
Math 2C03 - Class # 4

Mon. July 6th, 2015







Reminders:

� Solutions to the assigned Practice Problems in Chapters 1 and 2 are
posted. Please be sure to try these questions on your own before
viewing the solutions... it’s hard to digest how an algorithm works
without trying it yourself!

� Your third assignment is due on Friday.

� The written portion should be deposited in the assignment locker (C33)
located in the basement of Hamilton Hall by 2pm on Friday. If you want
to submit via email, please type of scan it, make sure your file is a PDF,
and title it LastName_FirstName_Assignment3.

� The online WeBWork portion must be completed by 11:59pm Friday.
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Assignment #2:

� 1. Consider the initial value problem 2y′+8xy = x3ex2
, y(0) = 2.

Without solving this IVP, explain why a solution exists. Can there
exist more than one solution to this IVP on a given interval? Explain.

� Existence of a Unique Solution (1st-Order IVP’s): Let
R = [a,b]× [c,d] contain the point (x0,y0) in its interior. If f (x,y) and
df
dy are continuous on R, then there exists some interval I0 containing
x0 contained in [a,b] and a unique function y(x0) defined on I0 such
that y(x) is a unique solution to the IVP y′ = f (x,y),y(x0) = y0.

� Existence of a Unique Solution (Linear 1st-Order IVP’s): Consider
the IVP y′+P(x)y = f (x), y(x0) = y0. If P(x) and f (x) are continuous
on an interval I containing x0, then there exists a unique solution of
this IVP on I.
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� 1. Consider the initial value problem 2y′+8xy = x3ex2
, y(0) = 2.

Without solving this IVP, explain why a solution exists. Can there
exist more than one solution to this IVP on a given interval? Explain.

� Notice: In the first theorem we’re only guaranteed uniqueness on
some interval I0, whereas in the second we’re guaranteed uniqueness
on the entire interval I where P(x) and f (x) are unique! Therefore, in
this question, we need the LINEAR theorem, because this will
guarantee uniqueness on (−∞,∞), and so there will be a unique
solution on ANY interval. (i.e. There can’t exist more than one
solution on a given interval).



Assignment #2:

� 3. Suppose you are given a first-order differential equation
y′ = f (x,y), which satisfies the hypotheses of Theorem 1.2.1 in some
rectangular region R. Could two different solution curves in its
1-parameter family of solutions intersect at a point in R? Why or why
not?



Assignment #2:

� There’s a difference in quality between the following two solutions:

� **state Theorem 1.2.1 verbatim***. Therefore by Theorem 1.2.1 no
two solutions can intersect at a point.

� Consider an arbitrary point (x0,y0) in R. The hypotheses of Theorem
1.2.1 are satisfied on R, taking y(x0) = y0 as an initial condition.
Therefore, we know that there exists an interval I0 containing the
point (x0,y0) such that a solution y(x) exists and is unique. Therefore,
no other solution curve, distinct from y(x), can go through the point
(x0,y0), because it would have to pass through the interval I0, and we
know there is only one unique solution curve in I0 passing through
(x0,y0). The point (x0,y0) was chosen arbitrarily, so this is true of all
points in R. Therefore, no two solution curves can intersect at a point
in R.
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� First Three Classes:We focussed on the theory of first order DE’s. In
particular, we learned some techniques for solving special types of
first order DE’s (separable, linear, exact, substitution methods) and
also analyzed first-order DE’s geometrically (direction fields, phase
portraits).

� This Week: We’ll examine higher-order linear DE’s. We’ll discuss
general theory and techniques for finding a solution.
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Things to Review From First-Year Linear Algebra:

� Vector Spaces

� Dimension of a Vector Space
� Linear Independence
� Span
� Basis
� Systems of Homogenous Equations (finding a basis for solution

space)
� Determinants (at least 2x2 and 3x3 determinants)
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