Math 2C03: Quiz \#6 Information

Quiz: Wednesday, July 29Th, 7PM (First 10 minutes of class)
McMaster University

Potential Quiz Questions:

Your quiz on Wednesday will consist of one or two of the questions listed below.

1. (a) What does it mean for a function to be analytic at a point x_{0} ?
(b) Is $x=0$ an ordinary or singular point of $x y^{\prime \prime}+(\sin x) y=0$? (Hint: Use the Maclaurin series $\left.\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}\right)$.
2. Is $x=0$ an ordinary point of $y^{\prime \prime}+5 x y^{\prime}+\sqrt{x} y=0$? Explain.
3. Does the differential equation $\left(1+x+x^{2}\right) y^{\prime \prime}-3 y=0$ have a power series solution about the point $x=1$? If so, what is the minimum radius of convergence of this power series. Explain.
(Hint: You don't have to solve this DE to answer this question.)
4. Show that the differential equation $\left(1+x^{2}\right) y^{\prime \prime}-y^{\prime}+y=0$ has power series solution $y=\sum_{n=0}^{\infty} c_{n} x^{n}$, where the recursive formula for the coefficients c_{n} is $c_{n+2}=\frac{(n+1) c_{n+1}-\left(n^{2}-n+1\right) c_{n}}{(n+2)(n+1)}, n \geq 2$.
5. The differential equation $\left(1+x^{2}\right) y^{\prime \prime}-y^{\prime}+y=0$ has power series solution $y=\sum_{n=0}^{\infty} c_{n} x^{n}$, where the recursive formula for the coefficients c_{n} is $c_{n+2}=\frac{(n+1) c_{n+1}-\left(n^{2}-n+1\right) c_{n}}{(n+2)(n+1)}, n \geq 2,2 c_{2}-c_{1}+c_{0}=0$, $6 c_{3}-2 c_{2}+c_{1}=0$. Using this, write the first 4 terms for a general solution to this DE. How do you know this is a general solution?
