Math 2Z03 - Tutorial #10

Nov. 23rd, 24th, 25th, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm 5pm (in the Math Help Centre)

Tutorial #8:

Tutorial #8:

- 10.2 Homogeneous Linear Systems
- 4.1 Definition of the Laplace Transform

Tutorial #8:

- 10.2 Homogeneous Linear Systems
- 4.1 Definition of the Laplace Transform
- 4.2 The Inverse Transform and Transforms of Derivatives

• 1. a) Find the general solution for the homogeneous system of linear DE's:

$$X' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} X, X(0) = \begin{bmatrix} -2 \\ 8 \end{bmatrix}.$$

1. a) Find the general solution for the homogeneous system of linear DE's:

$$X' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} X, X(0) = \begin{bmatrix} -2 \\ 8 \end{bmatrix}.$$

■ **Recall:** Consider the homogeneous linear DE X' = AX. If $\lambda = \alpha + \beta i$ is an eigenvalue of the coefficient matrix A, with corresponding eigenvector $v = B_1 + B_2 i$, then two linearly independent solutions of this system on $(-\infty, \infty)$ are:

$$X_1 = e^{\alpha t} \left[B_1 \cos(\beta t) - B_2 \sin(\beta t) \right]$$

$$X_2 = e^{\alpha t} \left[B_1 \sin(\beta t) + B_2 \cos(\beta t) \right].$$

1. a) Find the general solution for the homogeneous system of linear DE's:

$$X' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} X, X(0) = \begin{bmatrix} -2 \\ 8 \end{bmatrix}.$$

■ **Recall:** Consider the homogeneous linear DE X' = AX. If $\lambda = \alpha + \beta i$ is an eigenvalue of the coefficient matrix A, with corresponding eigenvector $v = B_1 + B_2 i$, then two linearly independent solutions of this system on $(-\infty, \infty)$ are:

$$X_1 = e^{\alpha t} \left[B_1 \cos(\beta t) - B_2 \sin(\beta t) \right]$$

$$X_2 = e^{\alpha t} \left[B_1 \sin(\beta t) + B_2 \cos(\beta t) \right].$$

b) Sketch the solution curve corresponding to this IVP.

2. Find the general solution for

$$X' = \begin{pmatrix} 5 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{pmatrix} X.$$

■ **Recall:** Consider the homogeneous linear system X' = AX. If A has an eigenvalue λ of multiplicity m with only one corresponding eigenvector K, then you can always find n linearly independent solutions of the form

$$X_1 = Ke^{\lambda t}$$

$$X_2 = (Kt + P_1)e^{\lambda t}$$

$$X_3 = (\frac{t^2}{2}K + P_1t + P_2)e^{\lambda t}, \dots \text{ etc.}$$

$$X_1$$
 solution $\Rightarrow (A - \lambda I)K = 0$
 X_2 solution $\Rightarrow (A - \lambda I)K = 0$ and $(A - \lambda I)P_1 = K$
 X_3 solution $\Rightarrow (A - \lambda I)K = 0$ and $(A - \lambda I)P_1 = K$ and $(A - \lambda I)P_2 = P_1$

■ **3.** Find $\mathcal{L}\{(1+e^{2t})^2\}$.

- **3.** Find $\mathcal{L}\{(1+e^{2t})^2\}$.
- 4. Find $\mathcal{L}\{t\}$ using the formal definition of the Laplace transform.

- **3.** Find $\mathcal{L}\{(1+e^{2t})^2\}$.
- 4. Find $\mathcal{L}\{t\}$ using the formal definition of the Laplace transform.
- **Recall:** $\mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) dt$.

- **3.** Find $\mathcal{L}\{(1+e^{2t})^2\}$.
- 4. Find $\mathcal{L}\{t\}$ using the formal definition of the Laplace transform.
- **Recall:** $\mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) dt$.
- **5.** Find $\mathcal{L}^{-1}\left\{\frac{1}{s^2+3s}\right\}$.

■ Consider a rational function $\frac{P(s)}{Q(s)}$, where P(s) and Q(s) are polynomials with real coefficients, and $\deg(P(s)) < \deg(Q(s))$.

- Consider a rational function $\frac{P(s)}{Q(s)}$, where P(s) and Q(s) are polynomials with real coefficients, and $\deg(P(s)) < \deg(Q(s))$.
 - 1. Factor and cancel common factors of P(s) and Q(s).

- Consider a rational function $\frac{P(s)}{Q(s)}$, where P(s) and Q(s) are polynomials with real coefficients, and $\deg(P(s)) < \deg(Q(s))$.
 - 1. Factor and cancel common factors of P(s) and Q(s).
 - 2. For each linear term $(s-a)^m$, $a \in \mathbb{R}$, in the denominator, include terms of the form:

$$\frac{A_1}{s-a} + \frac{A_2}{(s-a)^2} + \dots + \frac{A_m}{(s-a)^m}.$$

- Consider a rational function $\frac{P(s)}{Q(s)}$, where P(s) and Q(s) are polynomials with real coefficients, and $\deg(P(s)) < \deg(Q(s))$.
 - 1. Factor and cancel common factors of P(s) and Q(s).
 - 2. For each linear term $(s-a)^m$, $a \in \mathbb{R}$, in the denominator, include terms of the form:

$$\frac{A_1}{s-a} + \frac{A_2}{(s-a)^2} + \dots + \frac{A_m}{(s-a)^m}.$$

3. For each irreducible quadratic term $[(s-\alpha)^2=\beta^2]^p$, $\alpha,\beta\in\mathbb{R}$, include terms of the form

$$\frac{B_1s+C_1}{(s-\alpha)^2+\beta^2}+\frac{B_2s+C_2}{((s-\alpha)^2+\beta^2)^2}+\cdots+\frac{B_ps+C_p}{((s-\alpha^2)^p+\beta^2)^p}.$$

4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.

- 4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.
- 5. Put over common denominator.

- 4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.
- 5. Put over common denominator.
- 6. Equate numerators.

- 4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.
- 5. Put over common denominator.
- 6. Equate numerators.
- 7. a) Find A_i , B_i , C_i by equating coefficients s^k .

- 4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.
- 5. Put over common denominator.
- 6. Equate numerators.
- 7. a) Find A_i , B_i , C_i by equating coefficients s^k .
 - b) Evaluate both sides at the roots.

• 6. Use the Laplace transform to solve the linear IVP

$$2y' + y = 0, y(0) = -3.$$

■ 6. Use the Laplace transform to solve the linear IVP

$$2y' + y = 0, y(0) = -3.$$

■ **Recall:** To solve this we want to \mathcal{L} both sides, isolate for $\mathcal{L}\{y\} := Y(s)$, then \mathcal{L}^{-1} both sides.

Table of Laplace Transforms:

Here $\mathcal{L}{f(t)} = F(s)$.

Transforms of Some Basic Functions

•
$$\mathcal{L}\{1\} = \frac{1}{s}$$

•
$$\mathcal{L}{1} = \frac{1}{s}$$

• $\mathcal{L}{t^n} = \frac{n!}{s^{n+1}}, n = 1, 2, \dots$
• $\mathcal{L}{e^{at}} = \frac{1}{s-a}$
• $\mathcal{L}{\sin(kt)} = \frac{k}{s^2 + k^2}$
• $\mathcal{L}{\cos(kt)} = \frac{s}{s^2 + k^2}$
• $\mathcal{L}{\sinh(kt)} = \frac{k}{s^2 - k^2}$
• $\mathcal{L}{\cosh(kt)} = \frac{s}{s^2 + k^2}$

•
$$\mathscr{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}$$

•
$$\mathscr{L}\{\sin(kt)\}=\frac{k}{s^2+k^2}$$

•
$$\mathcal{L}\{\cos(kt)\}=\frac{s}{s^2+k^2}$$

•
$$\mathscr{L}\{\sinh(kt)\}=\frac{k}{s^2-k^2}$$

•
$$\mathcal{L}\{\cosh(kt)\} = \frac{s}{s^2 - k^2}$$

Transforms of Derivatives

•
$$\mathscr{L}{f^{(n)}(t)} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$

Translation Theorems

•
$$\mathscr{L}\lbrace e^{at}f(t)\rbrace = \mathscr{L}\lbrace f(t)\rbrace \mid_{s\to s-a} = F(s-a)$$
, where $a\in\mathbb{R}$

•
$$\mathscr{L}^{-1}{F(s-a)} = \mathscr{L}^{-1}{F(s)|_{s\to s-a}} = e^{at}f(t)$$

•
$$\mathscr{L}{f(t-a)\mathscr{U}(t-a)} = e^{-as}F(s)$$
, where $a > 0$

•
$$\mathcal{L}\lbrace f(t-a)\mathcal{U}(t-a)\rbrace = e^{-as}F(s)$$
, where $a>0$
• $\mathcal{L}^{-1}\lbrace e^{-as}F(s)\rbrace = f(t-a)\mathcal{U}(t-a)$, where $a>0$
• $\mathcal{L}\lbrace g(t)\mathcal{U}(t-a)\rbrace = e^{-as}\mathcal{L}\lbrace g(t+a)\rbrace$, where $a>0$

•
$$\mathcal{L}{g(t)\mathcal{U}(t-a)} = e^{-as}\mathcal{L}{g(t+a)}$$
, where $a > 0$

•
$$\mathcal{L}{\mathcal{U}(t-a)} = \frac{e^{-as}}{s}$$
, where $a > 0$

Derivatives of Transforms & Convolution

•
$$\mathcal{L}{t^n f(t)} = (-1)^n \frac{d^n}{ds^n} F(s), n = 1, 2, ...$$

•
$$\mathcal{L}{f * g} = \mathcal{L}{f(t)}\mathcal{L}{g(t)} = F(s)G(s)$$

Dirac Delta Function

•
$$\mathcal{L}\{\delta(t-t_0)\}=e^{-st_0}$$
, for $t_0>0$