Math 2C03: Assignment \#2
 Due: Friday, July 3rd

McMaster University

Part I: Online

The online portion of your assignment is available on WeBWork.

Part II: Written

Please deposit the written part of this assignment in the course locker (basement of HH) by 2 pm on the due date.

If you are unable to make it to campus, I will accept online submissions: either Te X your assignment OR scan your handwritten assignment. (Please do not take a photo, because it will be too difficult to read). Submit your file as a PDF via email, making the title your LastName_FirstName_Assignment2.

Questions:

Answer each question fully, explaining all reasons. If you use a Theorem, explain why you are allowed to use it (i.e. why are the assumptions of the theorem satisfied?)

1. (4ts) Consider the initial value problem $2 y^{\prime}+8 x y=x^{3} e^{x^{2}}, y(0)=2$. Without solving this IVP, explain why a solution exists. Can there exist more than one solution to this IVP on a given interval? Explain.
2. (2 pts) Consider the first-order differential equation $\left(y^{\prime}\right)^{2}+8=0$. Does this equation possess any real solutions? i.e. Can there exist a real-valued function $y=\phi(x)$ which satisfies this DE on some interval? Explain.
3. (4pts) Suppose you are given a first-order differential equation $y^{\prime}=f(x, y)$, which satisfies the hypotheses of Theorem 1.2.1 in some rectangular region R. Could two different solution curves in its 1-parameter family of solutions intersect at a point in R ? Why or why not?
