Math 2Z03 - Tutorial \# 3

Sept. 28th, 29th, 30th, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm - 5pm (in the Math Help Centre)

Tutorial \#3:

- 2.8 Nonlinear Models
- Logistic Equation
- 2.6 A Numerical Method
\square Euler's Method
- 2.3 First-Order Linear Equations
\square Method of Solution
- 2.7 Linear Models
\square Mixture of Two Salt Solutions

Last Tutorial:

- We solved the logistic equation

$$
\frac{d P}{d t}=P(a-b P), P(0)=P_{0} .
$$

- We found the solution to be:

$$
P=\frac{a P_{0}}{b P_{0}+\left(a-b P_{0}\right) e^{-a t}} .
$$

2.8 Nonlinear Models (Logistic Equation)

- 1. Suppose that the population P (in thousands) of squirrels in Hamilton can be modelled by the differential equation $\frac{d P}{d t}=P(2-P)$, where t is the number of years.
a) If the initial population of squirrels is 3000 , what can you say about the long-term behaviour of the squirrel population?
b) Can a population of 1000 ever decline to 500 ? Explain.
c) Can a population of 1000 ever increase to 3000 ? Explain.
d) If the initial population of squirrels in 50 , then how many squirrels will there be after one year?

2.8 Nonlinear Models (Logistic Equation)

- To solve d) we need to solve the logistic equation with $a=2$ and $b=1$.
- Remark: Instead of memorizing the logistic equation, you could just compute the solution directly by separating variables and using partial fractions.

2.6 A Numerical Method (Euler's Method)

- Recall: Euler's Method approximates the solution to a first-order IVP $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ using the following recursive formula:

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right),
$$

where $x_{n}=x_{0}+n h, n=0,1,2, \ldots$.
The step size, h, is given in advance and is chosen to be reasonably small.

- 2. Consider the IVP $y^{\prime}=2 x-3 y+1, y(1)=5$. Find an approximation of $y(1.2)$ using Euler's method with a step size of $h=0.1$.

2.3 First-Order Linear Equations

- Recall: A first-order linear DE is an equation that can be written in the form

$$
y^{\prime}+P(x) y=f(x)
$$

- Method of Solution:The solution to a first-order linear DE is given by:

$$
y=e^{-\int P(x) d x}\left[\int e^{\int P(x) d x} f(x) d x\right] .
$$

2.3 First-Order Linear Equations

- Note: Instead of memorizing this formula, you may prefer to do the following:

1. Identify $P(x)$ and compute the integrating factor $e^{\int P(x) d x}$.
2. Multiply your linear equation $y^{\prime}+P(x) y=f(x)$ by the integrating factor.
3. The lefthand side of the resulting equation is automatically the derivative of the integrating factor and y. Write

$$
\frac{d}{d x}\left[e^{\int P(x) d x} y\right]=e^{\int P(x) d x} f(x)
$$

and then integrate both sides of the equation.

2.3 First-Order Linear Equations

- 3.a) Solve the differential equation

$$
x y^{\prime}-y=2 x \ln x
$$

- b) Find the largest interval where this solution is defined.

2.6 Linear Models: Mixtures

- 4. (2.6,\# 27) A large tank is partially filled with 100 gallons of fluid in which 10 pounds of salt is dissolved. Brine containing $\frac{1}{2}$ pound of salt per gallon is pumped into the tank at a rate of $6 \mathrm{gal} / \mathrm{min}$. The well-mixed solution is then pumped out at a slower rate of $4 \mathrm{gal} / \mathrm{min}$. Find the number of pounds of salt in the tank after 30 minutes.
- Let $A(t)$ denote the amount of salt in the tank at time t (measured in lb).
- We know

$$
\frac{d A}{d t}=\underbrace{(\text { input rate of salt })}_{R_{\text {in }}}-\underbrace{(\text { output rate of salt })}_{R_{\text {out }}} .
$$

2.6 Linear Models: Mixtures

- 4. (2.6,\# 27) A large tank is partially filled with 100 gallons of fluid in which 10 pounds of salt is dissolved. Brine containing $\frac{1}{2}$ pound of salt per gallon is pumped into the tank at a rate of $6 \mathrm{gal} / \mathrm{min}$. The well-mixed solution is then pumped out at a slower rate of $4 \mathrm{gal} / \mathrm{min}$. Find the number of pounds of salt in the tank after 30 minutes.
- $R_{\text {in }}=$
(concentration of salt inflow $\mathrm{lb} / \mathrm{gal}$) $*$ (input rate of brine $\mathrm{gal} / \mathrm{min}$) $=($ input rate $\mathrm{lb} / \mathrm{min})$.
- $R_{\text {out }}=$
(concentration of salt outflow $\mathrm{lb} / \mathrm{gal}$) * (output rate of brine $\mathrm{gal} / \mathrm{min}$) $=$ (output rate $\mathrm{lb} / \mathrm{min}$).

