Math 2Z03 - Tutorial \# 8

Nov. 9th, 10th, 11th, 2015

Tutorial Info:

- Review Session: Monday Nov. 16th, 7-9pm, JHE264
- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm - 5pm (in the Math Help Centre)

Tutorial \#8:

- 3.9 Linear Models: Boundary-Value Problems (Eigenfunctions)
- 8.8 Eigenvalues and Eigenvectors
- 8.9 Powers of Matrices (Cayley-Hamilton Theorem)
- 8.10 Symmetric and Orthogonal Matrices
- 8.12 Diagonalization

3.9 Linear Models: Boundary-Value Problems (Eigenfunctions)

- 1. Find the eigenvalues and eigenfunctions for the BVP $y^{\prime \prime}+\lambda y=0$, $y(0)=0, y(\pi)=0$.
- Recall: If the homogeneous BVP involves a parameter λ, then the values of λ for which it has at least one nontrivial solution (i.e. not the zero solution) are called eigenvalues and the corresponding functions are called eigenfunctions.

8.8 Eigenvalues and Eigenvectors

- 2. Consider $A=\left(\begin{array}{cc}8 & 9 \\ -6 & 7\end{array}\right)$.
- a) What are the eigenvalues of A ?
- Recall: If A is square, then a nonzero vector x is called an eigenvector of A if $A x=\lambda x$ for some scalar λ. The scalar λ is called an eigenvalue of A and x is its corresponding eigenvector.
- b) Find all eigenvectors of A.
- c) Is A invertible?
- Recall: A is invertible if and only if $\lambda=0$ is NOT an eigenvalue of A.

8.8 Eigenvalues and Eigenvectors

- 3. Consider $A=\left(\begin{array}{cc}5 & -3 \\ a & b\end{array}\right)$. Suppose $x=\binom{1}{1}$ is an eigenvector of A. What must the eigenvalue corresponding to x be?

8.9 Powers of Matrices (Cayley-Hamilton Theorem)

- 4. Consider $B=\left(\begin{array}{ccc}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right)$.

Find B^{-1} using the Cayley-Hamilton Theorem.

- Cayley-Hamilton Theorem: An $n \times n$ matrix A satisfies its own characteristic equation.

8.10 Symmetric and Orthogonal Matrices

- 5. Consider $C=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
- a) Is C orthogonal?
- Recall: An $n \times n$ nonsingular matrix A is orthogonal if $A^{-1}=A^{T}$.
- b) Is C symmetric?
- Recall: An $n \times n$ matrix A is symmetric if $A=A^{T}$.
- c) Does C have real eigenvalues?
- Theorem 8.10.1: If A is a symmetric matrix with real entries, then the eigenvalues of A are real.

8.12 Diagonalization

- 6. $\mathrm{Consider} A=\left(\begin{array}{ccc}-2 & -27 & 9 \\ 0 & -2 & 0 \\ 0 & -18 & 4\end{array}\right)$. Find A^{k}.

