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ABSTRACT

In 1959, the German mathematician H. Grötzsch proved that any planar graph without triangles

can be coloured without same colour vertices being adjacent using only three colours. Grötzsch

used vertices that had the potential to be coloured by any of his three colours. New colouring

techniques, on the other hand, assign lists of potential colours to each vertex (it could be possible

to have the colour green in your graph, but have a vertex without green in its list). This technique

may sound more complicated, but it has reduced the complexity of Grötzsch’s proof significantly.

We will examine how using different proof techniques can reduce the difficulty of a proof, and show

how Grötzsch’s Theorem has led to many generalized three colour theorem results.
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4. List-Colouring Proof of Grötzsch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 20

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



LIST OF FIGURES

1.1 Four Colour Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1. INTRODUCTION

Graph colouring originated in the mid-nineteenth century, when mathematicians began to ask

the question, “Can a geographical map always be coloured using 4 colours or less?” In 1878, A.

Cayley represented the four colour problem using a system of vertices and edges, where the vertices

represented countries, and there was an edge between vertices if they shared a border on the map.

Cayley therefore restructured the four colour problem by asking, “Can any planar graph be coloured

using 4 colours or less?” (figure 1.1) This seemingly simple problem was a lot harder to prove than

many mathematicians had initially expected. Sir A. Kempe published a faulty proof in 1879, in

which the mistake was discovered 11 years later. It was not until almost a century later, in 1976,

that K Appel, W. Haken, and J. Koch finally proved the 4 colour theorem, using 1476 unavoidable

configurations. Since then, the proof has been improved, but it still requires extensive computer

calculations to confirm [1].
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Fig. 1.1: Four Colour Problem.

In 1959, the German mathematician H. Grötzsch created a three colour theorem, which states

that any planar graph with girth at least 4 (triangle-free) can be properly coloured using at most 3

colours. We need the graph to be both planar and triangle-free, because there exist planar graphs

that are not 3-colourable (figure 1.1) and triangle-free graphs that are not 3-colourable (figure 1.2).

Grötzsch’s original proof was quite complex, so mathematicians have since simplified his proof.

One of those people was L. Kowalik [8] who simplified Grötzsch’s result and used it to create an

algorithm. Following this algorithm, one can 3-colour the vertices of any planar graph which has

girth at least 4.
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Fig. 1.2: Grötzsch’s graph: non-planar and triangle-free.

In 2003, C. Thomassen [10] also improved Grötzsch’s result when he published a short and

elegant proof of Grötzsch’s theorem using a technique called list colouring. Thomassen proved that

every planar graph of girth at least 5 is 3-list-colourable and used this result to conclude that every

triangle-free planar graph is 3-colourable. Note that Thomassen did not solely use list colouring to

prove Grötzsch’s result, because there exist planar graphs with girth 4 that are not 3-list-colourable

[5]. Therefore, although it is true that all triangle-free planar graphs are 3-colourable, we know

that there exist triangle-free planar graphs that are not 3-list-colourable.

We will examine Kowalik and Thomassen’s proofs in Chapters 3 and 4, respectively, by taking

an in-depth look at a few particular cases. It may be informative to read Kowalik and Thomassen’s

proofs alongside these ones. We hope that examining these proofs in more detail will help novice

graph colourers better understand the techniques used in graph colouring literature.
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2. TERMINOLOGY

For additional terminology, see [2]. We will denote

path - an alternating sequence of distinct vertices and edges that begins and ends with a vertex.

For example, P : v1v2v3 would be a path with a length of 3.

cycle - a closed path where the first and last vertex are the same. For example H = v1v2v3v1

would be a cycle with a size of 3 (also known as a 3-cycle or a triangle).

planar - a graph that can be drawn without edges crossing.

|V (G)| - the number of vertices in a graph G.

face - a region in a planar graph that is surrounded by a cycle, such that there are no edges

reaching from the cycle into the region. Note that the exterior of a graph is also a face,

known as the outer face (see boundary).

boundary - the vertices and edges that border a face. Let C denote the boundary of the outer

face. |C| refers to the size of the face C.

chord - a chord of a cycle H is an edge joining 2 vertices of H that are not adjacent in H.

opposite vertices - if a cycle H has size 6, then two vertices on H are opposite if there are 3

edges of H between them. For example, in figure 2.1, all opposite vertices share the same

colour. Note that we will use numbers to denote colours.
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Fig. 2.1: Opposite vertices.



degree - the degree of a vertex v, or deg(v), refers to the number edges incident to v. Since we

are dealing with simple graphs, the degree of v refers to the number of neighbours v has.

distinct - a cycle H is distinct from another cycle J if H contains a vertex or an edge not in J .

girth - the size of a graph’s shortest cycle, (If a graph has girth 5 then it does not contain any

3-cycles or 4-cycles.) A triangle-free graph has girth at least 4.

identification of vertices - merge two vertices, x and y, into one new vertex i, where i shares

all of x and y’s neighbours, but does not have any double edges.

disconnected graph - a graph is disconnected if there exist two vertices such that there is no

path that has those two vertices as endpoints.

separating - a cycle S is separating in a connected graph G if deleting all vertices in S disconnects

the graph G.

G− x - refers to G with a vertex x removed along with all of x’s edges.

G[H] - a subgraph induced by H in G, that is, G with all vertices and edges not in H removed.

int(H) - the interior vertices of H, where H is a cycle in a planar graph.

proper colouring - no two adjacent vertices share the same colour.

r-colourable - G can be properly coloured using only r colours.

safe - a 3-colouring of the outer boundary C is called safe if C has size at most 6 and has the

following properties: if C has size less than 6, then any colouring of C will suffice. If C

has size 6, then the sequence of successive colours on the cycle is neither (1, 2, 3, 1, 2, 3) nor

(3, 2, 1, 3, 2, 1). In other words, there must be at least one set of opposite vertices on C that

do not share the same colour. Note that figure 2.2 is safely coloured, but figure 2.1, is not.
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Fig. 2.2: Safe colouring.
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list colouring - a type of graph colouring in which each vertex v is assigned a list L(v) of potential

colours (see figure 2.3). One must assign a colour to each vertex such that each vertex is given

a colour from its list. In order for a graph to be properly list coloured, no two adjacent vertices

can receive the same colour. Note that r colouring is a special case of list colouring in which

each vertex is assigned the same list of r colours.
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Fig. 2.3: A 2-colourable, but not 2-list-colourable graph.

r-list-colourable - each list has at most r colours and it has a proper list colouring regardless

of how one assigns colours to each vertex’s list. For example, figure 2.3 is 2-colourable, but

it is not 2-list-colourable. Given the lists shown, if the middle vertex receives the colour 1,

then the bottom right must receive the colour 2, the top right must receive the colour 3, and

so then the far right vertex must be coloured 2 or 3, but no matter what colour we choose

there will be two adjacent vertices with the same colour, which is not a proper list colouring.

Similarly, if we instead colour the middle vertex 2, we will encounter a similar problem on

the left, by symmetry. Therefore, the graph in figure 2.3 is not 2-list colourable, because

in order for it to be 2-list-colourable it must have a proper colouring for every possible list

assignment, but since there exist list assignments (figure 2.3) that do not work, the graph is

not 2-list-colourable.

list-r vertex - vertices that have r colours in their list. For example, if a vertex v1 had a list:

{1, 3} then v1 would be a list-2 vertex.
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3. KOWALIK’S PROOF OF GRÖTZSCH’S THEOREM

Grötzsch’s theorem states that any planar graph with girth at least 4 (triangle-free) can be

properly coloured using at most 3 colours. Kowalik [8] simplified Grötzsch’s result and formatted

his proof in such a way that it can be treated as a scheme for an algorithm that 3-colours the

vertices of planar graphs which have girth at least 4. Note that we are assuming that the graphs

we deal with have a fixed structure, i.e. if the outer boundary has size 5, we do need to consider

whether or not the graph could be redrawn to have an outer boundary size of 4.

Theorem 1: Any planar graph with girth at least 4 (triangle-free) is properly 3-colourable. More-

over, if the outer boundary of G is a cycle of size at most six, then any safe 3-colouring of the

boundary cycle C can be extended to a 3-colouring of G.

Proof: Let G be a triangle-free planar graph. We will proceed by induction on n, the number

of vertices in G. Our induction hypothesis will be: G can be properly 3-coloured if it has n − 1

vertices or less. If G is disconnected, we will apply induction separately to each component of G.

By the definition of a safe cycle, one of these two conditions will hold:

1. All vertices in G are uncoloured.

2. The boundary C is safely coloured, the induced graph G[C] is properly coloured, and all

vertices not in C are uncoloured (recall in order to have a safe colouring |C| ≤ 6 ).

Note that we are requiring that if the outer boundary is coloured, then it is safely coloured,

because this stronger condition makes it easier for us to use induction in certain cases, like in the

upcoming case 3

We will first proceed by considering three basic cases. We will then use these results to deal

with graphs that have faces of size 6 or greater (Case 4), faces of size 4, and finally faces of size 5.

We do not have to consider faces of size 3 since our graph does not contain any triangles. We will

use this property to help us eliminate each case. After each case is exhausted we will assume it can

no longer apply to G.



Case 1: Suppose G has an uncoloured vertex v of degree at most 2.

We can delete v and apply induction to the rest of the graph. When we add v back into our coloured

graph G, it will be adjacent to at most two colours, since it only has at most two neighbours. This

means that of the three colours being used in G, there will be at least one colour that is not being

used on v’s neighbours; we will use this colour to colour v. (If v ∈ C we know that C is uncoloured

since v is uncoloured, and we proceed in the same way.) For example, in figure 3.1, v is uncoloured

and has degree 2, so we can delete it, apply induction to P1, apply induction to P2, and then add

v back into G.
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Fig. 3.1: G has an uncoloured vertex with degree at most 2.

Case 2: Suppose C has a chord.

Since C has a chord, we know C has at least 6 vertices, since G is triangle-free. Also, if C is

coloured, we know that this chord is not adjacent to two vertices with the same colour, because

G[C] is properly coloured by definition. This chord splits C into two cycles, P1 and P2. For example,

in figure 3.2, P1 = x1x2x3x6x1 and P2 = x3x4x5x6x3. Therefore, we can first remove everything in

G except for P2 ∪ int(P2), and colour P2 ∪ int(P2) by induction. We can then remove everything in

G except for P1 ∪ int(P1), and colour P1 ∪ int(P1) by induction, using the colours assigned by the

first colouring (figure 3.2). We can proceed in this manner regardless of whether C is coloured or

not. Note that we are using circled vertices to represent coloured vertices.
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Fig. 3.2: C has a chord.
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Case 3: Suppose G contains an uncoloured vertex x joined to more than one coloured vertex.

Note that x has degree at least 3 since Case 1 takes care of uncoloured vertices of degree one or two.

We also know that coloured vertices exist in G, and these vertices must be in C, so C has at most 6

vertices. Therefore, x’s coloured neighbours are in C, but x 6∈ C since it is not coloured. x can only

have 2 or 3 coloured neighbours, since G is triangle-free. If x has three coloured neighbours, then

C has size 6, since there are no triangles in G (figure 3.3). However, x cannot have three differently

coloured neighbours, since C is safe (figure 2.2). Therefore, we can colour x using this spare colour.

We will now proceed in a similar manner as in Case 2. G[V (C) ∪ {x}] splits C into several cycles.

The number of cycles depends on how many neighbours x has. For example, in figure 3.3 there

are 3 cycles: P1 = x1x2xx6x1, P2 = x3x4xx2x3, P3 = x5x6xx4x5. We know that these cycles are

safely coloured, since C was safely coloured and since we properly coloured x. Therefore, we can

proceed by induction by considering each cycle separately, as we did in Case 2. For example, in

figure 3.3, we will first remove everything in G except for P1 ∪ int(P1), and colour P1 ∪ int(P1) by

induction. We will then remove everything in G except for P2 ∪ int(P2), and colour P2 ∪ int(P2) by

induction. Finally, we will remove everything in G except for P3 ∪ int(P3), and colour P3 ∪ int(P3)

by induction.

z

z

z

z
zz z\

\
\
�
�
�\

\
\
�
�
�T
T
T
�
�
�

x

P1

P3

x1

x3x4

x6

x5

P2

2

23

1 2

x2 1

Fig. 3.3: An uncoloured vertex x joined to more than one coloured vertex.

In summary, the properties of G after Case 2 are:

- Uncoloured vertices have degree at least 3.

- There is no chord in C.

- Uncoloured vertices have at most 1 coloured neighbour.
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We will now introduce a claim that will help us take care of the upcoming cases.

Claim 1: When G contains a separating cycle S distinct from C, where 4 ≤ |V (S)| ≤ 6, then we

can complete the proof of theorem 1 by induction.

Let S be our separating cycle distinct from C. Since S is distinct from C, S contains at least one

uncoloured vertex y. Now let A = G − int(S) and B = S ∪ int(S). If |V (S)| = 6, S may or may

not contain a chord. If S does contain a chord, let that chord be part of A; if S does not contain

a chord, put a chord in A between y and its opposite vertex. Now that we have a chord, we can

complete the proof using the technique we used in Case 2. We will colour G by first applying our

induction hypothesis to A. We know S will be safely coloured, since it contains a chord. Therefore,

using S as the boundary cycle, we can now apply the induction hypothesis again to colour B, which

completes our colouring of G (figure 3.4).
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Fig. 3.4: G contains a separating cycle, S.
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Case 4:

This case will deal with all graphs that contain a face T with size at least 6, where T has at least

one uncoloured vertex, (T : t1t2 . . . tkt1, k ≥ 6). We know that if C is coloured, then it might have

size 6, so this case will take care of all graphs with a face of size at least 7 and all graphs that

contain an uncoloured face of size 6. Therefore, once this case is exhausted, the only face that

could have size larger than 5 is the coloured boundary C, where |V (C)| = 6. Let the uncoloured

vertex be t1. Now t2 or tk must be uncoloured as well, because otherwise we could just use Case 3,

so let t2 be uncoloured. We want to identify t1 with t3 in order to make a smaller graph, which will

allow us to use the induction hypothesis, but first we must take care of the cases where identifying

t1 with t3 creates a chord or a triangle, Subcases 4.1 and 4.2, respectively.
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Fig. 3.5: Identifying t1 with t3 creates a chord in C: P2 = T .

Subcase 4.1: Assume t3 is coloured, and t1 has a coloured neighbour z.

Since t3 and z are both coloured, we know that they must be in C. We also know that the degree of

t1 and t2 are both greater than two, because otherwise we could just use Case 1. However, t1 and t2

do not share any more neighbours with C, or else we could just use Case 3. Now G[C∪{t1, t2}] splits

G into two cycles, let’s call them P1 and P2. Without loss of generality, let us assume |P1| ≤ |P2|,
where |P1| is the number of vertices in P1. We know |C| ≤ 6, since it is coloured. Therefore P1 has

at most 6 vertices. We know this because we know P1 and P2 both contain t1, t2, t3, and z (recall

t3 and z are both in C). Therefore, |C| = 6 = (|P1|− 2) + (|P2|− 2)− 2 (we subtract t1 and t2 from

both, and also subtract t3 and z since they are in both P1 and P2). Now we can see P1 must have

size 6 or less, because if it had size 7, P2 would have size 5 (|C| = 6 = (7 − 2) + (|P2| − 2) − 2),

which would make P1 larger than P2, which is a contradiction (D1 in figure 3.5).
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We also know that t1 and t2 each have a third edge, but do not share any other neighbours

with C, so their third edge must be connected to a vertex inside either P1 or P2, or both. If P1’s

boundary is a separating cycle then we can complete the proof by using Claim 1, since |P1| ≤ 6.

Note that we want to use Claim 1 here, because identifying t1 with t3 would create a chord in C,

which could result in having two vertices with that same colour being adjacent, which would be an

improper colouring (D2 in figure 3.5).

For example, in D1 in figure 3.5, z and t3 are both coloured 1, so identifying t1 with t3 would

create an edge between two vertices of same colour (D2 in figure 3.5). Note that P2 = T in this

example.

If P1 is not a separating cycle, then P2 must be a separating cycle, but we must ensure that

it has size at most 6 in order to use Claim 1. If P1 is not separating, then the face T cannot be

contained inside P2, because t2’s third edge would not have anywhere to go (D1 in figure 3.6). It

cannot go inside P1 or else P1 would be a separating cycle, and t2 cannot create a chord with a

vertex of T or be adjacent to a vertex inside of T , since T is a face. Therefore, P1 must equal T .

(D2 in figure 3.6). Since |P1| ≤ 6 by definition, this means that P1 has size 6 since P1 = T , and P2

must also have size 6, since |P1| is less than or equal to |P2| and the coloured boundary C has size

at most 6. Therefore, P2 is separating, and has size 6, so we can colour G by using Claim 1.
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Fig. 3.6: Identifying t1 with t3 creates a chord in C: P1 = T .
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Subcase 4.2: Assume there is a path t1y1wt3.

This will take care of all the cases where identifying t1 with t3 creates a triangle. We know

t2 6∈ {w, y1} since G has girth at least 4 (figure 3.7). Therefore, there is a cycle S = t1y1wt3t2t1.

The degree of t2 must be more than two, because otherwise we could just use Case 1 (recall t2 is

uncoloured). This means that t2’s third neighbour must enter into S, since T is a face. Therefore,

S is separating, and we can apply Claim 1. For example, S could take any of the 3 forms shown in

figure 3.7, so identifying t1 with t3 in any of these graphs would create a triangle (figure 3.8).
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Fig. 3.7: Situations where identifying t1 with t3 would create a triangle in G.
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Fig. 3.8: Triangles that could potentially occur.
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Subcase 4.3: Identify t1 with t3 to create a smaller graph, M .

We know this identification will not create a chord through C or a triangle, since we took care of

those possibilities in Subcases 4.1 and 4.2, respectively. When we identify t1 with t3, the merged

vertex t1, t3 will take on t3’s colour. M will not have 2 adjacent vertices with the same colour

since t1 and t2 are uncoloured in G. M has n− 1 vertices, so we can colour it using the induction

hypothesis (figure 3.9). After we apply induction, we will separate t1 and t3 once more to recreate

G. t1 and t3 will not have any additional neighbours that t1, t3 did not have. Therefore, the

colouring will still be proper, as t1 and t3 will take t1, t3’s colour, and their neighbours will not have

this colour, since t1, t3’s neighbours did not have this colour. This takes care of all of the graphs

that contain a face of size at least 7 or an uncoloured face of size 6.

\
\
\

t5

t6

t4

t1, t3

t2

M

H
HHHH
HHH

z���

z���
z���
z���

z���

Fig. 3.9: Identifying t1 with t3.
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Kowalik uses similar techniques to prove the theorem for graphs that contain a face with size

4, distinct from C. After this case is exhausted, he assumes that all faces in the interior of C must

have size 5, because all other face sizes were considered. In order to take care of this case, Kowalik

introduces an additional theorem that uses discharging to prove that G must contain a 5-cycle, and

that all vertices in this cycle have degree 3, except for one vertex, which has degree at most 5.

Discharging is a proof technique used to show that a certain structure in a graph must exist. It

uses Euler’s formula, which relates the number of vertices V , edges E, and faces F , in a connected

planar graph such that V −E+F = 2. It also uses the fact that in planar graphs there is a relation

between the number of edges, the total degree of the graph, and the sum of all the face sizes:

2E =
∑
v∈V

deg(v) =
∑
f∈F
|f |. A charge is generally given to the vertices and faces of the graph, using

Euler’s Formula, and then a set of discharging rules redistributes the charge, without changing the

total charge of the graph. For example, Kowalik assumed that a minimal counterexample existed.

He then put a charge of deg(v) − 4 on every vertex v and a charge of |f | − 4 on every face f . He

also gave the outer face an additional charge of 7. Kowalik then used Euler’s Formula to find out

that the total charge of his graph was -1:∑
v∈V

(deg(v)− 4) +
∑
f∈F

(|f | − 4) + 7 =
∑
v∈V

deg(v)− 4V +
∑
f∈F
|f | − 4F + 7

= 2E − 4V + 2E − 4F + 7

= 4E − 4V − 4F + 7

= −4(−E + V + F ) + 7

= −4(2) + 7

= −1

Kowalik then redistributed the charge from vertices to faces in such a way that v sent a charge of
deg(v)−4

deg(v) to each face incident with v. This redistribution should not have changed the total charge

of the graph, but it turned out that doing so resulted in the total charge becoming nonnegative,

which was a contradiction.

Kowalik completes the proof by identifying several vertices, but first he considers 8 additional

subcases, which ensure that this identification does not create a triangle or a chord through C.

This completes the proof.
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4. LIST-COLOURING PROOF OF GRÖTZSCH’S THEOREM

Thomassen [10] uses a series of configurations, and then list colouring to prove that any planar

graph with girth at least 5 is 3-list-colourable. We will first give an outline of this proof, and then

we will prove that this result also implies that any triangle-free planar graph is 3-colourable.

Theorem 2: Let G be a planar graph of girth at least 5. Let P be a 3-coloured path or cycle

P : v1v2 . . . vq, 1 ≤ q ≤ 6, such that all vertices of P are on the outer boundary C. For each vertex

v in G, let L(v) be a list of colours. If v is not on the outer boundary C, then L(v) has three

colours, so v is a list-3 vertex. If v is on the outer boundary C, but is not in P , then L(v) has at

least 2 colours. Assume furthermore that there is no edge joining vertices whose lists have at most

two colours, except for the edges in P (no list-2 vertices are adjacent to other list-2’s or to any

coloured vertices (list-1’s), and coloured vertices cannot be adjacent to each other, unless they are

both in P ). Then the colouring of P can be extended to a proper 3-list-colouring of G.

Proof: We will proceed by induction on the number of vertices in G. We will rule out specific

cases, and then use these cases as tools to help us complete the proof. When we manipulate the

graph, we must always check to make sure the resulting graph’s structure still satisfies the induction

requirements (i.e. P , the precoloured part of the outer boundary, has at most six vertices, and no

list-2 vertices are adjacent to other list-2’s or to any coloured vertices. Recall that list-2 vertices

may only exist in C − P . Also, coloured vertices cannot be adjacent to each other, unless they

are both in P .) Using techniques similar to those used in Chapter 3 and the upcoming Case 6 of

Chapter 4, Thomassen proves:

(a) G is connected.

(b) G has no cut-vertex. In other words, there does not exist a vertex in G such that G− v is a

disconnected graph.

(c) No chord in the outer boundary C is made by an edge of P . Therefore, we may choose a

notation for the outer boundary C : v1v2 . . . vqvq+1 . . . vkv1, such that {v1, v2, . . . , vq} ∈ P .

(d) P is a path, and q + 3 ≤ k. (In other words, the outer boundary C contains at least three

vertices not in P .)



(e) C has no chord.

(f) If S is a cycle in G with at most six vertices and is distinct from C, then the interior of S is

empty.

Please note that in the diagrams, the path P is usually of size 6, but in general, P may be smaller.

We will denote list-2 vertices as squares, and list-3 vertices as triangles. Circled vertices will

represent vertices that are originally coloured in G, and vertices with a square around them will

represent vertices that receive a colour by induction, or by an additional colouring.

Case 5: G has no path of the form vjuvi where u is in int(C) and vj , vi are in C, except possibly

when P has size 6 and the path is of the form v4uv7 or v3uvk.

Let us use the path vjuvi to divide G into two graphs P1 and P2 such that P1 has more vertices

of P in it than P2 does, and as a result, |V (P2)| is a minimum. Suppose an interior vertex u exists

which is adjacent to vi and vj , where {vi, vj} ∈ C. Although it is possible for an interior vertex to

be joined to many list-2 vertices, the minimality of P2 implies that u has no list-2 neighbours in

P2 − {u, vi, vj}. We also know that there are at most 2 list-2 vertices in P2 − {u, vi, vj} that are

joined to vi or vj . We colour any such list-2 vertex. By the minimality of P2, P2 contains at most

3 vertices of P , and therefore, at most 5 vertices of P2 are coloured (3 vertices of P , plus vi and

vj ’s list-2 neighbours we just coloured). We first apply induction to P1 (which gives a colour to vi,

u, and vj), and since P2 now has at most 6 coloured vertices (u is now coloured), the induction

requirements for P2 are satisfied, and we apply induction to P2.

For example, in D1 in figure 4.1, P1 gets coloured by induction which gives colours to v7, u,

and v3. v1 and v2 are already coloured since they are members of P . v8 is a list-2 vertex which is

adjacent to v7 (v7 = vj in this case) so v8 receives a colour as well.
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z
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z

��� z���
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v2
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u
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z
z
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v4

v6

v3
P2

zvk−1

D1 D2

Fig. 4.1: G has a path of the form vjuvi.
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Case 5 will fail if P has length 6 and the path is of the form v3uvk or v4uv7. For example, in

D2 in figure 4.1, vk gets coloured by induction on P1, but it is possible that it may receive the same

colour as v1 which is not allowed. Similarly, if the path containing u was of the form v4uv7, v7 may

receive the same colour as v6 when it is coloured by induction on P1.

Note that when Thomassen [10] refers to this case on page 191, he says “If vjuvi = v3uv7, and

u8 has only two available colors . . .”, but he means, “. . . and v8 has only two available colors . . .”.

By using an argument similar to Case 5 we can also conclude:

(g) G has no path of the form vjuwvi, where u and w are in int(C) and vi is a list-2 vertex.

(h) G has no path of the form vjuwvi, where u and w are in int(C), vi is a list-3 vertex, and

vj = v1 or vj = vq, where vq is the last vertex in the path P .

Case 6: vq+2 is a list-3 vertex.

We know that vq+1 is a list-3 vertex, since it is adjacent to the coloured vertex vq. In this

case, we can complete the proof by deleting vq and deleting its colour from the list of each of its

neighbours. This will create a smaller graph which allows us to use induction (figure 4.2). It is

possible that this will make vq+1 a list-2 vertex, but we do not need to worry about it being adjacent

to another list-2 vertex since C has no chords (e), vq+2 is list-3, and no neighbour of vq can also be

a neighbour of vq+1 since G has girth at least 5. We also know vq’s interior list-2 neighbours will

not be adjacent to each other (G has girth at least 5), to a list-2 in C − P , or to a coloured vertex

of P by Case 5. Since we delete vq’s colour from its neighbours’ lists, vq can be safely added back

into G− vq after induction is used, and this gives us a proper 3-list-colouring of G.

N
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HH z���

N
N

v1
v2

vk v3
z���

z���
N
vq+1

vq+2

z��� N
H
HH

H z���

N
N

v1
v2

vk v3
z���

vq+1

vq+2

z���
G− vq

vq

G

Fig. 4.2: vq+2 is a list-3 vertex.
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Case 7: vq+2 is a list-2 vertex, and vq+4 is list-3.

Since vq+2 is a list-2 vertex, vq+3 must be list-3 since no two list-2 vertices can be adjacent.

Therefore, to complete the proof in this case we first properly colour vq+1 and vq+2, delete them,

and also delete their colour from each of their respective neighbours’ lists, if necessary, and apply

induction to the resulting graph. A problem could arise if either vq+1 or vq+2 have an interior

neighbour u which is joined to a coloured vertex, since u could now be a list-2 (recall all coloured

vertices are in P ). By Case 5, this is only possible if P has length 6 and G has a vertex u in int(C)

joined to both v4 and v7. (We do not have to worry about Case 5’s other exception v3uvk because

by (d) there must be at least three vertices in the outer boundary C not in P , and therefore vq+1

and vq+2 cannot be vk, and so v3uvk is not an issue since u will not be turned into a list-2 vertex

in this case.)

If the v4uv7 case does exist, then we still colour vq+1 and vq+2, delete them, and delete their

colours from their respective neighbours’ lists, and we also colour u (recall that all interior vertices

of G have a list size of three, so u will have a colour in its list distinct from v4 and v7, and so u

can be properly coloured). By (f) the interior of v4uv7v6v5v4 must be empty, so we can complete

the proof by applying induction to G− {v5, v6, v7, v8}, where P is now v1v2v3v4u (figure 4.3).
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v7 = vq+1

z��� z���
v1

v2

u

v5

v4

v6

v3
z���
z���
z���
z���
z

N
G G− {v7, v8}

v9 = vq+3

N

N

N

N

v9 = vq+3

v8 = vq+2

Fig. 4.3: vq+2 is a list-2 vertex, and vq+4 is list-3.

In Case 7, vq+3 may become a list-2 vertex when vq+2 deletes its colour from its neighbours’

lists. This is not problematic, because since vq+4 is a list-3 vertex, we know that vq+4 6= v1 because

we know v1 is a list-1 vertex since it’s coloured (in other words, k > q + 3). This means that

vq+3 6= vk, and so if vq+3 becomes a list-2 vertex, we do not have to worry, because it will not be

adjacent to the coloured vertex v1. Case 8 handles the cases where vq+3 is adjacent to either a list-2

or list-1 vertex. If vq+3 becomes a list-2 vertex in Case 8, we would not be able to use induction in

the same way as Case 7, so we must proceed differently.
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Case 8: vq+2 is a list-2 vertex, and vq+4 is not list-3 . (It is possible for vq+4 to be list-1 when

vq+4 = v1, k = q + 3, or to be list-2.)

Since vq+2 is a list-2 vertex, vq+3 is list-3, so it will have at least one colour in its list that vq+4

does not. Therefore, we colour vq+3 using a colour not in vq+4’s list, and we also properly colour

vq+1 and vq+2. We then delete these three vertices and delete their colour from the lists of their

respective neighbours. We want to complete the proof by applying induction to the resulting graph,

but first we must analyze the potential problems of applying induction. Case 5, (e), (g), and (h)

make induction possible expect for in a few exceptional cases. Like in Case 7, we must examine

what will happen if G has a v4uv7 or a v3uvk. Since vq+1 and vq+3 are both coloured in Case 8, we

must also consider what will happen if they have interior neighbours z and w, respectively, which

are adjacent to each other. We must examine this case because since vq+1 and vq+3 delete their

colour from their neighbours’ lists, this would make both w and z list-2 vertices, and we know list-2

vertices must not be adjacent in order for induction to proceed.

1. If G has an interior vertex u joined to both v4 and v7 then we proceed the same as in Case 7.

2. If G has an interior vertex v joined to both v3 and vk where vk = vq+3 (vq+4 = v1), then we

also colour v before we use induction, but we do not delete it. This splits G into two cycles:

P1 = vv3v4v5v6v7v8v9v and P2 = vv3v2v1v9v. We know P2 is empty by (f), so once we delete

v1,v2, and v3 we can use induction on P1 to colour the smaller graph. (We do not need to

consider this case if vk 6= vq+3 because vk would not be deleted.)

3. If G has a path vq+3wzvq+1 where w and z are interior vertices, we must colour w and z,

delete them, and delete their colour from their respective neighbours’ lists before we apply

induction (figure 4.4). Note that the cycle E = wzvq+1vq+2vq+3w is empty by (f), so the path

vq+3wzvq+1 is unique.

z���vq
vq+1

vq+2
vq+3

z z
w z

z���
v2

v3
z���z���

v1

N N

Fig. 4.4: G has a path vq+3wzvq+1.

Let w′ and z′ be neighbours of w and z, respectively. Since we deleted w and z’s colour from

their respective neighbour’s lists, w′ and z′ may now be list-2 vertices. Therefore, before we
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can use induction, we must make sure w′ and z′ are not adjacent to any other list-2 vertices.

We will take care of this possibility below.

Note that these three problems may all coexist. Our coloured vertices split our graph into parts.

We want to apply induction to each part, but first we must ensure that the induction properties

are met each time. We must make sure that each part has a coloured path with size at most six,

and that there is no edge joining vertices with a list size less than 3 (list-2’s and list-1’s), except

for the edges in P . If there is a vertex joined to two other coloured vertices after the additional

colouring we will colour this vertex using the remaining colour from its list, but will not delete it

before we apply the induction hypothesis.

Criterion (h) ensures that there are at most six pre-coloured vertices in each part. Since vq+1

and vq+3 initially have a list size of 3, the paths vq+1zz
′v1, vq+1zz

′v6, vq+3ww
′v1, and vq+3ww

′v6

cannot exist by (h).

For example, in figure 4.5 we can see that vq+1zz
′v1 cannot exist by (h). (We must rule out

vq+1zz
′v1, because we know z′ receives a colour, since it’s next to two coloured vertices, so if we did

not rule this case out, P would have size 7 after the additional colouring of z′, and we would not be

able to use induction.) Therefore, to complete the proof we colour vq+1, vq+2, vq+3, w and z, delete

them, delete their colour from their respective neighbours’ lists, colour z′, and apply induction to

the resulting graph.
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Fig. 4.5: A newly coloured vertex will not be adjacent to v1 or v6.
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If u or v are adjacent to w′ or z′ this will not induce a path with size greater than six. For

example, in figure 4.6 the path v3vvk exists, and the cycle vq+3wzvq+1vq+2 also exists. v1, v2, . . . , v6

are already coloured, vq+1, vq+2, vq+3 receive a colour, are deleted, and their colour is deleted from

their neighbours’ lists. v receives a colour but is not deleted. w and z receive a colour, are deleted,

and their colour is deleted from their neighbours’ lists. w′ and z′ also receive a colour, because they

are adjacent to two coloured vertices after the additional colouring. Once the necessary vertices

are coloured and deleted we can see that G is split into parts. The cycles wzz′vw′w, wzv7v8v9w,

and vv3v2v1vkv are empty by (f) (see D1 in figure 4.6). Therefore, there are two remaining parts,

v6 . . . v3vz
′ . . . v6 and vkvw

′ . . . vk, each of which have at most 6 coloured vertices (see D2 in figure

4.6). We complete the proof by applying induction to each part. The path length condition is

therefore satisfied.
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Now we must make sure that there is no edge joining vertices with a list size less than 3 (list-2’s

and list-1’s), except for the edges in P . We know that vq+1, vq+2, and vq+3 did not create any list-2

vertices, apart from w and z, since E is empty (figure 4.4). A list-2 vertex vt may exist in C − P ,

but (g) and Case 5 ensure that interior list-2 vertices are not adjacent to vt. For example, in figure

4.7 we know all interior vertices have three colours in their list. The only place a list-2 vertex could

exist before any additional colouring is in C−P , so it is possible that vq+6 could be a list-2 vertex.

However, there cannot be an edge between z′ and vq+6 because (g) states that G has no path of

the form vjuwvi where u and w are in int(C) and vi is a list-2 vertex.
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vq+5

vq+6

w z
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Fig. 4.7: List-2 vertices will not be adjacent.

Since G has girth 5, there is no other way that two list-2 vertices can be adjacent (figure 4.8).

Therefore, w′ and z′ are not adjacent to any other list-2 vertices, so we can complete this case using

induction. Therefore, the induction properties are satisfied, and this completes the proof.
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v3
z���z���

v1

w zz z
w′ z′

NN

Fig. 4.8: No edge between w′ and z′ since G has girth 5.

Theorem 2 proved that planar graphs with girth of at least five are 3-list colourable. Since

r-list-colourable is a stronger condition than r-colourable, any graph that can be r-list coloured

can be r-coloured. Therefore, Theorem 2 implies that planar graphs with girth of at least five

are 3-colourable. However, in order to prove Grötzsch’s theorem we need to prove that all planar

graphs of girth at least four (triangle-free) are three colourable. Theorem 3 will prove this result.
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Theorem 3: Let G be a triangle-free planar graph. Then G can be 3-coloured.

Proof: The proof is by induction on the number of vertices in G. As in Chapter 3, let us assume

that all vertices not in the outer boundary C are uncoloured, and that if C has size at most 6,

then C may be uncoloured or it may be safely coloured. We can assume that G is 2-connected (not

disconnected and no cut-vertex), because otherwise we could just apply induction to each part. We

can also assume that every vertex not on the outer boundary C has degree at least 3, or else we

could use Case 1, Chapter 3. If G has a separating 4-cycle or 5-cycle, then we can use induction

(see Claim 1, Chapter 3). If we have a vertex joined to two vertices of C, then we can use induction

(see Case 3, Chapter 3). If G has a face of size 4 distinct from C, then we can use induction by

identifying 2 vertices in a similar way as Case 4, Chapter 3. If G has no 4-cycle then we apply

Theorem 2 from Chapter 4. Therefore, since there are no triangles, no 4-faces, and no separating

4-cycles, we can assume that the only 4-cycle in G is the outer boundary C : x1x2x3x4x1, since we

took care of all other possible 4-cycles. If C is coloured, we know it is properly coloured, so x1 and

x4 do not share the same colour. If C is not coloured, colour x1 and x4 with two different colours.

Now insert an uncoloured degree 2 vertex x5 on the edge x4x1. Since x5 has degree 2 it is only

adjacent to x1 and x4. Therefore, there will be always be a third colour left over for x5, so we will

colour x5 with this available colour. This makes a graph with girth at least 5, so we can properly

colour G + x5 by using Theorem 2, Chapter 4. We know that x1 and x4 do not share the same

colour, so when we remove x5, G will still be properly coloured. This completes the proof.

28



5. CONCLUSION

In addition to simplifying Grötzsch’s result, many graph theorists have also extended Grötzsch’s

theorem to allow for planar graphs with triangles, under certain conditions. For example, B.

Grünbaum proved that any planar graph with at most 3 triangles is 3-colourable [6]. This result is

best possible, since there exist planar graphs with 4 triangles which are not 3-colourable [6].

Similarly, O.V. Borodin and A. Raspaud [4] conjectured that any planar graph without 5-cycles,

is three colourable as long its triangles are at a minimum distance 1 (no triangles share a common

edge or vertex). If true, this result is best possible, since there exist planar graphs without 5-cycles

which are not 3-colourable, and there exist planar graphs without intersecting triangles which are

not three colourable [4]. Borodin and Raspaud took the first step towards proving this conjecture

in 2003 when they proved that any planar graph without 5-cycles is 3-colourable, as long as its

triangles are at a minimum distance 4 (at least 4 vertices away from each other) [4]. Borodin

and Raspaud attained this result by determining the properties of a minimal counterexample, and

then used discharging to prove that this counterexample could not exist. Borodin and Glebov [3]

improved this result in 2010 when they proved any planar graph without 5-cycles is 3-colourable,

as long as its triangles are at a minimum distance 2. Independently, Baogang Xu proved that

planar graphs without 5-cycles and without 7-cycles are 3-colourable, as long as no triangles share

a common vertex [12]. Borodin and Raspaud’s conjecture still remains open.

Although the majority of graph colouring research has focused on planar graphs, Grötzsch’s

theorem has also been generalized to include more complex surfaces, like the torus and projective

plane [11]. For example, Thomassen and Kawarabayashi proved that any planar graph of girth 5

can be decomposed into an independent set and a forest and used this result to generalize Grötzsch’s

theorem to allow for triangles at a minimum distance 5, as long as each triangle has a vertex v

which is on the outer boundary, such that v is not contained in any 4-cycle [7]. They conjectured

that their result could also be used to generalize the current 3-colour theorems for torus [11] and

Klein bottle [9]. The current 3-colour proof for the torus holds for graphs without triangles and

quadrilaterals [11]. However, this result could perhaps be generalized to allow for triangles at a

minimum distance k.
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