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Proper 

Colouring 



Proper 

Colouring 

Improper 

Colouring 



Can a geographical map be coloured using 

only 4 colours? 



In 1878, A. Cayley represented the four colour problem 

using vertices and edges. 

Country 

Border between countries 



Any triangle-free planar graph can be 

properly coloured using at most 3 colours. 



Any triangle-free planar graph can be 

properly coloured using at most 3 colours. 

Triangle-free Not triangle-free 



Any triangle-free planar graph can be 

properly coloured using at most 3 colours. 

Triangle-free 

Not triangle-free 











Not a proper colouring! 



Any triangle-free planar graph can be 

properly coloured using at most 3 colours. 

Planar Non-Planar 









Triangle-free, but not  

3-colourable! 



•Any triangle-free planar graph G is 3-colourable. 
 

• Moreover, if the boundary of the outer face of   

  G is a cycle C of length at most 6, then any  

  safe 3 -colouring of the boundary can be  

  extended to a 3-colouring of G. 

L. Kowalik 



Safe 
(p,b,o,b,p,o) 

Not Safe 
(p,b,o,p,b,o) 



L. Kowalik 

• Induction on n, the number of vertices in G. 

• Assume true for n-1 or fewer vertices. 



G has an uncoloured vertex v with degree at most 2. 



G has an uncoloured vertex v with degree at most 2. 

Remove v. 



G has an uncoloured vertex v with degree at most 2. 

Induction. 



G has an uncoloured vertex v with degree at most 2. 

Put v back 

in G. 



G has an uncoloured vertex v with degree at most 2. 

Colour v with an 

available colour. 



The boundary C is coloured and has a chord. 

C has size 6 and is 

safely coloured. 



If C has a chord, 

it must have size 

6, because 

otherwise there 

would be a 

triangle in G. 

The boundary C is coloured and has a chord. 



The boundary C is coloured and has a chord. 

C has size 6 and is 

safely coloured. 



Colour P  by 

induction.  
1

The boundary C is coloured and has a chord. 



The boundary C is coloured and has a chord. 



Colour P  by 

induction.  
2

The boundary C is coloured and has a chord. 



The boundary C is coloured and has a chord. 

G is properly 

coloured. 



S is a separating 

cycle. 

If G has a separating cycle S, where S has size at most 6, 

then we can complete the proof by induction. 



If G has a separating cycle S, where S has size at most 6, 

then we can complete the proof by induction. 

Removing S 

disconnects the 

graph. 



S is a separating 

cycle. 

If G has a separating cycle S, where S has size at most 6, 

then we can complete the proof by induction. 



First colour 

everything except 

the interior of S 

by induction. 

If G has a separating cycle S, where S has size at most 6, 

then we can complete the proof by induction. 



Now colour S and 

its interior by 

induction. 

If G has a separating cycle S, where S has size at most 6, 

then we can complete the proof by induction. 



G is now properly 

coloured. 

If G has a separating cycle S, where S has size at most 6, 

then we can complete the proof by induction. 



Identifying vertices makes the graph G smaller, and allows 

us to use induction. 



Identifying vertices makes the graph G smaller, and allows 

us to use induction. 



Identifying vertices makes the graph G smaller, and allows 

us to use induction. 

Must make sure 

that identifying 

does not create 

a chord 

through the 

boundary C, or 

a triangle. 



Kowalik uses these techniques when considering 

each of the following cases: 
 

• G has a face of size 6 or greater. 

• G has a face of size 4. 

• G has a face of size 5. 

Once all of these cases are considered, the proof is  

 complete. 



- A type of graph colouring in which each vertex is 

assigned a list of potential colours.  



• each vertex has a list size of at most k 
 

• G can be properly coloured regardless 

  of which colours are assigned to each 

  vertex’s k-sized list. 



Regular colouring is a special case of list colouring where 

each vertex is assigned the same list of colours. 



Regular colouring is a special case of list colouring where 

each vertex is assigned the same list of colours. 

2-colourable! 











Improper 

colouring! 



Improper 

colouring! 









Improper 

colouring! 



Improper 

colouring! 



Not 2-list 

colourable! 



• Non-list colouring forces you to rely on the 

  known properties of planar graphs. 
 

• List colouring allows you to manipulate the size 

  of a list: 

v 



• Non-list colouring forces you to rely on the 

  known properties of planar graphs. 
 

• List colouring allows you to manipulate the size 

  of a list: 

v 

Colour v. 



• Non-list colouring forces you to rely on the 

  known properties of planar graphs. 
 

• List colouring allows you to manipulate the size 

  of a list: 

v 

Delete v’s colour 

from its 

neighbours’ lists. 



• Non-list colouring forces you to rely on the 

  known properties of planar graphs. 
 

• List colouring allows you to manipulate the size 

  of a list: 

Delete v. 



• Non-list colouring forces you to rely on the 

  known properties of planar graphs. 
 

• List colouring allows you to manipulate the size 

  of a list: 

Colour by 

induction. 



• Non-list colouring forces you to rely on the 

  known properties of planar graphs. 
 

• List colouring allows you to manipulate the size 

  of a list: 

v 

Add v back in. 



Any triangle-free planar graph G is 3-colourable. 
 

C. Thomassen 



Any planar graph without triangles and without  

4-cycles is 3-list-colourable. 
 



Any planar graph without triangles and without  

4-cycles is 3-list-colourable. 
 

and is therefore 

3 colourable! 
 



• Planar 
  

• No triangles or  4-cycles. 
 

• The only coloured part of G is a 3-colouring    

  of a path P on the boundary C, where P has  

  at most 6 vertices. 



• All vertices not in C are list-3 vertices. 
 

• All vertices in C are list-2 or list-3, except 

  the coloured vertices of P (which are list-1). 
 

• There is no edge joining vertices whose list 

   have size less than 3 (except for the edges in 

   P). 



        coloured 

     list-3 

      list-2 



        coloured 

     P 

     list-3 

      list-2 



        coloured 

     list-3 

      list-2 

       may be a list-2 

or a list-3 vertex. 



        coloured 

     list-3 

      list-2 

Suppose         is a 

list-3 vertex. 



        coloured 

     list-3 

      list-2 

Delete     , and 

delete its colour 

from its 

neighbours’ lists. 



        coloured 

     list-3 

      list-2 

Check to make 

sure the 

properties of G 

still hold, then 

colour by 

induction. 



        coloured 

     list-3 

      list-2 

Check to make 

sure the 

properties of G 

still hold, then 

colour by 

induction. 



        coloured 

     list-3 

      list-2 

Put     back into 

G. 



        coloured 

     list-3 

      list-2 

Now suppose         

is a list-2 vertex. 



         must be a 

list-3 vertex. 

        coloured 

     list-3 

      list-2 



    Complete the    

        proof by 

considering what 

happens when         

   is a list-3, and 

when it is a list-2. 

        coloured 

     list-3 

      list-2 



     (Theorem 1) 

     (Theorem 1) 

Rules out : 

• G has no 4-cycles.  

• Separating 4-cycles. 

• Interior facial 4-cycles. 

• C is a 4-cycle.  

Any triangle-free planar graph G is 3-colourable. 
 

C. Thomassen 



• At most 3 triangles. B. Grünbaum (1963) 

A planar graph G is 3-colourable if there are: 



• At most 3 triangles. 
 

• No 5-cycles and all triangles are at least 2 

  vertices away from each other. 

B. Grünbaum (1963) 

Borodin, Raspaud (2000) 

A planar graph G is 3-colourable if there are: 



• At most 3 triangles. 
 

• No 5-cycles and all triangles are at least 2 

  vertices away from each other. 
 

• No 5-cycles, no 7-cycles, and no triangles 

  share a common vertex. 

B. Grünbaum (1963) 

Borodin, Glebov (2010) 

Baogang Xu (2006) 

A planar graph G is 3-colourable if there are: 



Torus: 

Generalize Grötzsch’s Theorem for more 

complicated surfaces:  



Generalize Grötzsch’s Theorem for more 

complicated surfaces:  

Torus: 



Torus: 3-colourable in G if it has no triangles 

and no quadrilaterals. 
 

 

 

C. Thomassen (1994) 



By using a result recently obtained by  Thomassen and Kawarabayashi (2009): 
every planar graph can be decomposed into an independent set and a forest. 

Torus: 3-colourable in G if it has no triangles 

and no quadrilaterals. 

 

• Generalize this to perhaps allow for triangles 

  at minimum distance k. 

 

 

C. Thomassen (1994) 





V: number of vertices 
F: number of faces 
M: number of edges 

Euler’s Formula: V + F – M = 2 
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