Math 2Z03 - Tutorial \#10

Nov. 23rd, 24th, 25th, 2015

Tutorial Info:

- Tutorial Website: http://ms.mcmaster.ca/~dedieula/2Z03.html
- Office Hours: Mondays 3pm - 5pm (in the Math Help Centre)

Tutorial \#8:

- 10.2 Homogeneous Linear Systems

Tutorial \#8:

- 10.2 Homogeneous Linear Systems
- 4.1 Definition of the Laplace Transform

Tutorial \#8:

- 10.2 Homogeneous Linear Systems
- 4.1 Definition of the Laplace Transform
- 4.2 The Inverse Transform and Transforms of Derivatives

10.2 Homogeneous Linear Systems

- 1. a) Find the general solution for the homogeneous system of linear DE's:

$$
X^{\prime}=\left(\begin{array}{cc}
6 & -1 \\
5 & 4
\end{array}\right) X, X(0)=\left[\begin{array}{c}
-2 \\
8
\end{array}\right] .
$$

10.2 Homogeneous Linear Systems

- 1. a) Find the general solution for the homogeneous system of linear DE's:

$$
X^{\prime}=\left(\begin{array}{cc}
6 & -1 \\
5 & 4
\end{array}\right) X, X(0)=\left[\begin{array}{c}
-2 \\
8
\end{array}\right] .
$$

- Recall: Consider the homogeneous linear DE $X^{\prime}=A X$. If $\lambda=\alpha+\beta i$ is an eigenvalue of the coefficient matrix A, with corresponding eigenvector $v=B_{1}+B_{2} i$, then two linearly independent solutions of this system on $(-\infty, \infty)$ are:

$$
\begin{gathered}
X_{1}=e^{\alpha t}\left[B_{1} \cos (\beta t)-B_{2} \sin (\beta t)\right] \\
X_{2}=e^{\alpha t}\left[B_{1} \sin (\beta t)+B_{2} \cos (\beta t)\right]
\end{gathered}
$$

10.2 Homogeneous Linear Systems

- 1. a) Find the general solution for the homogeneous system of linear DE's:

$$
X^{\prime}=\left(\begin{array}{cc}
6 & -1 \\
5 & 4
\end{array}\right) X, X(0)=\left[\begin{array}{c}
-2 \\
8
\end{array}\right] .
$$

- Recall: Consider the homogeneous linear DE $X^{\prime}=A X$. If $\lambda=\alpha+\beta i$ is an eigenvalue of the coefficient matrix A, with corresponding eigenvector $v=B_{1}+B_{2} i$, then two linearly independent solutions of this system on $(-\infty, \infty)$ are:

$$
\begin{gathered}
X_{1}=e^{\alpha t}\left[B_{1} \cos (\beta t)-B_{2} \sin (\beta t)\right] \\
X_{2}=e^{\alpha t}\left[B_{1} \sin (\beta t)+B_{2} \cos (\beta t)\right] .
\end{gathered}
$$

- b) Sketch the solution curve corresponding to this IVP.

10.2 Homogeneous Linear Systems

10.2 Homogeneous Linear Systems

10.2 Homogeneous Linear Systems

10.2 Homogeneous Linear Systems

10.2 Homogeneous Linear Systems

- 2. Find the general solution for

$$
X^{\prime}=\left(\begin{array}{ccc}
5 & -4 & 0 \\
1 & 0 & 2 \\
0 & 2 & 5
\end{array}\right) X
$$

10.2 Homogeneous Linear Systems

- Recall: Consider the homogeneous linear system $X^{\prime}=A X$. If A has an eigenvalue λ of multiplicity m with only one corresponding eigenvector K, then you can always find n linearly independent solutions of the form

$$
\begin{aligned}
& X_{1}=K e^{\lambda t} \\
& X_{2}=\left(K t+P_{1}\right) e^{\lambda t} \\
& X_{3}=\left(\frac{t^{2}}{2} K+P_{1} t+P_{2}\right) e^{\lambda t}, \ldots \text { etc. }
\end{aligned}
$$

X_{1} solution $\Rightarrow(A-\lambda I) K=0$
X_{2} solution $\Rightarrow(A-\lambda I) K=0$ and $(A-\lambda I) P_{1}=K$
X_{3} solution $\Rightarrow(A-\lambda I) K=0$ and $(A-\lambda I) P_{1}=K$ and $(A-\lambda I) P_{2}=P_{1}$

4.1/4.2 The Laplace Transform

- 3. Find $\mathscr{L}\left\{\left(1+e^{2 t}\right)^{2}\right\}$.

4.1/4.2 The Laplace Transform

- 3. Find $\mathscr{L}\left\{\left(1+e^{2 t}\right)^{2}\right\}$.
- 4. Find $\mathscr{L}\{t\}$ using the formal definition of the Laplace transform.

4.1/4.2 The Laplace Transform

- 3. Find $\mathscr{L}\left\{\left(1+e^{2 t}\right)^{2}\right\}$.
- 4. Find $\mathscr{L}\{t\}$ using the formal definition of the Laplace transform.
- Recall: $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t$.

4.1/4.2 The Laplace Transform

- 3. Find $\mathscr{L}\left\{\left(1+e^{2 t}\right)^{2}\right\}$.
- 4. Find $\mathscr{L}\{t\}$ using the formal definition of the Laplace transform.
- Recall: $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t$.
- 5. Find $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+3 s}\right\}$.

Review: Partial Fractions

- Consider a rational function $\frac{P(s)}{Q(s)}$, where $P(s)$ and $Q(s)$ are polynomials with real coefficients, and $\operatorname{deg}(P(s))<\operatorname{deg}(Q(s))$.

Review: Partial Fractions

- Consider a rational function $\frac{P(s)}{Q(s)}$, where $P(s)$ and $Q(s)$ are polynomials with real coefficients, and $\operatorname{deg}(P(s))<\operatorname{deg}(Q(s))$.

1. Factor and cancel common factors of $P(s)$ and $Q(s)$.

Review: Partial Fractions

- Consider a rational function $\frac{P(s)}{Q(s)}$, where $P(s)$ and $Q(s)$ are polynomials with real coefficients, and $\operatorname{deg}(P(s))<\operatorname{deg}(Q(s))$.

1. Factor and cancel common factors of $P(s)$ and $Q(s)$.
2. For each linear term $(s-a)^{m}, a \in \mathbb{R}$, in the denominator, include terms of the form:

$$
\frac{A_{1}}{s-a}+\frac{A_{2}}{(s-a)^{2}}+\cdots+\frac{A_{m}}{(s-a)^{m}} .
$$

Review: Partial Fractions

- Consider a rational function $\frac{P(s)}{Q(s)}$, where $P(s)$ and $Q(s)$ are polynomials with real coefficients, and $\operatorname{deg}(P(s))<\operatorname{deg}(Q(s))$.

1. Factor and cancel common factors of $P(s)$ and $Q(s)$.
2. For each linear term $(s-a)^{m}, a \in \mathbb{R}$, in the denominator, include terms of the form:

$$
\frac{A_{1}}{s-a}+\frac{A_{2}}{(s-a)^{2}}+\cdots+\frac{A_{m}}{(s-a)^{m}} .
$$

3. For each irreducible quadratic term $\left[(s-\alpha)^{2}=\beta^{2}\right]^{p}, \alpha, \beta \in \mathbb{R}$, include terms of the form

$$
\frac{B_{1} s+C_{1}}{(s-\alpha)^{2}+\beta^{2}}+\frac{B_{2} s+C_{2}}{\left((s-\alpha)^{2}+\beta^{2}\right)^{2}}+\cdots+\frac{B_{p} s+C_{p}}{\left(\left(s-\alpha^{2}\right)^{p}+\beta^{2}\right)^{p}} .
$$

Review: Partial Fractions

4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.

Review: Partial Fractions

4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.
5. Put over common denominator.

Review: Partial Fractions

4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.
5. Put over common denominator.
6. Equate numerators.

Review: Partial Fractions

4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.
5. Put over common denominator.
6. Equate numerators.
7. a) Find A_{i}, B_{i}, C_{i} by equating coefficients s^{k}.

Review: Partial Fractions

4. Set $\frac{P(s)}{Q(s)}$ equal to the sum of these terms.
5. Put over common denominator.
6. Equate numerators.
7. a) Find A_{i}, B_{i}, C_{i} by equating coefficients s^{k}.
b) Evaluate both sides at the roots.

4.1/4.2 The Laplace Transform

- 6. Use the Laplace transform to solve the linear IVP

$$
2 y^{\prime}+y=0, y(0)=-3
$$

4.1/4.2 The Laplace Transform

- 6. Use the Laplace transform to solve the linear IVP

$$
2 y^{\prime}+y=0, y(0)=-3
$$

- Recall: To solve this we want to \mathscr{L} both sides, isolate for $\mathscr{L}\{y\}:=Y(s)$, then \mathscr{L}^{-1} both sides.

Table of Laplace Transforms:

Here $\mathscr{L}\{f(t)\}=F(s)$.

Transforms of Some Basic Functions

$\mathscr{L}\{1\}=\frac{1}{s}$
$\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, n=1,2, \ldots$

- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$
$\mathscr{L}\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}}$
$\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}$
$\mathscr{L}\{\sinh (k t)\}=\frac{k}{s^{2}-k^{2}}$
- $\mathscr{L}\{\cosh (k t)\}=\frac{s}{s^{2}-k^{2}}$

Transforms of Derivatives

- $\mathscr{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0)$

Translation Theorems

- $\mathscr{L}\left\{e^{a t} f(t)\right\}=\left.\mathscr{L}\{f(t)\}\right|_{s \rightarrow s-a}=F(s-a)$, where $a \in \mathbb{R}$
$\mathscr{L}^{-1}\{F(s-a)\}=\mathscr{L}^{-1}\left\{\left.F(s)\right|_{s \rightarrow s-a}\right\}=e^{a t} f(t)$
- $\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s)$, where $a>0$
- $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$, where $a>0$
- $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$, where $a>0$
$\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s}$, where $a>0$

Derivatives of Transforms \& Convolution

$\mathscr{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s), n=1,2, \ldots$

- $\mathscr{L}\{f * g\}=\mathscr{L}\{f(t)\} \mathscr{L}\{g(t)\}=F(s) G(s)$

Dirac Delta Function

$\mathscr{L}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-s t_{0}}$, for $t_{0}>0$

