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ABSTRACT

In 1983, Hopcroft and Krishnamoorthy defined a new type of graph colouring called harmonious

colouring. Harmonious colouring is a proper vertex colouring such that no two edges share the

same colour pair. The least number of colours needed to harmoniously colour a graph is called the

harmonious chromatic number. We will examine the results found for the harmonious chromatic

number of paths, cycles, and trees. We will also extend the definition of harmonious colouring and

define λ-harmonious colouring, which allows each edge colour pair to occur up to λ times. We

will explore λ-harmonious colouring and will prove some results for the λ-harmonious chromatic

number of complete graphs, complete bipartite graphs, paths, cycles, and wheels.
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1. INTRODUCTION

Graph colouring originated in the mid-nineteenth century, when mathematicians began to ask

the question, “Can a geographical map always be coloured using 4 colours or less?” Although this

problem took almost a century to solve, the minimum number of colours needed to propely colour

different types of graphs has been studied extensively in the literature [1]. The two main types

of graph colouring are vertex colouring and edge colouring. In this paper, we will explore vertex

colouring.

Vertex colouring is an assignment of colours to the vertices of a graph such that each vertex

receives exactly one colour. A colouring is called proper if no two adjacent vertices share the

same colour. In 1983, Hopcroft and Krishnamoorthy defined a new type of vertex colouring called

harmonious colouring [3]. Harmonious colouring is a special type of graph colouring in which each

edge is assigned a distinct colour pair, i.e. if one edge has the colours red and blue on its incident

vertices, then no other edge can also have the colour pair {red,blue}. In this report, we will discuss

several well-known harmonious colouring results for families of simple graphs, and will extend these

results to allow for each colour pair to occur up to λ times.

In Section 3, we will discuss harmonious colouring. Here we will state the theorems for paths,

cycles, and trees, and will outline the proofs for paths and cycles. In Section 4, we will extend the

harmonious colouring results and discuss λ-harmonious colouring, which allows each edge colour

pair to occur up to λ times. Here we will give the λ-harmonious chromatic number for complete

graphs, complete bipartite graphs, paths, cycles, and wheels.
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2. TERMINOLOGY

For additional terminology, see [2]. We will denote

path - an alternating sequence of distinct vertices and edges that begins and ends with a vertex.

For example, P : v1v2v3 would be a path of length 2, denoted P3.

cycle - a closed path where the first and last vertex are the same. For example H = v1v2v3v1

would be a cycle of length 3, denoted C3 (also known as a 3-cycle or a triangle).

tree - a connected graph without cycles.

|V (G)| - the number of vertices in a graph G.

|E(G)| - the number of edges in a graph G.

degree - the degree of a vertex v, or deg(v), refers to the number edges incident to v.

vertex colouring - an assignment of colours to the vertices of a graph, such that each vertex

receives exactly one colour.

proper colouring - a vertex colouring such that no two adjacent vertices share the same colour.

edge colour pair - the pair of colours assigned to an edge’s incident vertices.

harmonious colouring - a proper colouring such that no two edges share the same colour pair.

For example, if an edge’s vertices are coloured red and blue, then there is no other edge with

the colour pair {red, blue}.

h(G) - the least number of colours needed to harmoniously colour a graphG; called the harmonious

chromatic number.

λ-harmonious colouring - a proper colouring such that no λ+1 edges share the same colour pair.

Note that the traditional harmonious colouring defined above is a 1-harmonious colouring.

hλ(G) - the least number of colours needed to λ-harmoniously colour a graph G; called the λ-

harmonious chromatic number.
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complete graph - a graph in which each pair of vertices is connected by an edge; we denote a

complete graph on n vertices by Kn.

eulerian path - a trail in a graph that visits each edge exactly once.

eulerian cycle - a closed trail in a graph that visits each edge exactly once.

complete bipartite graph - a graph whose vertex set can be decomposed into two disjoint sets

such that no two vertices in the same set are adjacent, and every pair of vertices in distinct

sets are adjacent; we will denote a complete bipartite graph by Km,n where m and n are the

sizes of the disjoint sets, with m ≥ n.

star - a complete bipartite graph such that n = 1.

wheel - a graph on n vertices formed by connecting a single vertex to all vertices of a Cn−1; we

denote a wheel on n vertices as Wn.
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3. HARMONIOUS GRAPH COLOURING

The harmonious chromatic number, h(G), is the minimum number of colours needed to properly

colour a graph G such that no two edges share the same colour pair. This parameter was originally

introduced by Hopcroft and Krishnamoorthy in 1983 [3], and since then, h(G) has been found for

several different families of graphs.

We can gain a lower bound for h(G) by considering the requirement that each edge receives a

unique colour pair. The binomial coefficient
(
k
2

)
tells us how many ways k colours can be arranged

into pairs of 2. Therefore, we know that
(
k
2

)
≥ |E(G)|. Let k be the smallest integer such that this

inequality holds. This gives us a lower bound for the harmonious chromatic number: h(G) ≥ k.

Note that our definition of the harmonious chromatic number differs slightly from how it was first

introduced. Hopcroft and Krishnamoorthy’s definition of h(G) did not require that G was properly

coloured. The majority of the literature, however, has since added the additional condition that G

is properly coloured, so we will use this variation of h(G) as well.

We will now briefly state the results found for the harmonious chromatic number of paths,

trees, and cycles. We will also outline the proofs for Pn and Cn, as Section 4 will use these proof

techniques to find the λ-harmonious chromatic number of paths and cycles.

Theorem 1: [6] The harmonious chromatic number of a path with n vertices is as follows:

Let r ∈ Z be determined by the inequality
(
2r−1
2

)
< n− 1 ≤

(
2r+1
2

)
. Then

h(Pn) =

{
2r if n− 1 ≤

(
2r
2

)
− (r − 1) ,

2r + 1 otherwise.

Proof: We can determine h(Pn) by considering smallest m such that the complete graph on

m vertices, Km, has a subgraph with an eulerian path of length n− 1. An eulerian path of length

n− 1 corresponds to a harmonious colouring of Pn, since if we colour the m vertices of Km with m

different colours, this means that our eulerian path of length n− 1 is properly coloured such that

each edge has a distinct colour pair. Since we are considering the smallest m such that this is true,

we know that the harmonious chromatic number of Pn will be m.

We know that a graph has an eulerian path if and only if it is connected and has at most two

vertices of odd degree [2]. Also note that complete graphs Km have
(
m
2

)
edges, so when we consider

8



complete graphs, we know that our criterion
(
k
2

)
≥ |E(G)| is satisfied for k = m. If m is odd, then

all of the vertices of Km have even degree, so n− 1 ≤
(
m
2

)
, i.e. the length of Pm must be less than

or equal to the number of edges in Km. If m is even, then all vertices of Km have odd degree, so

we must delete at least m
2 − 1 edges to ensure we have at most 2 vertices of odd degree. Therefore,

if m is even, then we must have n− 1 ≤
(
m
2

)
− (m2 − 1). The theorem then follows, letting r = m

2 .

For example, in Figure 3.1 we can see that K6 has 15 edges, and each vertex has odd degree.

If we remove 2 edges, v and w, we are left with only 2 vertices of odd degree. Therefore, we can

trace an eulerian path 13524614512632, and can see that h(P11) = h(P12) = h(P13) = h(P14) = 6.

z z
z z

z z

z z

z z
z z

1 1

3 3

4 45 5

6 6

2 2

v w

Fig. 3.1: K6 − {v, w} has an eulerian path of length 13.

The harmonious chromatic number of a path can also be stated as follows [7]:

Let k be the least integer such that n− 1 ≤
(
k
2

)
. Then,

h(Pn) =


k if k odd,

or, if k even and n− 1 =
(
k
2

)
− i, for i ∈ {k2 − 1, k2 , . . . , k − 2},

k + 1 otherwise.

Since the harmonious chromatic number of a path is either k or k + 1, one might expect that

the harmonious chromatic number of a tree would also be close to k. However, this is not the case.

John Mitchem [7] proved that the harmonious chromatic number of a tree T with n vertices can

fall anywhere between k and n. We will state the theorem formally:

Theorem 2: [7] Let k be the least integer such that n − 1 ≤
(
k
2

)
. Then for each t such that

k ≤ t ≤ n, there is a tree T with n vertices such that h(T ) = t.

Theorem 3: [4] [5] The harmonious chromatic number of a cycle with n vertices is as follows: Let

k be the least integer such that n ≤
(
k
2

)
. Then,
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h(Cn) =


k if k odd and n 6=

(
k
2

)
− i, for i ∈ {1, 2},

or, if k even and n 6=
(
k
2

)
− i, for i ∈ {0, 1, . . . , k2 − 1},

k + 1 otherwise.

Proof: Let k be the least integer such that n ≤
(
k
2

)
. Then, as with paths, we can determine the

harmonious chromatic number of a cycle, Cn, by considering the smallest k such that the complete

graph on k vertices, Kk, has a subgraph with an eulerian cycle of length n. We know that a graph

has an eulerian cycle if and only if it’s connected and each of its vertices has even degree [2].

If k is odd, then each vertex in Kk has even degree. Therefore, in order to create a subgraph J

of Kk with an eulerian cycle of length n (i.e. a subgraph such that each vertex has even degree),

we need to either delete zero edges, or delete the edges from a cycle in Kk. Removing the edge

from a cycle will keep the degree of each vertex even, since vertices in a cycle all have degree 2. We

are able to do this unless n =
(
k
2

)
− i for i = 1 or 2, since no cycles of length 1 or 2 exist. So, if k

is odd and n 6=
(
k
2

)
− i, for i ∈ {1, 2}, then h(Cn) = k.

For example, if n = 7, then k = 5. So, if we delete the edges from a cycle of length 3 in K5, then

we are left with a subgraph of K5 with an eulerian cycle of length 7 (see Figure 3.2). Therefore,

h(C7) = k = 5.

z z
z z

z zz z
z z

1 1

2 25 5

4 43 3

K5 K5 − C3

Fig. 3.2: An eulerian subgraph of K5 with 7 edges.

If n =
(
k
2

)
− i for i = 1 or 2, then we know that Kk has no eulerian subgraph of length n.

However, we will show that such a subgraph does exist in Kk+1. Let’s call this subgraph L. If

i = 1, then we can create L by tracing a path of length 4 in Kk, deleting the edges from P4, and

joining the end vertices of P4 to a new vertex v not in Kk. This new graph L has
(
k
2

)
−1 edges, k+1

vertices, and all edges have even degree. Therefore, L is a subgraph of Kk+1 and has a eulerian

cycle of length
(
k
2

)
− 1. So, h(Cn) = k+ 1 when n =

(
k
2

)
− 1. Similarly, if i = 2, then we can create

L by deleting the edges from a P5 in Kk, and joining the end vertices of this path to a new vertex

v. Therefore, we also have h(Cn) = k + 1 for n =
(
k
2

)
− 2.
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For example, in Figure 3.3 we can see that if n = 9, then we can delete the edges from a P4 in

K5 and join the end vertices of this path to v. If n = 8, we delete the edges from a P5 in K5, and

join the end vertices to v.

z
z

z
z z

z zz z
z z

1 1

2 25 5

4 43 3

6

C9 zv
v

C8

6

Fig. 3.3: Eulerian subgraphs of K6 with 9 and 8 edges.

When k is even, we know that all vertices in Kk have odd degree. Therefore, we must delete at

least k
2 edges from Kk in order to create a subgraph of Kk such that all vertices have even degree.

So, let’s consider n =
(
k
2

)
− i for i = k

2 , . . . , k − 2. Note that we only consider i up to k − 2,

because
(
k
2

)
− (k − 1) =

(
k−1
2

)
, and so if i = k − 1, then k would not be the minimum integer that

satisfies n ≤
(
k
2

)
. Let i = k

2 + t. We can create an eulerian subgraph of Kk with
(
k
2

)
− i edges

as follows. If t = 0, then remove k
2 non-adjacent vertices from Kk. This will make the degree all

k vertices even. If t 6= 0, then remove from Kk the edges of a star K2t+1,1 as well as k
2 − t − 1

edges that are not adjacent to each other, or to any of the edges of K2t+1,1. Doing so will remove

2t+1+ k
2 − t−1 = k

2 + t = i edges from Kk, and will make the degree all k vertices even. Therefore,

h(Cn) = k for n =
(
k
2

)
− i when i = k

2 , . . . , k − 2, since there exists an eulerian subgraph of Kk of

size n.

For example, when n = 11, we have k = 6, i = 4 and t = 1. Therefore, we can create our

eulerian subgraph by deleting the edges from a K3,1 in K6 and deleting one other edge which is not

adjacent to any of the edges of K3,1 (see Figure 3.4).

When i < k
2 , it’s not possible to create an eulerian subgraph of Kk, but we can create an

eulerian subgraph of Kk+1. Since k is even, we know that k + 1 is odd, so all of Kk+1’s vertices

have even degree. Let t =
(
k+1
2

)
−n. If t ≤ k+ 1, then we can create an eulerian subgraph of Kk+1,

by deleting the edges from a cycle of length t in Kk+1. If t > k + 1, then we will not be able to

trace a cycle of length t in Kk+1 without repeating an edge. Therefore, we will instead create our

eulerian subgraph of size n by deleting t edges from two edge disjoint cycles in Kk+1, such that the

two cycles use all k + 1 vertices. Therefore, h(Cn) = k + 1 for n =
(
k
2

)
− i when i = 0, . . . , k2 − 1.
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z z
z z

z z

z z

z z
z z

1 1

3 3

4 45 5

6 6

2 2

Fig. 3.4: An eulerian subgraph of K6 with 11 edges.

For example, when n = 13, we have k = 6 and t = 8. So, we can create our eulerian subgraph

of K7 by deleting the edges from two C4’s in K7 (see Figure 3.5).

z zz z
z zz z

z zz z
z z1 1

2 2

3 3

4 45 5

6 6

7 7

Fig. 3.5: An eulerian subgraph of K7 with 13 edges.
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4. λ-HARMONIOUS GRAPH COLOURING

In the previous chapter we explored the harmonious chromatic number: the least number of

colours needed to properly colour a graph such that no two edges share the same colour pair. We

will now extend these results to allow for a proper colouring such that no λ + 1 edges may share

the same colour pair. We call this colouring λ-harmonious colouring. The least number of colours

needed to λ-harmoniously colour a graph G is called the λ-harmonious chromatic number, and will

be denoted by hλ(G).

As with harmonious colouring, we can gain a lower bound for the λ-harmonious chromatic

number by considering the requirement that no λ + 1 edges may share the same colour pair. The

binomial coefficient
(
k
2

)
tells us how many ways k colours can be arranged into pairs of 2. Therefore,

since we are only allowed to use each colour pair at most λ times, we must have |E(G)| ≤ λ
(
k
2

)
.

Let k be the smallest integer such that this inequality holds. Then, hλ(G) ≥ k.

We will now give our results for the λ-harmonious chromatic number of complete graphs, com-

plete bipartite graphs, paths, cycles, and wheels.

Theorem 4: The λ-harmonious chromatic number of a complete graph on n vertices equals n, i.e.

hλ(Kn) = n.

Proof: By definition, a λ-harmonious colouring must be a proper colouring. Since each vertex

in Kn is adjacent to all n− 1 remaining vertices, we need n colours in order to properly colour Kn.

Therefore, hλ(Kn) = n.

Theorem 5: The λ-harmonious chromatic number of a complete bipartite graph Km,n with m ≥ n
is:

hλ(Km,n) =

min
 m⌊

λ
q

⌋
+

⌈
n

q

⌉
; 1 ≤ q ≤

⌊√
λ
⌋
, q ∈ Z

 .

Proof:

The proof is quite straightforward for λ = 1, 2, and 3, so we will explore these cases before

proving the theorem in general. We will denote the disjoint vertex set of size m in Km,n by A, and

will denote the the disjoint vertex set of size n by B (see Figure 4.1).
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B

Fig. 4.1: Complete bipartite graph, Km,n, with m ≥ n.

For λ = 1 (i.e. regular harmonious colouring), we know that no two edges can share the same

colour pair. If we give a vertex v in A the colour 1, then all vertices in B must receive distinct

colours, since v is adjacent to each vertex in B. Let’s suppose w is a vertex in B that received the

colour 2. Since w is adjacent to every vertex in A, we must give the vertices in A distinct colours

as well. Therefore, h1(Km,n) = m+ n.

For λ = 2, we are allowed to use each colour pair twice. Therefore, the most efficient way to

colour Km,n would be to group the vertices of A into groups of 2, giving each group a distinct

colour. This forces us to use n distinct colours in B. Since m ≥ n, it will always be better to repeat

colours in A, rather than B. Therefore, h2(Km,n) =
⌈
m
2

⌉
+ n. Similarly, h3(Km,n) =

⌈
m
3

⌉
+ n.

When λ = 4, things get a little more interesting. Depending on the graph, it may be better to

use
⌈
m
4

⌉
colours in A, and use n colours in B, or sometimes it may be better to use

⌈
m
2

⌉
colours in

A, and
⌈
n
2

⌉
colours in B.

For example, in Figure 4.2, if we look at K8,3 we see that
⌈
m
4

⌉
+ n = 2 + 3 = 5 ≤

⌈
m
2

⌉
+
⌈
m
2

⌉
=

4 + 2 = 6, but for K8,6 we have
⌈
m
4

⌉
+ n = 2 + 6 = 8 ≥

⌈
m
2

⌉
+
⌈
m
2

⌉
= 4 + 3 = 7.

z zzz z zz z

z z z

1 1 1 1 2 2 2 2

3 4 5

z zzz z zz z

zzz z zz

1 1 2 2 3 3 4 4

5 5 6 6 7 7

Fig. 4.2: h4(K8,3) = 5, h4(K8,6) = 7.
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Therefore, h4(Km,n) =
{
min

(⌈
m
4

⌉
+ n,

⌈
m
2

⌉
+
⌈
n
2

⌉)}
. Similarly, when λ = 9, depending on the

graph, it may be best to use
⌈
m
9

⌉
+n colours,

⌈
m
4

⌉
+
⌈
n
2

⌉
colours, or

⌈
m
3

⌉
+
⌈
n
3

⌉
colours, as in K9,1,

K4,2, and K3,3, respectively.

In general, for each λ there will be several different colouring options for Km,n, and the most

appropriate colouring choice will depend on the size of m and n. Each colouring choice will allow

colours to repeat t times in A, and s times in B. Since m ≥ n, we will always have t ≥ s. For

example, for λ = 9, we could choose to use each colour twice in A (t = 2), and 4 times in B (s = 4),

but choosing t = 4, s = 2 would always be better, since A is never smaller than B.

We also know that each colour pair can only be used up to λ times, so t× s ≤ λ. Therefore, our

choice of s always depends on our choice of t, and so, we may choose {t = λ, s = 1}, {t = bλ2 c, s =

2}, . . ., or {t = bλq c, s = q}, for 1 ≤ q ≤
⌊√

λ
⌋
, q ∈ Z. We do not need to consider q >

⌊√
λ
⌋
, because

this would give us s > t. Therefore, hλ(Km,n) =

{
min

(⌈
m⌊
λ
q

⌋
⌉

+
⌈
n
q

⌉
; 1 ≤ q ≤

⌊√
λ
⌋
, q ∈ Z

)}
.

Note that for graphs where A is significantly larger than B, such as stars, we have hλ(Km,n) =⌈
m
λ

⌉
+n, i.e. q = 1. However, when the sizes of A and B are closer together, the value of q becomes

less clear.

Theorem 6: The λ-harmonious chromatic number of a path, Pn, is as follows:

Let r ∈ Z be determined by the inequality λ
(
2r−1
2

)
< n− 1 ≤ λ

(
2r+1
2

)
. Then

hλ(Pn) =


2r if λ is even and n− 1 ≤ λ

(
2r
2

)
,

or, if λ is odd and n− 1 ≤ λ
(
2r
2

)
− (r − 1) ,

2r + 1 otherwise.

Proof:

We gave the proof for the case where λ = 1 in Section 3. The proof for a general λ is quite

similiar, but we must take a few more factors into account.

To determine h1(Pn), we considered smallest k such that the complete graph on k vertices, Kk,

had a subgraph with an eulerian path of length n − 1. However, for a general λ, we are allowed

to use each edge pair λ times. Therefore, instead of considering Kk, we will instead consider a

graph on k vertices in which each pair of vertices is connected by λ edges. Let’s call this new graph

Hλ,k. For example, when λ = 2, H2,5 would be K5 with double edges (see Figure 4.3). In order to

determine hλ(Pn), we will consider the smallest k such that Hλ,k has a subgraph with an eulerian

path of length n− 1.

When λ is even, the degree of each vertex in Hλ,k will be even, since the degree of each vertex

in Hλ,k is a multiple of λ. We know that Kk has
(
k
2

)
edges, so Hλ,k will have λ

(
k
2

)
edges. Therefore,
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z
z

z z
z

Fig. 4.3: H2,5.

when λ is even, our k will be the smallest k such that n− 1 ≤ λ
(
k
2

)
, i.e. the length of Pn must be

less than or equal to the number of edges in Hλ,k.

When λ is odd and k is odd, the degree of each vertex in Hλ,k will also be even, since the degree

of each vertex in Hλ,k is a multiple of k − 1. Therefore, in this case, k will also be the smallest k

such that n− 1 ≤ λ
(
k
2

)
.

When λ is odd and k is even, the degree of each vertex in Hλ,k will be odd. Therefore, in order

to create an eulerian path, we must delete at least k
2 − 1 edges, in order to be left with at most two

vertices of odd degree. Therefore, our k will be the smallest k such that n− 1 ≤ λ
(
k
2

)
− (k2 − 1).

The theorem follows, with r = k
2 .

Theorem 7: The λ-harmonious chromatic number of a cycle, Cn, is as follows: Let k be the least

integer such that n ≤ λ
(
k
2

)
. Then

hλ(Cn) =



k if one of the following four conditions hold:

i) λ is even and n 6= λ
(
k
2

)
− 1,

ii) λ 6= 1, λ is odd, k is odd, and n 6= λ
(
k
2

)
− 1,

ii) λ = 1, k is odd, and n 6= λ
(
k
2

)
− i for i = 1, 2,

iv) λ is odd, k is even, and n 6= λ
(
k
2

)
− i for i = 0 . . . k2 − 1,

,

k + 1 otherwise.

Proof:

We will determine the λ-harmonious chromatic number for Cn by extending the proof for λ = 1

given by Lee and Mitchem [4], which we outlined in Section 3. We will do this by considering Hλ,k,

which is defined the same as in Theorem 6.

Let k be the smallest integer such that Hλ,k has a subgraph with an eulerian cycle of length n.

When λ is even, or when λ is odd and k is odd, then each vertex in Hλ,k will have even degree.
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We know that a connected graph G has an eulerian cycle if and only if each vertex in G has even

degree. Therefore, in these two cases, we can create a subgraph of Hλ,k with an eulerian cycle of

length n by either deleting zero edges, or by deleting the edges from a cycle in Hλ,k. If n = λ
(
k
2

)
−1

we won’t be able to do this, since no cycles of length 1 exist. If n = λ
(
k
2

)
− 2, we can delete a

cycle of length 2 in our graph if λ 6= 1 (i.e. Hλ,k always has multiple edges between vertices when

λ > 1). Therefore, in these two cases, if λ 6= 1, then hλ(Cn) = k, where k is the least integer such

that n ≤ λ
(
k
2

)
, i.e. the length of Cn must be less than or equal to the number of edges in Hλ,k. For

the case where λ = 1 and k is odd, see Theorem 3.

If n = λ
(
k
2

)
− 1, we cannot create this eulerian subgraph, but we can create it for Hλ,k+1. As in

Theorem 3, we can create an eulerian subgraph of Hλ,k+1 of length n by deleting the edges from a

P4 in Hλ,k that uses four distinct vertices, and then joining the end vertices of P4 to a new edge v

not in Hλ,k. Therefore, in these two cases, if n = λ
(
k
2

)
− 1, then we will have hλ(Cn) = k + 1.

When λ is odd and k is even, then all vertices in Hλ,k will have odd degree. Therefore, if

n 6= λ
(
k
2

)
− i for i = 0 . . . k2 − 1, then we will have hλ(Cn) = k, since we can create a subgraph

of Hλ,k with an eulerian cycle of length n in the same way as the k even case of Theorem 3. If

n = λ
(
k
2

)
− i for i = 0 . . . k2 − 1, then we will have hλ(Cn) = k+ 1, since we can’t create a subgraph

of Hλ,k with an eulerian cycle of length n, but, we can create it for Hλ,k+1 as in the k even case of

Theorem 3.

Theorem 8: Let q = hλ(Kn−1,1). If q > 4, then hλ(Wn) = q.

Proof:

A wheel on n vertices consists of a single vertex, called the hub, and a cycle of length n − 1,

such that the hub is adjacent to all vertices of Cn−1. Therefore, each wheel contains a star Kn−1,1

and a cycle Cn−1. Let hλ(Kn−1,1) = q. Since Wn contains Kn−1,1 as a subgraph, we know that

hλ(Wn) ≥ q. When q > 4 we will show that, in fact, hλ(Wn) = q. We will do this by considering

Hλ,q−1, which is defined the same as in Theorem 6. We will show that Hλ,q−1 has a subgraph with

an eulerian cycle of length n − 1 such that each vertex in the cycle is only used at most λ times.

Therefore, the Cn−1 of the wheel can be harmoniously coloured with q − 1 colours, and this leaves

one colour left over for the hub, which will be adjacent to each colour at most λ times. Hence,

hλ(Wn) = q.

From Theorem 5, we know that hλ(Kn−1,1) =
⌈
n−1
λ

⌉
+ 1. Since we require q colours to colour

our star, this means that the n − 1 end vertices of Kn−1,1 (i.e. the vertices of degree one) must

partition into q− 2 groups of size λ and one group of size less than or equal to λ, λ− i (see Figure

4.4).

Now, we can create a subgraph of Hλ,q−1 which corresponds to the partitions of the n− 1 end
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Fig. 4.4: hλ(Kn−1,1) = q.

vertices of our star, i.e. q− 2 vertices of Hλ,q−1 will have degree 2λ and one vertex will have degree

2(λ− i). Such a subgraph will have an eulerian cycle, since each vertex will have even degree. We

can create this subgraph in the following way. Take q−1 vertices and give them all distinct colours

{1, 2, . . . , q − 1}. Now, put λ edges between the vertices coloured 1 and 2, λ edges between the

vertices coloured 2 and 3, and so on until you put λ edges between the vertices coloured q − 3 and

q− 2. Now, put λ− i edges between the vertices coloured q− 2 and q− 1, λ− i edges between the

vertices coloured q − 1 and 1, and i edges between the vertices coloured 1 and q − 2. We are left

with a subgraph of Hλ,q−1 with n − 1 edges such that q − 2 vertices have degree 2λ, and one has

degree 2(λ− i) (see Figure 4.5).
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z
z
zz` ` `

λ edges
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q − 2
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λ− i edges

w
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o

~

Fig. 4.5: An eulerian subgraph of Hλ,q−1.

Therefore, we can colour our wheel Wn by using the colouring of this eulerian cycle to colour
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Cn−1 and using a distinct colour for the hub. Our colouring ensured that each colour on our cycle

was only used at most λ times, so our q-colouring is λ-harmonious, and it is the best we can possibly

do, since hλ(Kn−1,1) = q. Therefore, hλ(Wn) = q.

Note that when q = 4, q = 3, or q = 2 we may not have hλ(Wn) = q. For example, h4(K4,1) = 2,

but we cannot properly colour W5 with 2 colours (see Figure 4.6). Also, h3(K8,1) = 4, but Theorem

7 tells us that h3(C8) = 4, so we need at least 5 colours to colour W9. Similarly, h2(K5,1) = 4, but

h2(C5) = 4, so we need at least 5 colours to colour W6.

z zz z
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2 2 2 2 z
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2 3
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Fig. 4.6: h4(K4,1) = 2, but h4(W5) = 3.
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5. CONCLUSION

Although the harmonious chromatic number has been found for several families of graphs,

determining h(G) is, in general, NP-complete. In the appendix of [3], David S. Johnson shows that

the independent set problem can be transformed in polynomial time into the harmonious colouring

problem. Since we know that the independent set problem is NP-complete, this tells us that the

harmonious colouring problem is also NP-complete.

We can formally state the λ-harmonious colouring problem as follows: Given a graph G and

a positive integer k ≤ |V (G)|, can G be λ-harmoniously coloured with k colours? In other words,

does there exist a proper vertex colouring of G with k colours such that each edge colour pair occurs

at most λ times? We suspect that the λ-harmonious colouring problem is also NP-complete, but

we haven’t been able to prove it yet.
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