Math 2Z03 - Tutorial \#12

Dec. 7th, 8th, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html

Tutorial \#12:

- 5.1: Series Solutions of Linear DE's about Ordinary Points
- Chapter 4: The Laplace Transform

5.1: Series Solutions of Linear DE's about Ordinary Points

- 1. Find the minimum radius convergence of the given DE about the given ordinary point. a) $\left(x^{2}-25\right) y^{\prime \prime}+2 x y^{\prime}+y=0, x=1$.
- Existence of Power Series Solutions: If $x=x_{0}$ is an ordinary point of $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$, then we can always find 2 linearly independent power series solutions centered at x_{0} (i.e. of the form $\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$), with minimum radius of convergence R, where R is the distance from x_{0} to the nearest singular point.
- Fact: If $a_{2}(x), a_{1}(x)$, and $a_{0}(x)$ are polynomials with no common factors, then the point x_{0} is an ordinary point of $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$ if $a_{2}(x) \neq 0$. If $a_{2}\left(x_{0}\right)=0$, then x_{0} is a singular point.

5.1: Series Solutions of Linear DE's about Ordinary Points

- Recall: A point x_{0} is said to be an ordinary point of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ if both $P(x)$ and $Q(x)$ are analytic at x_{0}. A point that is not an ordinary point is called a singular point.
- Recall: A function f is analytic at a point x_{0} if it can be represented by a power series in $x-x_{0}$ with a positive radius of convergence.
- b) Find the minimum radius convergence of the given DE about the given ordinary point: $\left(x^{2}-2 x+10\right) y^{\prime \prime}+x y^{\prime}-4 y=0, x=1$.

5.1: Series Solutions of Linear DE's about Ordinary Points

- 2. a) Find the first 5 nonzero terms in the general solution of $\left(1+x^{2}\right) y^{\prime \prime}-y^{\prime}+y=0$ (about the ordinary point $x=0$).
- Method of Solution:

1. Substitute $\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ into the original DE (i.e. find y^{\prime} and $y^{\prime \prime}$, and bring any coefficients in front of the sum into the sum).
2. Combine the series. i.e. In each series, take the exponent of the x term and set it equal to k, so that after the substitution, each series has x^{k}.
3. Equate all coefficients to the RHS of the equation to determine the coefficients c_{n} and the recurrence relation.
4. Write all coefficients in terms of c_{0} and c_{1}. We can always choose values for c_{0} and c_{1} to identify two linearly independent solutions.

- b) Explain why this is the general solution.(i.e. Identify 2 linearly independent solutions).

5.1: Series Solutions of Linear DE's about Ordinary Points

- 3. a) Find the first 4 nonzero terms of a general solution to $2 y^{\prime \prime}+x y^{\prime}+y=0$ (about the ordinary point $x=0$).
- b) Find the first 2 nonzero terms of a solution (about $x=0$) of the IVP $2 y^{\prime \prime}+x y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=0$.

Chapter 4: The Laplace Transform

- (Tutorial \# 11, 8.) Solve $y^{\prime}-3 y=\delta(t-2), y(0)=0$.
- Recall: Find $\mathscr{L}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-s t_{0}}$.
- (Tutorial \# 11, 9.) Use the Laplace transform to solve the system

$$
\left\{\begin{array}{l}
x^{\prime}=-x+y \\
y^{\prime}=2 x \\
x(0)=0, y(0)=1
\end{array}\right.
$$

Helpful Formulas. DO NOT DETACH!

$$
\begin{gathered}
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t, \\
\mathcal{L}\{1\}=\frac{1}{s}, \quad \mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad \mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \\
\mathcal{L}\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}}, \quad \mathcal{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}, \\
\mathcal{L}\{\sinh (k t)\}=\frac{k}{s^{2}-k^{2}}, \quad \mathcal{L}\{\cosh (k t)\}=\frac{s}{s^{2}-k^{2}}, \\
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-s f^{(n-2)}(0)-f^{(n-1)}(0) \\
\mathcal{L}\{\mathcal{U}(t-a) f(t-a)\}=e^{-s a} F(s) \quad \mathcal{L}\{\mathcal{U}(t-a) f(t)\}=e^{-s a} \mathcal{L}\{f(t+a)\} \\
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a) \\
\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s) \\
\mathcal{L}\{f * g\}=F(s) G(s) \quad f * g=\int_{0}^{t} f(t-v) g(v) d v \\
2 \operatorname{Lin}(A) \sin (B)=\cos (A-B)-\cos (A+B), \\
2 \sin (A) \cos (B)=\sin (A+B)+\sin (A-B), \\
2 \cos (A) \cos (B)=\cos (A+B)+\cos (A-B), \\
\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B), \\
\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B) .
\end{gathered}
$$

