The Evolution of Grötzsch's

Theorem

by Lauren DeDieu
Advisor: Dr. James Preen

What is a graph?

vertices

- edges

What is graph colouring?

Proper
Colouring

What is graph colouring?

Proper
 Colouring

Improper
Colouring

Origins of Graph Colouring

Can a geographical map be coloured using only 4 colours?

In 1878, A. Cayley represented the four colour problem using vertices and edges.

- Country
- Border between countries

Grötzsch's Theorem

Any triangle-free planar graph can be properly coloured using at most $\mathbf{3}$ colours.

Grötzsch's Theorem

Any triangle-free planar graph can be properly coloured using at most $\mathbf{3}$ colours.

Triangle-free

Not triangle-free

Grötzsch's Theorem

Any triangle-free planar graph can be properly coloured using at most 3 colours.

Triangle-free

Not triangle-free

Graphs with triangles are problematic because:

Not a proper colouring!

Grötzsch's Theorem

Any triangle-free planar graph can be properly coloured using at most 3 colours.

Planar

Non-Planar

Non-planar graphs are problematic because:

Triangle-free, but not 3-colourable!

Proof of Grötzsch's Theorem
 $\bigsqcup_{\mathbf{L} . \text { Kowalik }}$

- Any triangle-free planar graph G is 3-colourable.
- Moreover, if the boundary of the outer face of G is a cycle C of length at most $\underline{6}$, then any safe 3 -colouring of the boundary can be extended to a 3-colouring of \mathbf{G}.

Proof of Grötzsch's Theorem

Safe
(p,b,o,b,p,o)

Not Safe
(p,b,o,p,b,o)

Proof of Grötzsch's Theorem
 $\hookrightarrow_{\text {L. Kowalik }}$

- Induction on n, the number of vertices in G.
- Assume true for n-1 or fewer vertices.

Case 1

G has an uncoloured vertex v with degree at most 2 .

Case 1

G has an uncoloured vertex v with degree at most 2.

Remove v.

Case 1

G has an uncoloured vertex v with degree at most 2 .

Induction.

Case 1

G has an uncoloured vertex v with degree at most 2 .

> Put v back in G.

Case 1

G has an uncoloured vertex v with degree at most 2.

Colour v with an available colour.

Case 2

The boundary C is coloured and has a chord.

C has size 6 and is safely coloured.

Case 2

The boundary C is coloured and has a chord.

If \mathbf{C} has a chord, it must have size

6, because
otherwise there would be a triangle in \mathbf{G}.

Case 2

The boundary C is coloured and has a chord.

C has size 6 and is safely coloured.

Case 2

The boundary C is coloured and has a chord.

Colour \mathbf{P}_{1} by induction.

Case 2

The boundary C is coloured and has a chord.

Case 2

The boundary C is coloured and has a chord.

Colour P_{2} by induction.

Case 2

The boundary C is coloured and has a chord.

G is properly coloured.

Claim 1

If G has a separating cycle S, where S has size at most 6 , then we can complete the proof by induction.

S is a separating cycle.

Claim 1

If G has a separating cycle S, where S has size at most 6 , then we can complete the proof by induction.

Removing S disconnects the graph.

Claim 1

If G has a separating cycle S, where S has size at most 6 , then we can complete the proof by induction.

S is a separating cycle.

Claim 1

If G has a separating cycle S, where S has size at most 6 , then we can complete the proof by induction.

> First colour everything except the interior of S by induction.

Claim 1

If G has a separating cycle S, where S has size at most 6 , then we can complete the proof by induction.

Now colour S and its interior by induction.

Claim 1

If G has a separating cycle S, where S has size at most 6 , then we can complete the proof by induction.

G is now properly coloured.

Identifying Vertices

Identifying vertices makes the graph G smaller, and allows us to use induction.

Identifying Vertices

Identifying vertices makes the graph G smaller, and allows us to use induction.

Identifying Vertices

Identifying vertices makes the graph G smaller, and allows us to use induction.

> Must make sure that identifying does not create a chord through the boundary C , or a triangle.

Proof of Grötzsch's Theorem

Kowalik uses these techniques when considering each of the following cases:

- G has a face of size 6 or greater.
- G has a face of size 4 .
- G has a face of size 5 .

Once all of these cases are considered, the proof is complete.

What is list colouring?

- A type of graph colouring in which each vertex is assigned a list of potential colours.

A graph is k-list colourable if:

- each vertex has a list size of at most \underline{k}
- G can be properly coloured regardless of which colours are assigned to each vertex's k-sized list.

Relationship between list colouring and regular colouring:

Regular colouring is a special case of list colouring where each vertex is assigned the same list of colours.

Relationship between list colouring and regular colouring:

Regular colouring is a special case of list colouring where each vertex is assigned the same list of colours.

2-colourable!

Relationship between list colouring and regular colouring:

Improper colouring!

Relationship between list colouring and regular colouring:

Improper colouring!

Relationship between list colouring and regular colouring:

Improper colouring!

Relationship between list colouring and regular colouring:

Improper colouring!

Relationship between list colouring and regular colouring:

Not 2-list colourable!

List Colouring Proof Techniques

- Non-list colouring forces you to rely on the known properties of planar graphs.
- List colouring allows you to manipulate the size of a list:

List Colouring Proof Techniques

- Non-list colouring forces you to rely on the known properties of planar graphs.
- List colouring allows you to manipulate the size of list:

List Colouring Proof Techniques

- Non-list colouring forces you to rely on the known properties of planar graphs.
- List colouring allows you to manipulate the size of a list:

Delete v's colour
from its
neighbours' lists.

List Colouring Proof Techniques

- Non-list colouring forces you to rely on the known properties of planar graphs.
- List colouring allows you to manipulate the size of a list:

List Colouring Proof Techniques

- Non-list colouring forces you to rely on the known properties of planar graphs.
- List colouring allows you to manipulate the size of list:

Colour by induction.

List Colouring Proof Techniques

- Non-list colouring forces you to rely on the known properties of planar graphs.
- List colouring allows you to manipulate the size of list:

Proof of Grötzsch's Theorem

\rightarrow C. Thomassen
Any triangle-free planar graph \mathbf{G} is $\mathbf{3}$-colourable.

Theorem 1

Any planar graph without triangles and without 4 -cycles is 3 -list-colourable.

Theorem 1

Any planar graph without triangles and without 4 -cycles is $\mathbf{3 - l i s t - c o l o u r a b l e . ~}$

and is therefore 3 colourable!

The graph G has the following properties:

- Planar
- No triangles or 4-cycles.
- The only coloured part of \mathbf{G} is a 3-colouring of a path P on the boundary C, where P has at most 6 vertices.

The graph G has the following properties:

- All vertices not in \mathbf{C} are list- 3 vertices.
- All vertices in C are list- 2 or list-3, except the coloured vertices of P (which are list-1).
- There is no edge joining vertices whose list have size less than 3 (except for the edges in P).

The graph G has the following properties:

list-2
list-3
© coloured

The graph G has the following properties:

The graph \mathbf{G} has the following properties:

v_{q+2} may be a list-2
or a list- 3 vertex.

v_{q+2}

list-2
list-3

The graph \mathbf{G} has the following properties:

Suppose v_{q+2} is a list-3 vertex.

list-2
list-3
coloured

The graph G has the following properties:

Delete v_{q}, and delete its colour from its neighbours' lists.

list-2
list-3
coloured

The graph G has the following properties:

list-2
list-3
coloured

The graph G has the following properties:

Check to make
sure the
properties of G
still hold, then
colour by
induction.

list-2
list-3
coloured

The graph G has the following properties:

list-2list-3

The graph \mathbf{G} has the following properties:

list-2
list-3

The graph G has the following properties:

v_{q+3} must be a list-3 vertex.

list-2
list-3coloured

The graph G has the following properties:

list-2
list-3
coloured

Proof of Grötzsch's Theorem

${ }_{\rightarrow}$ C. Thomassen
Any triangle-free planar graph G is 3-colourable.

Rules out :

- G has no 4-cycles. ${ }^{\text {(Theorem } 1)}$
- Separating 4-cycles.
- Interior facial 4-cycles.
- C is a 4-cycle. (Theorem 1)

Extensions of Grötzsch's Theorem

A planar graph \mathbf{G} is $\mathbf{3 - c o l o u r a b l e}$ if there are:

- At most 3 triangles. в. Grünbaum (1963)

Extensions of Grötzsch's Theorem

A planar graph \mathbf{G} is $\underline{3-\text { colourable if there are: }}$

- At most 3 triangles. в. Grinnbaum (1963)
- No 5 -cycles and all triangles are at least 2 vertices away from each other. Borodin, Raspaud (2000)

Extensions of Grötzsch's Theorem

A planar graph \mathbf{G} is 3-colourable if there are:

- At most 3 triangles. B. Grünbaum (1963)
- No 5-cycles and all triangles are at least 2 vertices away from each other. Borodin, Glebov (2010)
- No 5-cycles, no 7-cycles, and no triangles share a common vertex. Baogang $x u$ (2006)

Future Work

Generalize Grötzsch's Theorem for more complicated surfaces:

Torus:

Future Work

Generalize Grötzsch's Theorem for more complicated surfaces:

Future Work

Torus: 3-colourable in G if it has no triangles
and no quadrilaterals. c. Thomassen (1994)

Future Work

Torus: 3-colourable in G if it has no triangles and no quadrilaterals. c. Thomassen (1994)

- Generalize this to perhaps allow for triangles at minimum distance k.

By using a result recently obtained by Thomassen and Kawarabayashi (2009): every planar graph can be decomposed into an independent set and a forest.

Thauk You

Discharging

Euler's Formula: $V+F-M=2$

