Math 2Z03 - Tutorial \# 6

Oct. 26th, 27th, 28th, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm - 5pm (in the Math Help Centre)

Tutorial \#6:

- 3.4 Undetermined Coefficients
- 3.5 Variation of Parameters

3.4 Undetermined Coefficients

- Undetermined Coefficients: a method of solution for finding a particular solution to a linear differential equation with constant coefficients

$$
a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(x)
$$

where $g(x)$ is a polynomial, exponential $e^{a x}$, sine, cosine, or some sum/product of these function.

3.4 Undetermined Coefficients

- Method of Solution:

1. Find the general solution, y_{c}, to the associated homogeneous equation

$$
a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(x) .
$$

2. Choose a trial particular solution, $y_{p_{i}}$ for each term in $g(x)$.
3. If any $y_{p_{i}}$ contains terms that duplicate terms in y_{c}, then multiply $y_{p_{i}}$ by x^{n}, where n is the smallest possible integer that eliminate the duplication.
4. Plug the sum of the terms found in Step 3, y_{p}, into the original DE and solve for the undetermined coefficients.
5. The general solution is $y=y_{c}+y_{p}$.

3.4 Undetermined Coefficients

- Trial Particular Solutions:

\square A polynomial of degree k corresponds to a trial solution $a_{0}+a_{1} x+\cdots+a_{k} x^{k}$.
$\square e^{m x}$ corresponds to trial solution $A e^{m x}$.
$\square \sin (m x)$ and $\cos (m x)$ both correspond to the trial solution $A \cos (m x)+B \sin (m x)$.
\square If you have a product of the above, then take the corresponding product of trial solutions.
e.g. $x e^{3 x} \cos (4 x)$ corresponds to trial solution $\left(a_{0}+a_{1} x\right)\left(A e^{3 x}\right)(B \cos (4 x)+C \sin (4 x))=$ $\left(c_{0}+c_{1} x\right)\left(e^{3 x}\right)(B \cos (4 x)+C \sin (4 x))$.

3.4 Undetermined Coefficients

- 1. For each of the following, the general solution of the associated homogenous equation is given. What form will its particular solution have?
a) $y^{\prime \prime}+3 y=-48 x^{2} e^{3 x} ; y_{c}=c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)$
b) $y^{\prime \prime \prime}-6 y^{\prime \prime}=3-\cos x ; y_{c}=c_{1}+c_{2} x+c_{3} e^{6 x}$
c) $y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=3+e^{\frac{x}{2}} ; y_{c}=c_{1} e^{\frac{x}{2}}+c_{2} x e^{\frac{x}{2}}$
- 2. Find the general solution of the differential equations in \#1.

3.5 Variation of Parameters

- Variation of Parameters: a method of solution for finding a particular solution to a linear differential equation

$$
a_{n}(x) y^{(n)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
$$

To use it, we must already have a general solution for the corresponding homogeneous equation

$$
a_{n}(x) y^{(n)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

- Advantages Over Method of Undetermined Coefficients:
\square For Undetermined Coefficients, we require that $g(x)$ is a sum/product of polynomials, $e^{a x}$,s, sines, and cosines. For Variation of Parameters, we require no such restrictions on $g(x)$.
\square Undetermined Coefficients requires that the linear DE has constant coefficients, whereas Variation of Parameters does not.

3.5 Variation of Parameters

- Method of Solution: I write the method of solution for second-order linear DE's, but this method naturally generalizes for higher order DE's.

1. Find the general solution, $y_{c}=c_{1} y_{1}+c_{2} y_{2}$, for corresponding homogeneous equation $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$.
2. Compute Wronskian $W\left(y_{1}(x), y_{2}(x)\right)$.
3. Put equation in standard form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)$.
4. Compute $W_{1}=\left|\begin{array}{cc}0 & y_{2} \\ f(x) & y_{2}^{\prime}\end{array}\right|, W_{2}=\left|\begin{array}{cc}y_{1} & 0 \\ y_{1}^{\prime} & f(x)\end{array}\right|$.
5. Find $u_{1}:=\int \frac{W_{1}}{W} d x$ and $u_{2}:=\int \frac{W_{2}}{W} d x$.
6. A particular solution is $y_{p}=u_{1} y_{1}+u_{2} y_{2}$, and the general solution is $y=y_{c}+y_{p}$.

3.5 Variation of Parameters

- 3. Find the general solution of

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=x^{\frac{3}{2}}
$$

where $y_{1}=x^{-\frac{1}{2}} \cos x$ and $y_{2}=x^{-\frac{1}{2}} \sin x$ and linearly independent solutions of the associated homogeneous DE on $(0, \infty)$.

- 4. Solve $y^{\prime \prime \prime}+y^{\prime}=\tan x$.

