Math 2Z03 - Tutorial #4

Oct. 5th, 6th, 7th, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm 5pm (in the Math Help Centre)

Tutorial #4:

- 3.1 Theory of Linear Equations
 - □ Linearly Independence
 - Wronskian
 - Fundamental Set of Solutions
 - General Solution
- 3.3 Homogeneous Linear Equations with Constant Coefficients
 - Finding Rational Roots
 - Finding Complex Roots

3.1 Theory of Linear Equations

- I. Is the set of functions {1+x,x,x²} linearly independent on (-∞,∞)?
- **Recall:** A set of functions $f_1(x), \ldots, f_n(x)$ are **linearly independent** on an interval *I* if $c_1f_1(x) + \cdots + c_nf_n(x) = 0$ for all x in $I \iff c_1 = \cdots = c_n = 0$.
- Criterion for Linear Independent Solutions: Let y_1, \ldots, y_n be solutions of a homogeneous linear *n*-th order DE on an interval *I*. Then this set of solutions is linearly independent on *I* if and only if the Wronskian $W(y_1, \ldots, y_n) \neq 0$ for every *x* in *I*.

3.1 Theory of Linear Equations

- 2. Suppose f_1, f_2 , and f_3 are solutions to a second-order linear homogeneous differential equation. Is $\{f_1, f_2, f_3\}$ a fundamental set of solutions?
- **Recall:** A basis for the space of solutions of an *n*-th order homogenous linear equation $a_n y^{(n)} + \cdots + a_1 y' + a_0 = 0$ is called a **fundamental set of solutions**.

We know the dimension of the solution space is n, so to find a basis, it suffices to find n linearly independent solutions.

3.1 Theory of Linear Equations

- 3. The functions e^t and te^t satisfy the differential equation y'' 2y' + y = 0. Is $y = c_1e^t + c_2te^t$ a general solution of this differential equation?
- **Recall:** If $\{y_1, \ldots, y_n\}$ is a fundamental set of solutions on *I* for an *n*-th order linear DE, then the **general solution** on *I* is $y = c_1y_1 + \cdots + c_ny_n$, where the c_i are arbitrary constants.

- 4. Find the general solution of $y^{(3)} + 8y = 0$.
- **Recall:** To solve, first we plug $y = e^{mx}$ into the equation and find the roots of the corresponding auxiliary equation.
- We can go about finding the roots of this auxiliary equation in a variety of ways.

- Method 1: Find one root d, then divide $m^3 + 8$ by (m-d).
- By inspection, we can see that m = -2 is a root. A more systematic approach is given by the following:
- **Rational Roots Test (pg. 122):** If $m_1 = \frac{p}{q}$ is a rational root (expressed in lowest terms) of an auxiliary equation with integer coefficients

$$a_n m^n + \ldots + a_1 m + a_0,$$

then p is a factor of a_0 and q is a factor of a_n .

• Method 2: Finding roots over C: Given auxiliary equation

 $a_n m^n + \ldots + a_1 m + a_0$,

we know there will be *n* roots over the complex numbers (with some multiplicity). By working in polar coordinates, we can find these roots $re^{i\theta}$ (think back to Math 1ZC3/1B03).

• Exercise Find the five roots of $m^5 + 32 = 0$, and use this to solve $y^{(5)} + 32y = 0$.

Recall:

- □ If there are *j* distinct roots $m_1, ..., m_j$ then the general solution contains a linear combination of $e^{m_1 x}, ..., e^{m_j x}$.
- □ If m_1 is a root of multiplicity q, then then general solution contains a lineae combination of e^{m_1x} , xe^{m_1x} , $x^2e^{m_1x}$, ..., $x^{q-1}e^{m_1x}$.
- □ Given complex roots $m_1 = \alpha + \beta$ and $m_2 = \alpha \beta$, using Euler's formula, it's always possible to write $c_1 e^{m_1 x} + c_2 e^{m_2 x}$ as $e^{\alpha x} [k_1 \cos(\beta x) + k_2 \sin(\beta x)]$, for constants c_1, c_2, k_1, k_2 .

- **5.** Solve the IVP y'' + 2y' = 0, y(0) = 1, y'(0) = 1.
- 6. Find a general solution for $6y^{(4)} y''' + 4y'' y' 2y = 0$.

