Math 2Z03 - Tutorial \#9

Nov. 16th, 17th, 18th, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm - 5pm (in the Math Help Centre)

Tutorial \#8:

- 8.9 Powers of Matrices (Cayley-Hamilton Theorem)

Tutorial \#8:

- 8.9 Powers of Matrices (Cayley-Hamilton Theorem)
- 3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

Tutorial \#8:

- 8.9 Powers of Matrices (Cayley-Hamilton Theorem)
- 3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)
- 10.2 Homogeneous Linear Systems

8.9 Powers of Matrices (Cayley-Hamilton Theorem)

- Last Tutorial: We found A^{k} of a matrix using diagonalization.

8.9 Powers of Matrices (Cayley-Hamilton Theorem)

- Last Tutorial: We found A^{k} of a matrix using diagonalization.
- 1. Find A^{k} using the Cayley-Hamilton Theorem, where

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
0 & -3
\end{array}\right)
$$

8.9 Powers of Matrices (Cayley-Hamilton Theorem)

- Last Tutorial: We found A^{k} of a matrix using diagonalization.
- 1. Find A^{k} using the Cayley-Hamilton Theorem, where

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
0 & -3
\end{array}\right)
$$

- Cayley-Hamilton Theorem: An $n \times n$ matrix A satisfies its own characteristic equation.

3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

- Recall: The deflection of a beam can be modelled by the DE

$$
E I y^{(4)}=w(x)
$$

where $w(x)$ is the load per unit length, E and I are constants, and $y(x)$ is the deflection.

3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

- Recall: The deflection of a beam can be modelled by the DE

$$
E I y^{(4)}=w(x)
$$

where $w(x)$ is the load per unit length, E and I are constants, and $y(x)$ is the deflection.

- Recall: A beam can have various boundary conditions:
\square Free: $y^{\prime \prime}=0, y^{\prime \prime \prime}=0$
\square Embedded: $y=0, y^{\prime}=0$
\square Simply Supported of Hinged: $y=0, y^{\prime \prime}=0$

3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

- 2. Suppose a shopkeeper wants to put up a rectangular sign of length L for his store, and that the deflection of the sign can be modelled by the fourth-order DE EIy ${ }^{(4)}=w(x)$. Identify the appropriate boundary conditions for the following cases:

3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

- 2. Suppose a shopkeeper wants to put up a rectangular sign of length L for his store, and that the deflection of the sign can be modelled by the fourth-order DE EIy ${ }^{(4)}=w(x)$. Identify the appropriate boundary conditions for the following cases:
a) He uses one nail on each side.
- Recall: A beam can have various boundary conditions:
\square Free: $y^{\prime \prime}=0, y^{\prime \prime \prime}=0$
\square Embedded: $y=0, y^{\prime}=0$
\square Simply Supported of Hinged: $y=0, y^{\prime \prime}=0$

3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

- 2. Suppose a shopkeeper wants to put up a rectangular sign of length L for his store, and that the deflection of the sign can be modelled by the fourth-order DE EIy ${ }^{(4)}=w(x)$. Identify the appropriate boundary conditions for the following cases:
a) He uses one nail on each side.
b) He uses two nails on each side.
- Recall: A beam can have various boundary conditions:
\square Free: $y^{\prime \prime}=0, y^{\prime \prime \prime}=0$
\square Embedded: $y=0, y^{\prime}=0$
\square Simply Supported of Hinged: $y=0, y^{\prime \prime}=0$

3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

- 2. Suppose a shopkeeper wants to put up a rectangular sign of length L for his store, and that the deflection of the sign can be modelled by the fourth-order DE EIy ${ }^{(4)}=w(x)$. Identify the appropriate boundary conditions for the following cases:
a) He uses one nail on each side.
b) He uses two nails on each side.
c) He uses three nails on the left side and no nails on the right side.
- Recall: A beam can have various boundary conditions:
\square Free: $y^{\prime \prime}=0, y^{\prime \prime \prime}=0$
\square Embedded: $y=0, y^{\prime}=0$
\square Simply Supported of Hinged: $y=0, y^{\prime \prime}=0$

3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

- 2. Suppose a shopkeeper wants to put up a rectangular sign of length L for his store, and that the deflection of the sign can be modelled by the fourth-order DE EIy ${ }^{(4)}=w(x)$. Identify the appropriate boundary conditions for the following cases:
a) He uses one nail on each side.
b) He uses two nails on each side.
c) He uses three nails on the left side and no nails on the right side.
d) He uses two nails on the left side and a stack of crates on the right side.
- Recall: A beam can have various boundary conditions:
\square Free: $y^{\prime \prime}=0, y^{\prime \prime \prime}=0$
\square Embedded: $y=0, y^{\prime}=0$
\square Simply Supported of Hinged: $y=0, y^{\prime \prime}=0$

3.9 Linear Models: Boundary-Value Problems (Deflection of a Beam)

- 2. Suppose a shopkeeper wants to put up a rectangular sign of length L for his store, and that the deflection of the sign can be modelled by the fourth-order DE EIy ${ }^{(4)}=w(x)$. Identify the appropriate boundary conditions for the following cases:
a) He uses one nail on each side.
b) He uses two nails on each side.
c) He uses three nails on the left side and no nails on the right side.
d) He uses two nails on the left side and a stack of crates on the right side.
- 3. Find the deflection, $y(x)$, in d) if $w(x)=w_{0}$ a constant, and $0<x<L$.
- Recall: A beam can have various boundary conditions:
\square Free: $y^{\prime \prime}=0, y^{\prime \prime \prime}=0$
\square Embedded: $y=0, y^{\prime}=0$
\square Simply Supported of Hinged: $y=0, y^{\prime \prime}=0$

10.2 Homogeneous Linear Systems

- 4. a) Solve the homogeneous system of linear DE's:

$$
X^{\prime}=\left(\begin{array}{cc}
6 & -1 \\
5 & 4
\end{array}\right) X, X(0)=\left[\begin{array}{c}
-2 \\
8
\end{array}\right] .
$$

10.2 Homogeneous Linear Systems

- 4. a) Solve the homogeneous system of linear DE's:

$$
X^{\prime}=\left(\begin{array}{cc}
6 & -1 \\
5 & 4
\end{array}\right) X, X(0)=\left[\begin{array}{c}
-2 \\
8
\end{array}\right]
$$

- Recall: Consider the homogeneous linear DE $X^{\prime}=A X$. If $\lambda=\alpha+\beta i$ is an eigenvalue of the coefficient matrix A, with corresponding eigenvector $v=B_{1}+B_{2} i$, then two linearly independent solutions of this system on $(-\infty, \infty)$ are:

$$
\begin{gathered}
X_{1}=e^{\alpha t}\left[B_{1} \cos (\beta t)-B_{2} \sin (\beta t)\right] \\
X_{2}=e^{\alpha t}\left[B_{1} \sin (\beta t)+B_{2} \cos (\beta t)\right] .
\end{gathered}
$$

10.2 Homogeneous Linear Systems

- 4. a) Solve the homogeneous system of linear DE's:

$$
X^{\prime}=\left(\begin{array}{cc}
6 & -1 \\
5 & 4
\end{array}\right) X, X(0)=\left[\begin{array}{c}
-2 \\
8
\end{array}\right]
$$

- Recall: Consider the homogeneous linear DE $X^{\prime}=A X$. If $\lambda=\alpha+\beta i$ is an eigenvalue of the coefficient matrix A, with corresponding eigenvector $v=B_{1}+B_{2} i$, then two linearly independent solutions of this system on $(-\infty, \infty)$ are:

$$
\begin{gathered}
X_{1}=e^{\alpha t}\left[B_{1} \cos (\beta t)-B_{2} \sin (\beta t)\right] \\
X_{2}=e^{\alpha t}\left[B_{1} \sin (\beta t)+B_{2} \cos (\beta t)\right] .
\end{gathered}
$$

- b) Sketch the solution curve corresponding to this IVP.

10.2 Homogeneous Linear Systems

10.2 Homogeneous Linear Systems

10.2 Homogeneous Linear Systems

10.2 Homogeneous Linear Systems

