Math 2C03: Assignment \#3
 Due: Friday, July 10th

McMaster University

Part I: Online

The online portion of your assignment is available on WeBWork.

Part II: Written

Please deposit the written part of this assignment in the course locker (basement of HH) by 2 pm on the due date.

If you are unable to make it to campus, I will accept online submissions: either Te X your assignment OR scan your handwritten assignment. (Please do not take a photo, because it will be too difficult to read). Submit your file as a PDF via email, making the title your LastName_FirstName_Assignment2.

Questions:

Answer each question fully, explaining all reasoning. If you use a Theorem, explain why you are allowed to use it (i.e. why are the assumptions of the theorem satisfied?)

1. (4ts) Solutions of autonomous differential equations behave asymptotically (approach a value arbitrarily close) and have the translation property (if $y(x)$ is a solution of an autonomous DE $y^{\prime}=f(y)$, then $y_{1}(x)=y(x-k)$ is also a solution $\left.\forall k \in \mathbb{R}\right)$. We briefly discussed why both of these things were true in class, but didn't formally write down the details. Please give a detailed explanation why both of these facts are true. In your argument, be sure to include why graphs of nonconstant solutions can't cross the graph of a constant solution, can't oscillate or have relative maximums/minimums, and why they must always be increasing or decreasing. (Recall that throughout Section 2.1, given an autonomous DE $y^{\prime}=f(y)$, we assume that f and f^{\prime} are continuous on some interval I.)
2. (3pts) Suppose that the population p (in thousands) of squirrels in Hamilton can be modelled by the differential equation $\frac{d p}{d t}=p(2-p)$.
(a) If the initial population of squirrels is 3000 , what can you say about the long-term behaviour of the squirrel population?
(b) Can a population of 1000 ever decline to 500? Explain.
(c) Can a population of 1000 ever increase to 3000? Explain.
3. (3pts) Consider the first-order differential equations

$$
y^{\prime}=(2-y)(3-y), \quad y^{\prime}=(y-2)(3-y), \quad y^{\prime}=(2-x)(3+x), \quad y^{\prime}=(2-y)(3+x) .
$$

Assign the direction fields below to the appropriate differential equation, and write a short paragraph to justify your choices.

