Math 27,03 - Tutorial #9

Nov. 16th, 17th, 18th, 2015



Tutorial Info:

= Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html

s Office Hours: Mondays 3pm - 5pm (in the Math Help Centre)




Tutorial #8:

= 8.9 Powers of Matrices (Cayley-Hamilton Theorem)




Tutorial #8:

= 8.9 Powers of Matrices (Cayley-Hamilton Theorem)

® 3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)




Tutorial #8:

= 8.9 Powers of Matrices (Cayley-Hamilton Theorem)

® 3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

= 10.2 Homogeneous Linear Systems




8.9 Powers of Matrices (Cayley-Hamilton Theorem)

= Last Tutorial: We found A* of a matrix using diagonalization.
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= Last Tutorial: We found A* of a matrix using diagonalization.

= 1. Find A using the Cayley-Hamilton Theorem, where

A <‘01 _23).




8.9 Powers of Matrices (Cayley-Hamilton Theorem)

= Last Tutorial: We found A* of a matrix using diagonalization.

= 1. Find A using the Cayley-Hamilton Theorem, where

A <‘01 _23).

= Cayley-Hamilton Theorem: An n X n matrix A satisfies its own
characteristic equation.




3.9 Linear Models: Boundary-Value Problems
(Deflection of a Beam)

= Recall: The deflection of a beam can be modelled by the DE

EY = w(x),

where w(x) is the load per unit length, E and [ are constants, and y(x)
is the deflection.




3.9 Linear Models: Boundary-Value Problems
(Deflection of a Beam)

= Recall: The deflection of a beam can be modelled by the DE
Ely® = w(x),

where w(x) is the load per unit length, E and [ are constants, and y(x)
is the deflection.

= Recall: A beam can have various boundary conditions:
0 Free:y" =0,y" =0
0 Embedded: y=0,y =0
0 Simply Supported of Hinged: y =0, y" =0

§



3.9 Linear Models: Boundary-Value Problems
(Deflection of a Beam)

= 2, Suppose a shopkeeper wants to put up a rectangular sign of length
L for his store, and that the deflection of the sign can be modelled by
the fourth-order DE EIy*) = w(x). Identify the appropriate boundary
conditions for the following cases:




3.9 Linear Models: Boundary-Value Problems
(Deflection of a Beam)

= 2, Suppose a shopkeeper wants to put up a rectangular sign of length
L for his store, and that the deflection of the sign can be modelled by
the fourth-order DE EIy*) = w(x). Identify the appropriate boundary
conditions for the following cases:
a) He uses one nail on each side.

= Recall: A beam can have various boundary conditions:
o Free: y" =0,y" =0
0 Embedded: y=0,y =0
o Simply Supported of Hinged: y=0,y" =0

§
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= 2, Suppose a shopkeeper wants to put up a rectangular sign of length
L for his store, and that the deflection of the sign can be modelled by
the fourth-order DE EIy*) = w(x). Identify the appropriate boundary
conditions for the following cases:
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§




3.9 Linear Models: Boundary-Value Problems
(Deflection of a Beam)

= 2, Suppose a shopkeeper wants to put up a rectangular sign of length
L for his store, and that the deflection of the sign can be modelled by
the fourth-order DE EIy*) = w(x). Identify the appropriate boundary
conditions for the following cases:
a) He uses one nail on each side.
b) He uses two nails on each side.
c) He uses three nails on the left side and no nails on the right side.

= Recall: A beam can have various boundary conditions:
o Free: y" =0,y" =0
0 Embedded: y=0,y =0
o Simply Supported of Hinged: y=0,y" =0




3.9 Linear Models: Boundary-Value Problems
(Deflection of a Beam)

= 2, Suppose a shopkeeper wants to put up a rectangular sign of length
L for his store, and that the deflection of the sign can be modelled by
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3.9 Linear Models: Boundary-Value Problems
(Deflection of a Beam)

= 2, Suppose a shopkeeper wants to put up a rectangular sign of length
L for his store, and that the deflection of the sign can be modelled by
the fourth-order DE EIy*) = w(x). Identify the appropriate boundary
conditions for the following cases:
a) He uses one nail on each side.
b) He uses two nails on each side.
c) He uses three nails on the left side and no nails on the right side.
d) He uses two nails on the left side and a stack of crates on the right side.

= 3. Find the deflection, y(x), in d) if w(x) = wy a constant, and
0<x<L.

= Recall: A beam can have various boundary conditions:
0 Free: y" =0,y" =0
0 Embedded: y=0,y =0
o Simply Supported of Hinged: y=0,y’ =0




10.2 Homogeneous Linear Systems

= 4. a) Solve the homogeneous system of linear DE’s:

X = (2 _41>X,X(O) =[]




10.2 Homogeneous Linear Systems

= 4. a) Solve the homogeneous system of linear DE’s:
6 —1 5
X’:(S 4>X,X(O):[8].

= Recall: Consider the homogeneous linear DE X' = AX. If A = o + i
is an eigenvalue of the coefficient matrix A, with corresponding
eigenvector v = B + B, then two linearly independent solutions of
this system on (—oo, o) are:

X, = e™ [Bicos(Bt) — Bysin(f1)]
Xy = e [B]Sin(ﬁt) +BQCOS(BZ)] .

§



10.2 Homogeneous Linear Systems

= 4. a) Solve the homogeneous system of linear DE’s:
6 —1 5
X’:(S 4>X,X(O):[8].

= Recall: Consider the homogeneous linear DE X' = AX. If A = o + i
is an eigenvalue of the coefficient matrix A, with corresponding
eigenvector v = B + B, then two linearly independent solutions of
this system on (—oo, o) are:

X, = e™ [Bicos(Bt) — Bysin(f1)]
Xy = e [B]Sin(ﬁt) +BQCOS(BZ)] .

= b) Sketch the solution curve corresponding to this IVP.

§




10.2 Homogeneous Linear Systems

X =Gy

Y’ = Gty
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10.2 Homogeneous Linear Systems

X = By

V' = Gedy
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10.2 Homogeneous Linear Systems
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10.2 Homogeneous Linear Systems

=By
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