or 4-cycles.

* The only coloured part of G is a 3-colouring
of a path P on the boundary C, where P has

at most 6 vertices.




The graph G has the following properties:

e All vertices not in C are list-3 vertices.

* All vertices in C are list-2 or list-3, except
the coloured vertices of P (which are list-1).

* There iIs no edge joining vertices whose list

have size less than 3 (except for the edges Iin
P).




The graph G has the following properties:




The graph G has the following properties:

Vg2
Vg+1




The graph G has the following properties:




The graph G has the following properties:




The graph G has the following properties:

Delete v, , and
delete its colour
from its
neighbours’ lists.




The graph G has the following properties:

Check to make
sure the
properties of G
still hold, then
colour by
Induction.




The graph G has the following properties:

Check to make
sure the
properties of G
still hold, then
colour by
Induction.




The graph G has the following properties:

Put v, back into bt Voin

Ugq




The graph G has the following properties:




The graph G has the following properties:

Y¢+3 must be a Va+3 fut v

) . q+1

list-3 vertex. “q+4./.—.\.\©
; G




The graph G has the following properties:

Complete the
proof by
considering what
happens when v, 4
Is a list-3, and
when it is a list-2.




Proof of Grotzsch’s Theorem

|»C. Thomassen

Any triangle-free planar graph G is 3-colourable.

Rules out :

* G has no 4-cycles. (rheorem 1)
 Separating 4-cycles.

* Interior facial 4-cycles.

e C iS d 4'CyC|e (Theorem 1)




Extensions of Grotzsch’s Theorem

A planar graph G is 3-colourable if there are:

* At most 3 triangles. 8. Grinbaum (1963)
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Extensions of Grotzsch’s Theorem

A planar graph G is 3-colourable if there are:

* At most 3 triangles. 8. Grinbaum (1963)

* No 5-cycles and all triangles are at least 2
vertices away from each other. gorodin, Glebov (2010)

* No 5-cycles, no 7-cycles, and no triangles
share a common Vvertex. saogang Xu 2006)

—




Future Work

Generalize Grotzsch’s Theorem for more
complicated surfaces:




Future Work

Generalize Grotzsch’s Theorem for more
complicated surfaces:

Torus:

.




Future Work

Torus: 3-colourable in G if it has no triangles
and no quadrilaterals. c. Thomassen (1994)

—



Future Work

Torus: 3-colourable in G If it has no triangles
and no quadrilaterals. c. Thomassen (1994)

» Generalize this to perhaps allow for triangles
at minimum distance k.

By using a result recently obtained by Thomassen and Kawarabayashi (2009):
every planar graph can be decomposed into an independent set and a forest.

—






Discharging

Euler’s Formula;: V+F-M =2

V: number of vertices
F: number of faces
M: number of edges

M= 2.9e9(vi) = D If]

vertices faces

Vi f;

—



