Math 2Z03 - Tutorial \# 1

Sept. 14th, 15th, 16th, 2015

Tutorial Info:

- Lauren DeDieu
- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm - 5pm (starting Sept. 21st, in the Math Help Centre)

Tutorial \#1:

- 1.1 Definitions and Terminology
- 1.2 Initial Value Problems (IVP's)
- 2.1 Solution Curves Without a Solution
\square Direction Fields
\square Autonomous DE's (NEXT TIME)

1.1 Definitions and Terminology

- ODE vs. PDE
- Order
- Linear
- Recall: An n-th order $\operatorname{DE} F\left(x, y, y^{\prime}, \ldots, y^{(n)}=0\right.$ is linear if F is linear in the variables $y, y^{\prime}, \ldots, y^{(n)}$. i.e. It can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y-g(x)=0
$$

Order and Linearity

- 1. State the order of the following differential equation. Is it linear?
a) $\frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{3}}$
b) $(\sin t) y^{\prime \prime \prime}-(\cos t) y^{\prime}=10$.

1.1 Definitions and Terminology

- ODE vs. PDE
- Order
- Linear
- Explicit vs. Implicit Solution
- Recall: An (explicit) solution, y, to a first order DE on an interval I must be $\mathbf{C}^{\mathbf{1}}$ on I (continuously differentiable...i.e. y is defined and y^{\prime} is continuous) on I AND when substituted into the DE , reduces the equation to the identity.

Explicit Solutions

- 2. Is the piece-wise defined function a solution to the given DE on the interval provided? Explain
a)

$$
y=\left\{\begin{array}{ll}
-x^{2}, & x<0 \\
x^{2}, & x \geq 0
\end{array},\right.
$$

$$
x y^{\prime}-2 y=0, I=(-\infty, \infty)
$$

b)

$$
y=\left\{\begin{array}{ll}
\sqrt{25-x^{2}}, & -5<x<0 \\
-\sqrt{25-x^{2}}, & 0 \leq x<5
\end{array},\right.
$$

$$
y^{\prime}=\frac{-x}{y}, I=(-5,5) .
$$

Explicit Solutions

- 3. Given that $y=\sin x$ is an explicit solution of $y^{\prime}=\sqrt{1-y^{2}}$, find an interval of definition.

1.2 IVP's

- Existence and Uniqueness
- Existence of a Unique Solution (1st-Order IVP's): Let $R=[a, b] \times[c, d]$ contain the point $\left(x_{0}, y_{0}\right)$ in its interior. If $f(x, y)$ and $\frac{d f}{d y}$ are continuous on R, then there exists some interval I_{0} containing x_{0} contained in $[a, b]$ and a unique function $y\left(x_{0}\right)$ defined on I_{0} such that $y(x)$ is a unique solution to the IVP $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$.

Existence/ Uniqueness

- 4. Determine whether the Existence/ Uniqueness Theorem guarantees that the $\mathrm{DE} y^{\prime}=\sqrt{y^{2}-9}$ possesses a unique solution through the given point.
a) $(1,4)$
b) $(2,-3)$

Existence/ Uniqueness

- 5. Suppose you are given a first-order differential equation $y^{\prime}=f(x, y)$, in which $f(x, y)$ and $\frac{d f}{d y}$ are continuous in some rectangular region R. Could two different solution curves in its 1-parameter family of solutions intersect at a point in R ? Why or why not?

1.3 Solution Curves Without a Solution

- Direction Fields

1.3 Solution Curves Without a Solution

- 6. Consider the first-order differential equations
a) $\quad y^{\prime}=(2-y)(3-y)$, b) $\quad y^{\prime}=(y-2)(3-y)$, c) $\quad y^{\prime}=$ $(2-x)(3+x), \mathbf{d}) \quad y^{\prime}=(2-y)(3+x)$. Assign the direction fields below to the appropriate differential equation.

