Math 2Z03 - Tutorial \# 2

Sept. 21st, 22nd, 23rd, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm - 5pm (in the Math Help Centre)

Tutorial \#2:

- 2.2 Separable Equations
\square Review Integration
- 2.1 Solution Curves Without a Solution
\square Autonomous DE's
- 2.8 Nonlinear Models
\square Logistic Equation
- 2.6 A Numerical Method
\square Euler's Method

2.2: Separable Equations

- Recall: A separable equation is a first order DE which can be written in the form

$$
y^{\prime}=g(x) h(y) .
$$

- Method of Solution: Integrate $\int \frac{1}{h(y)} d y=\int g(x) d x$.
- 1. Solve the following differential equations.
a) $e^{-x^{2}} y^{\prime}=e^{-y} x$.
b) $\frac{1}{x} y^{\prime}=y^{-1} e^{2 x}$.
c) $y^{\prime}=e^{x^{2}}$.
- Notice: The functions $x e^{x^{2}}, x e^{2 x}$, and $e^{x^{2}}$ look very similar. However, to integrate, the first uses substitution, the second uses integration by parts, and the third isn't possible to integrate by hand!

2.1.2: Autonomous DE's

- Recall: A first order autonomous differential equation is a DE in which the independent variable does not appear explicitly. i.e. it can be written in the form

$$
y^{\prime}=f(y)
$$

- We can analyze autonomous DE's geometrically (use phase portraits to sketch solution curves).
- This gives us information about the behaviour of solutions.

2.1.2: Autonomous DE's

- 2. a) Sketch the solution curves of the $\operatorname{DE} y^{\prime}=y^{2}-y^{3}$.
\square Find critical points.
\square Draw phase portrait.
\square Sketch solutions.
- b) Create an initial value problem (IVP) involving this DE, such that in the long term the solution to your IVP approaches zero.

2.8 Nonlinear Models (Logistic Equation)

- Logistic Equation: models simple population growth.
- Suppose a population grows proportional to its size:

$$
\frac{d P}{d t}=k P, k>0 .
$$

\square bacteria growth
\square simple investment with compound interest

- Solving this DE:

$$
P=P_{0} e^{k t}(\text { exponential growth })
$$

2.8 Nonlinear Models (Logistic Equation)

- Similarly,

$$
\frac{d P}{d t}=-k P, k>0(\text { exponential decay })
$$

\square radioactive decay
\square breakdown of a chemical

- In these two simple models, the growth is unbounded.
- Suppose an environment can sustain no more than \bar{P} individuals in its population (\bar{P} is called the carrying capacity).
- When $P>\bar{P}$ we want $\frac{d P}{d t}<0$. The DE which models this is:

$$
\frac{d P}{d t}=k P(\bar{P}-P)
$$

2.8 Nonlinear Models (Logistic Equation)

- Making the substitution $\bar{P}=\frac{a}{b}, k=b$, this equation becomes:

$$
\underbrace{\frac{d P}{d t}=P(a-b P)}_{\text {Logistic Equation }} .
$$

- Solving the Logistic Equation: It's autonomous, and therefore separable (all autonomous DE's are separable).

Review: Partial Fractions

- Consider a rational function $\frac{P(s)}{Q(s)}$, where $P(s)$ and $Q(s)$ are polynomials with real coefficients, and $\operatorname{deg}(P(s))<\operatorname{deg}(Q(s))$.

1. Factor and cancel common factors of $P(s)$ and $Q(s)$.
2. For each linear term $(s-a)^{m}, a \in \mathbb{R}$, in the denominator, include terms of the form:

$$
\frac{A_{1}}{s-a}+\frac{A_{2}}{(s-a)^{2}}+\cdots+\frac{A_{m}}{(s-a)^{m}} .
$$

3. For each irreducible quadratic term $\left[(s-\alpha)^{2}=\beta^{2}\right]^{p}, \alpha, \beta \in \mathbb{R}$, include terms of the form

$$
\frac{B_{1} s+C_{1}}{(s-\alpha)^{2}+\beta^{2}}+\frac{B_{2} s+C_{2}}{\left((s-\alpha)^{2}+\beta^{2}\right)^{2}}+\cdots+\frac{B_{p} s+C_{p}}{\left(\left(s-\alpha^{2}\right)^{p}+\beta^{2}\right)^{p}} .
$$

Review: Partial Fractions

4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.
5. Put over common denominator.
6. Equate numerators.
7. a) Find A_{i}, B_{i}, C_{i} by equating coefficients s^{k}.
b) Evaluate both sides at the roots.

2.8 Nonlinear Models (Logistic Equation)

- Making the substitution $\bar{P}=\frac{a}{b}, k=b$, this equation becomes:

$$
\underbrace{\frac{d P}{d t}=P(a-b P)}_{\text {Logistic Equation }} .
$$

- Solving the Logistic Equation: It's autonomous, and therefore separable. (all autonomous DE's are separable)

$$
P=\frac{a P_{0}}{b P_{0}+\left(a-b P_{0}\right) e^{-a t}}
$$

2.8 Nonlinear Models (Logistic Equation)

- 3. Suppose that the population P (in thousands) of squirrels in Hamilton can be modelled by the differential equation $\frac{d P}{d t}=P(2-P)$.
a) If the initial population of squirrels is 3000 , what can you say about the long-term behaviour of the squirrel population?
b) Can a population of 1000 ever decline to 500? Explain.
c) Can a population of 1000 ever increase to 3000 ? Explain.
- This question can be answered without explicitly solving for the solution, P. However, if we wanted to write down the explicit solution, using the logistic equation with $a=2$ and $b=1$ we obtain:

$$
P=\frac{2 P_{0}}{P_{0}+\left(2-P_{0}\right) e^{-2 t}}
$$

2.6 A Numerical Method (Euler's Method)

- Recall: Euler's Method approximates the solution to a first-order IVP $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ using the following recursive formula:

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right),
$$

where $x_{n}=x_{0}+n h, n=0,1,2, \ldots$
The step size, h, is given in advance and is chosen to be reasonably small.

- 4. Consider the IVP $y^{\prime}=2 x-3 y+1, y(1)=5$. Find an approximation of $y(1.2)$ using Euler's method with a step size of $h=0.1$.

