Math 2Z03 - Tutorial \# 4

Oct. 5th, 6th, 7th, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm - 5pm (in the Math Help Centre)

Tutorial \#4:

- 3.1 Theory of Linear Equations

Tutorial \#4:

- 3.1 Theory of Linear Equations
\square Linearly Independence

Tutorial \#4:

- 3.1 Theory of Linear Equations
\square Linearly Independence
\square Wronskian

Tutorial \#4:

- 3.1 Theory of Linear Equations
\square Linearly Independence
\square Wronskian
- Fundamental Set of Solutions

Tutorial \#4:

- 3.1 Theory of Linear Equations
\square Linearly Independence
\square Wronskian
- Fundamental Set of Solutions
\square General Solution

Tutorial \#4:

- 3.1 Theory of Linear Equations
\square Linearly Independence
\square Wronskian
- Fundamental Set of Solutions
\square General Solution
- 3.3 Homogeneous Linear Equations with Constant Coefficients

Tutorial \#4:

- 3.1 Theory of Linear Equations
\square Linearly Independence
\square Wronskian
- Fundamental Set of Solutions
\square General Solution
- 3.3 Homogeneous Linear Equations with Constant Coefficients
- Finding Rational Roots

Tutorial \#4:

- 3.1 Theory of Linear Equations
\square Linearly Independence
\square Wronskian
- Fundamental Set of Solutions
\square General Solution
- 3.3 Homogeneous Linear Equations with Constant Coefficients
- Finding Rational Roots
\square Finding Complex Roots

3.1 Theory of Linear Equations

- 1. Is the set of functions $\left\{1+x, x, x^{2}\right\}$ linearly independent on $(-\infty, \infty)$?

3.1 Theory of Linear Equations

- 1. Is the set of functions $\left\{1+x, x, x^{2}\right\}$ linearly independent on $(-\infty, \infty)$?
- Recall: A set of functions $f_{1}(x), \ldots, f_{n}(x)$ are linearly independent on an interval I if $c_{1} f_{1}(x)+\cdots+c_{n} f_{n}(x)=0$ for all x in I \qquad $c_{1}=\cdots c_{n}=0$.

3.1 Theory of Linear Equations

- 1. Is the set of functions $\left\{1+x, x, x^{2}\right\}$ linearly independent on $(-\infty, \infty)$?
- Recall: A set of functions $f_{1}(x), \ldots, f_{n}(x)$ are linearly independent on an interval I if $c_{1} f_{1}(x)+\cdots+c_{n} f_{n}(x)=0$ for all x in I \qquad $c_{1}=\cdots c_{n}=0$.
- Criterion for Linear Independent Solutions: Let y_{1}, \ldots, y_{n} be solutions of a homogeneous linear n-th order DE on an interval I. Then this set of solutions is linearly independent on I if and only if the Wronskian $W\left(y_{1}, \ldots, y_{n}\right) \neq 0$ for every x in I.

3.1 Theory of Linear Equations

- 2. Suppose f_{1}, f_{2}, and f_{3} are solutions to a second-order linear homogeneous differential equation. Is $\left\{f_{1}, f_{2}, f_{3}\right\}$ a fundamental set of solutions?

3.1 Theory of Linear Equations

- 2. Suppose f_{1}, f_{2}, and f_{3} are solutions to a second-order linear homogeneous differential equation. Is $\left\{f_{1}, f_{2}, f_{3}\right\}$ a fundamental set of solutions?
- Recall: A basis for the space of solutions of an n-th order homogenous linear equation $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0}=0$ is called a fundamental set of solutions.
We know the dimension of the solution space is n, so to find a basis, it suffices to find n linearly independent solutions.

3.1 Theory of Linear Equations

- 3. The functions e^{t} and $t e^{t}$ satisfy the differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$. Is $y=c_{1} e^{t}+c_{2} t e^{t}$ a general solution of this differential equation?

3.1 Theory of Linear Equations

- 3. The functions e^{t} and $t e^{t}$ satisfy the differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$. Is $y=c_{1} e^{t}+c_{2} t e^{t}$ a general solution of this differential equation?
- Recall: If $\left\{y_{1}, \ldots, y_{n}\right\}$ is a fundamental set of solutions on I for an n-th order linear DE , then the general solution on I is $y=c_{1} y_{1}+\cdots c_{n} y_{n}$, where the c_{i} are arbitrary constants.

3.3 Homogenous Linear Equations with Constant Coefficients:

- 4. Find the general solution of $y^{(3)}+8 y=0$.

3.3 Homogenous Linear Equations with Constant Coefficients:

- 4. Find the general solution of $y^{(3)}+8 y=0$.
- Recall: To solve, first we plug $y=e^{m x}$ into the equation and find the roots of the corresponding auxiliary equation.

3.3 Homogenous Linear Equations with Constant Coefficients:

- 4. Find the general solution of $y^{(3)}+8 y=0$.
- Recall: To solve, first we plug $y=e^{m x}$ into the equation and find the roots of the corresponding auxiliary equation.
- We can go about finding the roots of this auxiliary equation in a variety of ways.

3.3 Homogenous Linear Equations with Constant Coefficients:

- Method 1: Find one root d, then divide $m^{3}+8$ by $(m-d)$.

3.3 Homogenous Linear Equations with Constant Coefficients:

- Method 1: Find one root d, then divide $m^{3}+8$ by $(m-d)$.
- By inspection, we can see that $m=-2$ is a root. A more systematic approach is given by the following:

3.3 Homogenous Linear Equations with Constant Coefficients:

- Method 1: Find one root d, then divide $m^{3}+8$ by $(m-d)$.
- By inspection, we can see that $m=-2$ is a root. A more systematic approach is given by the following:
- Rational Roots Test (pg. 122): If $m_{1}=\frac{p}{q}$ is a rational root (expressed in lowest terms) of an auxiliary equation with integer coefficients

$$
a_{n} m^{n}+\ldots+a_{1} m+a_{0}
$$

then p is a factor of a_{0} and q is a factor of a_{n}.

3.3 Homogenous Linear Equations with Constant Coefficients:

- Method 2: Finding roots over \mathbb{C} : Given auxiliary equation

$$
a_{n} m^{n}+\ldots+a_{1} m+a_{0},
$$

we know there will be n roots over the complex numbers (with some multiplicity). By working in polar coordinates, we can find these roots $r e^{i \theta}$ (think back to Math 1ZC3/1B03).

3.3 Homogenous Linear Equations with Constant Coefficients:

- Method 2: Finding roots over \mathbb{C} : Given auxiliary equation

$$
a_{n} m^{n}+\ldots+a_{1} m+a_{0},
$$

we know there will be n roots over the complex numbers (with some multiplicity). By working in polar coordinates, we can find these roots $r e^{i \theta}$ (think back to Math 1ZC3/1B03).

- Exercise Find the five roots of $m^{5}+32=0$, and use this to solve $y^{(5)}+32 y=0$.

3.3 Homogenous Linear Equations with Constant Coefficients:

- Recall:

\square If there are j distinct roots m_{1}, \ldots, m_{j} then the general solution contains a linear combination of $e^{m_{1} x}, \ldots, e^{m_{j} x}$.
\square If m_{1} is a root of multiplicity q, then then general solution contains a lineae combination of $e^{m_{1} x}, x e^{m_{1} x}, x^{2} e^{m_{1} x}, \ldots, x^{q-1} e^{m_{1} x}$.
\square Given complex roots $m_{1}=\alpha+\beta$ and $m_{2}=\alpha-\beta$, using Euler's formula, it's always possible to write $c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}$ as $e^{\alpha x}\left[k_{1} \cos (\beta x)+k_{2} \sin (\beta x)\right]$, for constants $c_{1}, c_{2}, k_{1}, k_{2}$.

3.3 Homogenous Linear Equations with Constant Coefficients:

- 5. Solve the IVP $y^{\prime \prime}+2 y^{\prime}=0, y(0)=1, y^{\prime}(0)=1$.

3.3 Homogenous Linear Equations with Constant Coefficients:

- 5. Solve the IVP $y^{\prime \prime}+2 y^{\prime}=0, y(0)=1, y^{\prime}(0)=1$.
- 6. Find a general solution for $6 y^{(4)}-y^{\prime \prime \prime}+4 y^{\prime \prime}-y^{\prime}-2 y=0$.

