Math 2C03-Class \# 4

Mon. July 6th, 2015

Math 2C03: Quiz \#2
MONDAY, JULY 6TH, 7PM (FIRST 10 MINUTES OF CLASS) McMaster University

Name: * Marking scheme* Student ID:
Please answer each question fully, providing all reasoning
Questions:

1. In class last Monday we discussed three types of differential equations: homogeneous, Bernoulli's equation, and DE's of the form $y^{\prime}=f(A x+B y+C)$, for $A, B, C \in \mathbf{R}, B \neq 0$. These equations can all be solved by making an appropriate substitution which transforms them into a separable or linear equation.
(a) (3pts) Define each type of equation.
(b) (3pts) In each case, what substitution should be made to solve it?
(c) (3pts) For each, which type of equation does the differential equation become after making that substitution?
(d) (3pts) Give an example of each type of equation.
(2) $\int A 1^{15 t-v i d e r} D E M(x, y) d x+N(x, y) d y=0$ is homogreaus if $M+N$
 ($\downarrow N(t, x, t y)=t^{4} N(x, y)$ for save $\alpha \in \mathbb{R}$.
(let) (自 Bernanli's eq" is a $D E$ of the form $y^{\prime}+p_{x x} y=F(x) y^{\prime \prime}$.
(lot) $\left\{y^{\prime}=F(A x+B y+C)\right.$ is a Bt-orber $\left.D E \quad y^{\prime}=g \mid x, y\right)$, whee
. $:\left\{\begin{array}{l}\text { gley) can be writer as a function of } u=A x+B y+C \text {. } \\ \text {. }\end{array}\right.$
[For this ore, the name $y^{\prime}=f(A x+B y+c)$ is kind of self-eplanatry... So even if they soy its a $D E$ of the form $y^{\prime}=F(A x+B y+C)$, that world be (b) (i) Make the substitution $y=u x$ os $x=v y$.
(1) (i: $u=y^{1-n}$
（C）in separable
（ak）（圂）$\sim \rightarrow$ linear

（ᄌ）（IR）（I）$\frac{d y}{d x}=\frac{x^{2}-y^{2}}{3 x y} \Leftrightarrow 3 x y d y+\left(-x^{2}+y^{2}\right) d x$ honog．of degree 2 ．
$\left\{\right.$（ped）（圆 $y^{\prime}-5 y=\frac{-5}{2} x y^{3}$ Bernoulli＇s eq in，with $n=3$ ．
（le）圆 $y^{\prime}=(-2 x+y)^{2}-7$ has the form $y^{\prime}=f(A x+B y+c)$ ，
were $A=-2, B=1, C=0$ ．
＊any examples that work are fire tere．t

Reminders:

- Solutions to the assigned Practice Problems in Chapters 1 and 2 are posted. Please be sure to try these questions on your own before viewing the solutions... it's hard to digest how an algorithm works without trying it yourself!

Reminders:

- Solutions to the assigned Practice Problems in Chapters 1 and 2 are posted. Please be sure to try these questions on your own before viewing the solutions... it's hard to digest how an algorithm works without trying it yourself!
- Your third assignment is due on Friday.
\square The written portion should be deposited in the assignment locker (C33) located in the basement of Hamilton Hall by 2pm on Friday. If you want to submit via email, please type of scan it, make sure your file is a PDF, and title it LastName_FirstName_Assignment3.
\square The online WeBWork portion must be completed by 11:59pm Friday,

Assignment \#2:

- 1. Consider the initial value problem $2 y^{\prime}+8 x y=x^{3} e^{x^{2}}, y(0)=2$. Without solving this IVP, explain why a solution exists. Can there exist more than one solution to this IVP on a given interval? Explain.

Assignment \#2:

- 1. Consider the initial value problem $2 y^{\prime}+8 x y=x^{3} e^{x^{2}}, y(0)=2$. Without solving this IVP, explain why a solution exists. Can there exist more than one solution to this IVP on a given interval? Explain.
- Existence of a Unique Solution (1st-Order IVP's): Let $R=[a, b] \times[c, d]$ contain the point $\left(x_{0}, y_{0}\right)$ in its interior. If $f(x, y)$ and $\frac{d f}{d y}$ are continuous on R, then there exists some interval I_{0} containing x_{0} contained in $[a, b]$ and a unique function $y\left(x_{0}\right)$ defined on I_{0} such that $y(x)$ is a unique solution to the IVP $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$.
- Existence of a Unique Solution (Linear 1st-Order IVP's): Consider the IVP $y^{\prime}+P(x) y=f(x), y\left(x_{0}\right)=y_{0}$. If $P(x)$ and $f(x)$ are continuous on an interval I containing x_{0}, then there exists a unique solution of this IVP on I.

Assignment \#2:

- 1. Consider the initial value problem $2 y^{\prime}+8 x y=x^{3} e^{x^{2}}, y(0)=2$. Without solving this IVP, explain why a solution exists. Can there exist more than one solution to this IVP on a given interval? Explain.
- Notice: In the first theorem we're only guaranteed uniqueness on some interval I_{0}, whereas in the second we're guaranteed uniqueness on the entire interval I where $P(x)$ and $f(x)$ are unique! Therefore, in this question, we need the LINEAR theorem, because this will guarantee uniqueness on $(-\infty, \infty)$, and so there will be a unique solution on ANY interval. (i.e. There can't exist more than one solution on a given interval).

Assignment \#2:

- 3. Suppose you are given a first-order differential equation $y^{\prime}=f(x, y)$, which satisfies the hypotheses of Theorem 1.2.1 in some rectangular region R. Could two different solution curves in its 1-parameter family of solutions intersect at a point in R ? Why or why not?

Assignment \#2:

- There's a difference in quality between the following two solutions:

Assignment \#2:

- There's a difference in quality between the following two solutions:
- **state Theorem 1.2.1 verbatim ${ }^{* * *}$. Therefore by Theorem 1.2.1 no two solutions can intersect at a point.

Assignment \#2:

- There's a difference in quality between the following two solutions:
- **state Theorem 1.2.1 verbatim***. Therefore by Theorem 1.2.1 no two solutions can intersect at a point.
- Consider an arbitrary point $\left(x_{0}, y_{0}\right)$ in R. The hypotheses of Theorem 1.2.1 are satisfied on R, taking $y\left(x_{0}\right)=y_{0}$ as an initial condition. Therefore, we know that there exists an interval I_{0} containing the point $\left(x_{0}, y_{0}\right)$ such that a solution $y(x)$ exists and is unique. Therefore, no other solution curve, distinct from $y(x)$, can go through the point $\left(x_{0}, y_{0}\right)$, because it would have to pass through the interval I_{0}, and we know there is only one unique solution curve in I_{0} passing through $\left(x_{0}, y_{0}\right)$. The point $\left(x_{0}, y_{0}\right)$ was chosen arbitrarily, so this is true of all points in R. Therefore, no two solution curves can intersect at a point in R.

Math 2C03-Assignment\#2 [Written Pat]
[4pts] 1. Consider the IVP $2 y^{\prime}+8 x y=x^{3} e^{x^{2}}, y(0)=2$.
Without solving this IUP, explain why a solution exists. Can there exist more than are solution to this IVP on a given interval? Explain.
[From class) Recall: Theorem [Existaced Unaveress of $1^{\text {st }}$-or tor Linear apps]
Consider the IVP $y^{\prime}+P(x) y=f(x), y\left(x_{0}\right)=y_{0}$.
If $P(x)+f(x)$ are cont. on an interval I containing x_{0}, then 7 ! solution of the JUP on I.
Here, our eq'in is linear $1^{15 t}$-order: $y^{\prime}=\frac{4 x}{P(x)} y=\frac{\frac{1}{2} x^{3} e^{x^{2}}}{f(x)}$. $P(x)=4 x$ is a polynomial, it so is cunt. on $(-\infty, \infty)$.
$f(x)=\frac{1}{2} x^{3} e^{x^{2}}$ is also cont. on $(-\infty$, sol, since $x^{3} \Rightarrow e^{x^{2}}$ ore cont..
\therefore By the Thearen, J! solution to the IVP orion $(-\infty, \infty)$.
i.e. 7 A solution exists on $(-\infty, \infty)$ \& this solution is unique, so there cont exist mure than . To one solution on any interval, since curve on $(-\infty, \infty)$.
[apes] 2. Consider the $1^{\text {st }}$-order $D E\left(y^{\prime}\right)^{2}+8=0$. Does this eau posses any real solution 5 ? .ie. 7 Can there exist a real-volved function $y=\dot{d}(x)$ which satisfies this DE on some interval? Explain.

$$
\left(y^{\prime}\right)^{2}+8=0 \Rightarrow \underbrace{\left(y^{\prime}\right)^{2}}_{\sim 0}=-\frac{8}{-8} \quad \text { Suppose } y=\phi(x) \text { is }
$$

Then $y=4(x)$ is a real-valued function $\Rightarrow 7$ $y(x) \in \mathbb{R} \forall x$.
This meas that $y^{\prime}(x)$ is also a real-valved function $7\left(y^{\prime}(x)^{2} \geq 0 \quad \forall x\right.$.
But then this contradicts $\left(y^{\prime}\right)^{2}=-8<0$.
\therefore No real solution can exist.
[tets) 3. Suppose you are given a $1^{\text {st }}$-order $D E y^{\prime}=f(x, y)$, which satisfies the hypotheses of Theorem I.2.1 in some rectangular region R. Could a different solution curves in its 1-poraveter family of Solutions intersect at a point in R? Why or why not?
Recall: Theven 1.2.1: Let $R=[a, b] \times[c, d]$ contain $f(x, y)+\frac{o f}{\partial y}$ are cont. on $R=7 \exists$ some interval $I_{0}:\left(x_{0}-h, x_{0}+h\right), h>0$, contained in $[a, b]$, a a pique Function $y(x)$, defined in I_{0}, that is a solution to the IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$.
Theranl.2.) satisfied for a region $R \Rightarrow$ for all points wow) in R there is an interval I_{0} containing that point whee
the solution to $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ is undue.

In particular, suppose $2 \wedge$ solution curves $G(x, y, c) ~ \& G(x, y, \tilde{c})$ intersect at $\left(x_{0}, y_{0}\right)$.

Restricting these to Io, we would have two distinct solution curves going through (ia ,yo) on Jo, which is a contradiction. M
$\therefore c=\tilde{c}$. ie. 7 The 2 curves must be the save.
\therefore Two different solution curves cant intersect at a point $\left(x_{0}, y_{0}\right)$ in R.

- First Three Classes:We focussed on the theory of first order DE's. In particular, we learned some techniques for solving special types of first order DE's (separable, linear, exact, substitution methods) and also analyzed first-order DE's geometrically (direction fields, phase portraits).
- First Three Classes:We focussed on the theory of first order DE's. In particular, we learned some techniques for solving special types of first order DE's (separable, linear, exact, substitution methods) and also analyzed first-order DE's geometrically (direction fields, phase portraits).
- This Week: We'll examine higher-order linear DE's. We'll discuss general theory and techniques for finding a solution.

Things to Review From First-Year Linear Algebra:

- Vector Spaces

Things to Review From First-Year Linear Algebra:

- Vector Spaces
- Dimension of a Vector Space

Things to Review From First-Year Linear Algebra:

- Vector Spaces
- Dimension of a Vector Space
- Linear Independence

Things to Review From First-Year Linear Algebra:

- Vector Spaces
- Dimension of a Vector Space
- Linear Independence
- Span

Things to Review From First-Year Linear Algebra:

- Vector Spaces
- Dimension of a Vector Space
- Linear Independence
- Span
- Basis

Things to Review From First-Year Linear Algebra:

- Vector Spaces
- Dimension of a Vector Space
- Linear Independence
- Span
- Basis
- Systems of Homogenous Equations (finding a basis for solution space)

Things to Review From First-Year Linear Algebra:

- Vector Spaces
- Dimension of a Vector Space
- Linear Independence
- Span
- Basis
- Systems of Homogenous Equations (finding a basis for solution space)
- Determinants (at least 2×2 and 3×3 determinants)

