Math 2Z03 - Tutorial \# 7

Nov. 2nd, 3rd, 4th, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm - 5pm (in the Math Help Centre)

Tutorial \#7:

- Quick Linear Algebra Review

Tutorial \#7:

- Quick Linear Algebra Review
- 3.5 Variation of Parameters

Tutorial \#7:

- Quick Linear Algebra Review
- 3.5 Variation of Parameters
- 3.8 Linear Models: IVP's
\square Spring/Mass Systems
- LRC-Series Circuits

Quick Linear Algebra Review

- Equivalent Statements:

Quick Linear Algebra Review

- Equivalent Statements:
- We know several equivalent statements, where A is a $n \times n$ matrix:

Quick Linear Algebra Review

- Equivalent Statements:
- We know several equivalent statements, where A is a $n \times n$ matrix:
(a) A is invertible.

Quick Linear Algebra Review

- Equivalent Statements:
- We know several equivalent statements, where A is a $n \times n$ matrix:
(a) A is invertible.
(b) $A x=0$ has only the trivial solution.

Quick Linear Algebra Review

- Equivalent Statements:
- We know several equivalent statements, where A is a $n \times n$ matrix:
(a) A is invertible.
(b) $A x=0$ has only the trivial solution.
(c) The reduced row echelon form of A is I_{n}.

Quick Linear Algebra Review

- Equivalent Statements:
- We know several equivalent statements, where A is a $n \times n$ matrix:
(a) A is invertible.
(b) $A x=0$ has only the trivial solution.
(c) The reduced row echelon form of A is I_{n}.
(d) A is expressible as the product of elementary matrices.

Quick Linear Algebra Review

- Equivalent Statements:
- We know several equivalent statements, where A is a $n \times n$ matrix:
(a) A is invertible.
(b) $A x=0$ has only the trivial solution.
(c) The reduced row echelon form of A is I_{n}.
(d) A is expressible as the product of elementary matrices.
(e) $A x=b$ has exactly one solution for every $n \times 1$ matrix b.

Quick Linear Algebra Review

- Properties of Determinants:

Quick Linear Algebra Review

- Properties of Determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$

Quick Linear Algebra Review

- Properties of Determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

Quick Linear Algebra Review

- Properties of Determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(c) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.

Quick Linear Algebra Review

- Properties of Determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(c) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
(d) $\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is invertible.

Quick Linear Algebra Review

- Properties of Determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(c) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
(d) $\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is invertible.
(e) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Quick Linear Algebra Review

- Properties of Determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(c) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
(d) $\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is invertible.
(e) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
- Inverse Properties:

Quick Linear Algebra Review

- Properties of Determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(c) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
(d) $\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is invertible.
(e) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
- Inverse Properties:
(a) $\left(A^{-1}\right)^{-1}=A$

Quick Linear Algebra Review

- Properties of Determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(c) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
(d) $\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is invertible.
(e) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
- Inverse Properties:
(a) $\left(A^{-1}\right)^{-1}=A$
(b) $(A B)^{-1}=B^{-1} A^{-1}$

Quick Linear Algebra Review

- Properties of Determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(c) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
(d) $\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is invertible.
(e) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
- Inverse Properties:
(a) $\left(A^{-1}\right)^{-1}=A$
(b) $(A B)^{-1}=B^{-1} A^{-1}$
(c) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Quick Linear Algebra Review

- Transpose Properties:

Quick Linear Algebra Review

- Transpose Properties:
(a) $\left(A^{T}\right)^{T}=A$

Quick Linear Algebra Review

- Transpose Properties:
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$

Quick Linear Algebra Review

- Transpose Properties:
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$
(c) $(A B)^{T}=B^{T} A^{T}$

Quick Linear Algebra Review

- Transpose Properties:
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$
(c) $(A B)^{T}=B^{T} A^{T}$
(d) $(k A)^{T}=k A^{T}$ for a scalar k

Quick Linear Algebra Review

- Transpose Properties:
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$
(c) $(A B)^{T}=B^{T} A^{T}$
(d) $(k A)^{T}=k A^{T}$ for a scalar k
- The rank of an $m \times n$ matrix $A, \operatorname{rank}(A)$, is the maximum number of linearly independent row vectors in A.

Quick Linear Algebra Review

- Transpose Properties:
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A+B)^{T}=A^{T}+B^{T}$
(c) $(A B)^{T}=B^{T} A^{T}$
(d) $(k A)^{T}=k A^{T}$ for a scalar k
- The rank of an $m \times n$ matrix $A, \operatorname{rank}(A)$, is the maximum number of linearly independent row vectors in A.
- In other words, the reduced row echelon form of A will have exactly $\operatorname{rank}(A)$ nonzero rows.

Quick Linear Algebra Review

- 1. Solve the linear system of equations

$$
\begin{array}{r}
3 x+2 y+z=1 \\
5 x+4 y+2 z=-1 .
\end{array}
$$

Quick Linear Algebra Review

- 1. Solve the linear system of equations

$$
\begin{array}{r}
3 x+2 y+z=1 \\
5 x+4 y+2 z=-1 .
\end{array}
$$

- Recall: For any system of equations, IF a solution exists, then \# free variables = \# of columns - \# of leading 1's.

Quick Linear Algebra Review

- 1. Solve the linear system of equations

$$
\begin{array}{r}
3 x+2 y+z=1 \\
5 x+4 y+2 z=-1 .
\end{array}
$$

- Recall: For any system of equations, IF a solution exists, then \# free variables = \# of columns - \# of leading 1's.
- 2. Find the inverse of $\left(\begin{array}{lll}1 & 1 & 1 \\ 6 & 7 & 5 \\ 3 & 2 & 3\end{array}\right)$ using row operations.

Quick Linear Algebra Review

- 3. Find the inverse of $\left(\begin{array}{ccc}0 & 2 & 1 \\ -1 & -3 & 1 \\ -2 & -1 & -2\end{array}\right)$ using the adjoint method.

Quick Linear Algebra Review

- 3. Find the inverse of $\left(\begin{array}{ccc}0 & 2 & 1 \\ -1 & -3 & 1 \\ -2 & -1 & -2\end{array}\right)$ using the adjoint method.
- 4. Find the determinant of $\left(\begin{array}{lll}3 & 2 & 4 \\ 1 & 1 & 2 \\ 1 & 5 & 3\end{array}\right)$.

3.6 Cauchy-Euler Equations

- A linear DE of the form

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{1} x y^{\prime}+a_{0} y=g(x)
$$

is known as a Cauchy-Euler equation.

3.6 Cauchy-Euler Equations

- Method of Solution \# 1:

3.6 Cauchy-Euler Equations

- Method of Solution \# 1:

1. Solve the corresponding homogeneous equation

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{1} x y^{\prime}+a_{0} y=0
$$

by trying a solution of the form $y=x^{m}$. i.e. Plug $y=x^{m}$ into the equation.

3.6 Cauchy-Euler Equations

- Method of Solution \# 1:

1. Solve the corresponding homogeneous equation

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{1} x y^{\prime}+a_{0} y=0
$$

by trying a solution of the form $y=x^{m}$. i.e. Plug $y=x^{m}$ into the equation.
2. Find all roots to the equation on $(0, \infty)$. i.e. Factor x^{m} out and find the roots of the corresponding auxiliary equation.

3.6 Cauchy-Euler Equations

- Method of Solution \# 1:

1. Solve the corresponding homogeneous equation

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{1} x y^{\prime}+a_{0} y=0
$$

by trying a solution of the form $y=x^{m}$. i.e. Plug $y=x^{m}$ into the equation.
2. Find all roots to the equation on $(0, \infty)$. i.e. Factor x^{m} out and find the roots of the corresponding auxiliary equation.
3. Analogous to 3.3, we have three cases:

3.6 Cauchy-Euler Equations

- Method of Solution \# 1:

1. Solve the corresponding homogeneous equation

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{1} x y^{\prime}+a_{0} y=0
$$

by trying a solution of the form $y=x^{m}$. i.e. Plug $y=x^{m}$ into the equation.
2. Find all roots to the equation on $(0, \infty)$. i.e. Factor x^{m} out and find the roots of the corresponding auxiliary equation.
3. Analogous to 3.3, we have three cases:
a) If there are k distinct roots m_{1}, \ldots, m_{k}, the general solution contains a linear combination of the functions $x^{m_{1}}, \ldots, x^{m_{k}}$.

3.6 Cauchy-Euler Equations

- Method of Solution \# 1:

1. Solve the corresponding homogeneous equation

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{1} x y^{\prime}+a_{0} y=0
$$

by trying a solution of the form $y=x^{m}$. i.e. Plug $y=x^{m}$ into the equation.
2. Find all roots to the equation on $(0, \infty)$. i.e. Factor x^{m} out and find the roots of the corresponding auxiliary equation.
3. Analogous to 3.3, we have three cases:
a) If there are k distinct roots m_{1}, \ldots, m_{k}, the general solution contains a linear combination of the functions $x^{m_{1}}, \ldots, x^{m_{k}}$.
b) If there is a root m of multiplicity r, then the general solution contains a linear combination of the functions $x^{m}, x^{m} \ln x, x^{m}(\ln x)^{2}, \ldots, x^{m}(\ln x)^{r-1}$.

3.6 Cauchy-Euler Equations

- Method of Solution \# 1:

1. Solve the corresponding homogeneous equation

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{1} x y^{\prime}+a_{0} y=0
$$

by trying a solution of the form $y=x^{m}$. i.e. Plug $y=x^{m}$ into the equation.
2. Find all roots to the equation on $(0, \infty)$. i.e. Factor x^{m} out and find the roots of the corresponding auxiliary equation.
3. Analogous to 3.3, we have three cases:
a) If there are k distinct roots m_{1}, \ldots, m_{k}, the general solution contains a linear combination of the functions $x^{m_{1}}, \ldots, x^{m_{k}}$.
b) If there is a root m of multiplicity r, then the general solution contains a linear combination of the functions $x^{m}, x^{m} \ln x, x^{m}(\ln x)^{2}, \ldots, x^{m}(\ln x)^{r-1}$.
c) If there is a complex conjugate pair $\alpha \pm \beta i$, then the general solution contains the linear combination $x^{\alpha}\left[c_{1} \cos (\beta \ln x)+c_{2} \sin (\beta \ln x)\right]$, for constants c_{1}, c_{2}.

3.6 Cauchy-Euler Equations

- Method of Solution \# 1:

1. Solve the corresponding homogeneous equation

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{1} x y^{\prime}+a_{0} y=0
$$

by trying a solution of the form $y=x^{m}$. i.e. Plug $y=x^{m}$ into the equation.
2. Find all roots to the equation on $(0, \infty)$. i.e. Factor x^{m} out and find the roots of the corresponding auxiliary equation.
3. Analogous to 3.3, we have three cases:
a) If there are k distinct roots m_{1}, \ldots, m_{k}, the general solution contains a linear combination of the functions $x^{m_{1}}, \ldots, x^{m_{k}}$.
b) If there is a root m of multiplicity r, then the general solution contains a linear combination of the functions $x^{m}, x^{m} \ln x, x^{m}(\ln x)^{2}, \ldots, x^{m}(\ln x)^{r-1}$.
c) If there is a complex conjugate pair $\alpha \pm \beta i$, then the general solution contains the linear combination $x^{\alpha}\left[c_{1} \cos (\beta \ln x)+c_{2} \sin (\beta \ln x)\right]$, for constants c_{1}, c_{2}.
4. Use Variation of Parameters to find a particular solution to the original nonhomogeneous equation.

3.6 Cauchy-Euler Equations

- Method of Solution \# 2: (for 2nd-order Cauchy Euler Equations on $(0, \infty)$)

3.6 Cauchy-Euler Equations

- Method of Solution \# 2: (for 2nd-order Cauchy Euler Equations on $(0, \infty)$)

1. Make the substitution $x=e^{t}$. Using this substitution and the chain rule, the corresponding homogeneous Cauchy-Euler equation

$$
a_{2} x^{2} y^{\prime \prime}+a_{1} x y^{\prime}+a_{0} y=0
$$

is transformed into the linear DE with constant coefficients

$$
a_{2} \frac{d^{2} y(t)}{d t^{2}}+\left(a_{1}-a_{2}\right) \frac{d y(t)}{d t}+a_{0} y(t)=0
$$

3.6 Cauchy-Euler Equations

- Method of Solution \# 2: (for 2nd-order Cauchy Euler Equations on $(0, \infty)$)

1. Make the substitution $x=e^{t}$. Using this substitution and the chain rule, the corresponding homogeneous Cauchy-Euler equation

$$
a_{2} x^{2} y^{\prime \prime}+a_{1} x y^{\prime}+a_{0} y=0
$$

is transformed into the linear DE with constant coefficients

$$
a_{2} \frac{d^{2} y(t)}{d t^{2}}+\left(a_{1}-a_{2}\right) \frac{d y(t)}{d t}+a_{0} y(t)=0
$$

2. Solve this new DE using the methods from §3.3.

3.6 Cauchy-Euler Equations

- Method of Solution \# 2: (for 2nd-order Cauchy Euler Equations on $(0, \infty)$)

1. Make the substitution $x=e^{t}$. Using this substitution and the chain rule, the corresponding homogeneous Cauchy-Euler equation

$$
a_{2} x^{2} y^{\prime \prime}+a_{1} x y^{\prime}+a_{0} y=0
$$

is transformed into the linear DE with constant coefficients

$$
a_{2} \frac{d^{2} y(t)}{d t^{2}}+\left(a_{1}-a_{2}\right) \frac{d y(t)}{d t}+a_{0} y(t)=0
$$

2. Solve this new DE using the methods from §3.3.
3. Switch back to the original variables $t=\ln x$.

3.6 Cauchy-Euler Equations

- Method of Solution \# 2: (for 2nd-order Cauchy Euler Equations on $(0, \infty)$)

1. Make the substitution $x=e^{t}$. Using this substitution and the chain rule, the corresponding homogeneous Cauchy-Euler equation

$$
a_{2} x^{2} y^{\prime \prime}+a_{1} x y^{\prime}+a_{0} y=0
$$

is transformed into the linear DE with constant coefficients

$$
a_{2} \frac{d^{2} y(t)}{d t^{2}}+\left(a_{1}-a_{2}\right) \frac{d y(t)}{d t}+a_{0} y(t)=0
$$

2. Solve this new DE using the methods from §3.3.
3. Switch back to the original variables $t=\ln x$.
4. For a nonhomogenous DE, you can use this substitution on the RHS too, and solve using undetermined coefficients, then sub. back. OR, First go back to the original variables, then find a particular solution using Variation of Parameters.

3.6 Cauchy-Euler Equations

- 5. Find the general solution to the following:

3.6 Cauchy-Euler Equations

- 5. Find the general solution to the following:
a) $x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=x^{2}$

3.6 Cauchy-Euler Equations

- 5. Find the general solution to the following:
a) $x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=x^{2}$
b) $x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0$

3.6 Cauchy-Euler Equations

- 5. Find the general solution to the following:
a) $x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=x^{2}$
b) $x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0$
c) $x^{3} y^{\prime \prime \prime}-6 y=0$

3.6 Cauchy-Euler Equations

- 5. Find the general solution to the following:
a) $x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=x^{2}$
b) $x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0$
c) $x^{3} y^{\prime \prime \prime}-6 y=0$
d) $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$

3.8 Spring/Mass Systems

- 6. When a mass of 2 kg is attached to a spring whose constant is $32 \mathrm{~N} / \mathrm{m}$, it comes to rest in the equilibrium position. Starting at $t=0$, a force equal to $f(t)=68 e^{-2 t} \cos (4 t)$ is applied to the system.
a) Find the equation of motion in the absence of damping.
b) What is the amplitude of vibrations after a very long time?

