Math 2C03: Quiz \#5 Information

QuIz: MONDAY, JULY 27Th, 7PM (FIRST 10 minutes of CLASS)
McMaster University

Potential Quiz Questions:

Your quiz on Monday will consist of one or two of the questions listed below.

1. For this question, it suffices to draw an example of a function that satisfies the conditions below. (i.e. You don't have to explicitly write down an equation that defines the function.)
(a) Give an example of a function that is piecewise continuous on $[0, \infty)$. Explain.
(b) Give an example of a function that is NOT piecewise continuous on $[0, \infty)$. Explain
2. Compute $\mathscr{L}\left\{t e^{-3 t} \cos (3 t)\right\}$ using the Laplace transform table provided.
3. Solve

$$
t-2 f(t)=\int_{0}^{t}\left(e^{\tau}-e^{-\tau}\right) f(t-\tau) d \tau
$$

4. Solve the following system of linear differential equations:

$$
\begin{aligned}
& x^{\prime}=2 x+y \\
& y^{\prime}=3 x+4 y \\
& x(0)=1, y(0)=0
\end{aligned}
$$

5. Verify that the power series

$$
y=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n}(n!)^{2}} x^{2 n}
$$

is a solution to the differential equation $x y^{\prime \prime}+y^{\prime}+x y=0$.
Hint: You'll want to make a substitution $k=n$ and $k=n+1$.

Table of Laplace Transforms

Here $\mathscr{L}\{f(t)\}=F(s)$.

Section 7.1:

- $\mathscr{L}\{1\}=\frac{1}{s}$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$
$\mathscr{L}\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}}$
- $\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}$
$\mathscr{L}\{\sinh (k t)\}=\frac{k}{s^{2}-k^{2}}$
- $\mathscr{L}\{\cosh (k t)\}=\frac{s}{s^{2}-k^{2}}$

Section 7.2:

- $\mathscr{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0)$

Section 7.3:

- $\mathscr{L}\left\{e^{a t} f(t)\right\}=\left.\mathscr{L}\{f(t)\}\right|_{s \rightarrow s-a}=F(s-a)$, where $a \in \mathbb{R}$
- $\mathscr{L}^{-1}\{F(s-a)\}=\mathscr{L}^{-1}\left\{\left.F(s)\right|_{s \rightarrow s-a}\right\}=e^{a t} f(t)$
- $\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s)$, where $a>0$
- $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$, where $a>0$
- $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$, where $a>0$
- $\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s}$, where $a>0$

Section 7.4:

- $\mathscr{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s), n=1,2, \ldots$
- $\mathscr{L}\{f * g\}=\mathscr{L}\{f(t)\} \mathscr{L}\{g(t)\}=F(s) G(s)$

