	Mill 27 7 1 HD D I S IA
	Math 2203- Test #2 Review Session
2013=6/ve	and habbened Cattered Full of THINTERIS
	3.4: Undetermined Coefficients [#0,3,4] [#1, X] [#1]
2014= 95001	3.5: Variation of raisingtors (#a, sa) (#1)
Extra Problems	3.6: LANCHY - ENKY [# 3] [# A, 14] LATIN J
- Quala -	3.8: Linear Models: IVF.S. (Spring/ 1005 Systems) [#3][#2][#2][#2]
= drokk	3.4: Undetermined Coefficients [#U.8, 4] [#1] [#1] [#1] 3.5: Variation of Parameters [#2, 50] [#2] [#1] [#3] 3.6: Cauchy - Euler [#5] [#1] [12] [#1] [#3] 3.8: Linear Models: JVP'S (Spring/Mass Systems) [#4] [#3] [#3] [#4] 3.9: Linear Models: BVP'S (Beams & EigenFunctions) [#3] [#3] [#4] [#4] 8.8: Eigenvalues [#7], 800] [#10] [#8, 15] 8.9: Cayley- Howilton Theorem [#8] [#1] 8.9: Cayley- Howilton Theorem [#8] [#1] 8.10: Orthogonal / Symmetric Matrices [#5] 8.12: Diagonalization [#6]
	R.9: Carlow Hamilton Theorem [#8] [#1]
	4.10: Orthousnal / Summehren Matrices 1#51
	R.12: Diamalization THA
	D. Los. Drougenal / Eat 100, The D
1	I had some requests from students who
\sim	couldn't make the review to post my
	review session notes. Most of the
	questions we did were straight from the
	two practice tests which are posted on
	avenue, so I'm not sure how helpful any
	of the following is but I'll post it anyways
	in case anyone want to see it!
1	

USolution x2y"+xy=1 y(1)=1 y'(1)=-1/2 x7 We try y=x" to find the complementary solution This produces the ouxilion equation m(m-1) + m $m^2 - m + m = 0 = m^2 = 0$ $m^2 = 0$ m = 0 and 030 he two independent homogeneous solutions are y,=x°=1 y2=x°hx=hx yc= G1+ G2hr = Cil+ C2hr Porone ters: $W(y_1, y_2) = \begin{bmatrix} 1 & hx \\ 0 & 1x \end{bmatrix} = \frac{1}{x} = \frac{1}{x}$ for on To find yr, we use variation of parameters First we must put the equation in Standard form. y" + 1 y'= 1 x2 $U_{i}^{*} = \begin{vmatrix} 0 & lny \\ 1/x^{2} & 1/x \end{vmatrix} = -\frac{lny}{WW} = -\frac{lny}{X^{2}}$ Will using instruction U1 = - J Inv dx SudX 2 + 2 using institution $u_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1/2 \end{bmatrix} = \frac{1}{\chi^2} \text{ watch the } u_2 = \int \frac{1}{2} dx = \ln x \, t d$ "y= G + C2 hrx - (hx)².1+ (hrx) hrx) $= c_1 + c_2 \ln x + (\ln x)^2 / 2$ Apply t.c. $y(i) = c_1 + 0 + 0 = 1 = 7 \quad c_i = 1$ $y'=0+\frac{c_2}{x}+\frac{h_{xx}}{x}$ $y'(i)=c_2=-1/2$ $c_2'=1-\frac{1}{2}h_x+\frac{(h_{xx})^2}{2}$

Test # 2 / Math 2Z03

NAME: _

ID #:_

Part I: Provide all details and fully justify your answer in order to receive credit.

 $(12 \ pts.)$ Find all of the eigenvalues and the corresponding eigenfunctions for the boundary value problem,

$$y''(t) + (3 + \lambda) y(t) = 0, y'(0) = 0, y'(\pi) = 0.$$

Make sure to consider all the cases.

Solution. The auxiliary equation is $m^2 + (3 + \lambda) = 0$. There are 3 cases to consider: $3 + \lambda < 0, 3 + \lambda = 0$ and $3 + \lambda > 0$.

Case 1: $3 + \lambda < 0$:

We can let $3 + \lambda = -\omega^2$ where $\omega > 0$. The auxiliary equation becomes $m^2 - \omega^2 = 0$ and has roots $m = \pm \omega$. The general solution is then

$$y = C_1 e^{\omega x} + C_2 e^{-\omega x}$$
 and $y' = C_1 \omega e^{\omega x} - C_2 \omega e^{-\omega x}$.

The condition y'(0) = 0 yields $C_1 \omega - C_2 \omega = 0$ or $C_1 = C_2$. The condition $y'(\pi) = 0$ yields $C_1 \omega (e^{\omega \pi} - e^{-\omega \pi}) = 0$ and thus $C_1 = 0$ since $\omega > 0$ and $e^{\omega \pi} - e^{-\omega \pi} > 0$. Thus no non-trivial solution exists in this case.

<u>Case 2: $3 + \lambda = 0$ </u>: The auxiliary equation becomes $m^2 = 0$ and m = 0 is a double root. The general solution is

 $y = C_1 + C_2 x$ and $y' = C_2$.

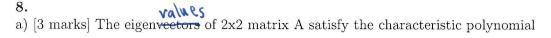
The condition y'(0) = 0 yields $C_2 = 0$ and thus the other condition $y'(\pi) = 0$ automatically holds. The function $\phi_0(x) = 1$ is thus an eigenfunction corresponding to the eigenvalue $\lambda_0 = -3$.

Case 3: $3 + \lambda > 0$:

We can let $3 + \lambda = \omega^2$ where $\omega > 0$. The auxiliary equation becomes $m^2 + \omega^2 = 0$ and has roots $m = \pm i \omega$.

The general solution is then

$$y = C_1 \cos(\omega x) + C_2 \sin(\omega x)$$
 and $y' = -C_1 \omega \sin(\omega x) + C_2 \omega \cos(\omega x)$


The condition y'(0) = 0 yields $C_2 \omega = 0$ or $C_2 = 0$. Thus, $y' = -C_1 \sin(\omega x)$. The condition $y'(\pi) = 0$ implies that $C_1 \sin(\omega \pi) = 0$. For non-trivial solutions to exist, we need $\sin(\omega \pi) = 0$ which can only happen if $\omega = k$, where $k \ge 1$ is an integer. This yields the eigenfunctions $\phi_k(x) = \cos(kx)$ corresponding to the eigenvalues $\lambda_k = k^2 - 3, k \ge 1$,

Continued...

McMaster University Math 2Z03 Fall 2013

Page 9 of 12

Determine A if

$$\lambda^{2} - 3\lambda + 2 = 0$$

$$A^{2} - 3\lambda + 2 = 0$$

$$A^{2} - 3\lambda + 2 = 0$$

$$A^{2} - 3\lambda + \lambda = 0$$

$$A^{2} - 3\lambda +$$

b) [2marks] You are given that

$$X = \begin{bmatrix} 2\\5\\1 \end{bmatrix}$$
 is an eigenvector of

But you are only given the entries for the first row of matrix A. Knowing what it means for X to be an eigenvector of A, what value is the associated eigenvalue of X?

A X = A X = -16 + 10 + 16 = A a = 10 = a A = 7 A = 5.

 $A = \begin{bmatrix} -8 & 2 & 16\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

END OF TEST QUESTIONS

McMaster University Math 2Z03 Fall 2013

Page 9 of 12

0

McMaster University Math2Z03 Fall 2014 Page 2 of 16 1. (3 marks) Which of the following could be a particular solution to the following non-homogeneous equation non-homogeneous equation $y'' - y = e^x$? allowing coof. has furM: 2

McMaster University Math2Z03 Fall 2014 Page 2 of 16
McMaster University Math2Z03 Fall 2014 Page 2 of 16
1. (3 marks) Which of the following could be a particular solution to the following
non-homogeneous equation

$$y'' - y = e^{z}$$
? By undeformed coop. Inso form
(a) $y = \frac{1}{2}(e^{z} + e^{-z})$
(b) $y = \frac{1}{2}xe^{z}$
(c) $y = \frac{1}{2}xe^{2z}$
(d) $y = \frac{1}{2}e^{2z}$
(e) $y = e^{z} - 1$
 $y'' - y = 0$
 $y'' - y =$

<u></u>		
	2 19: Diagont: Staten [HO	
	SUD Carley Marile BUPY Contract Contractors) [1] S.C. Carley Howston Theorem [1: 1] S.C. Carley Howston Theorem [1: 1] S.C. Carley Howston (1: 1] S.C. Carley Howston (1: 1] S.C. Carley Howston (1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	
1	S. V. Cullen- Hewelton Theorem [# 8] 1# 1	
1100	K.K. COMMINS THE TRUE THE STREET	
# 61.85°	3.9 Line Marile By Pro (build a draw though [1	र 43 1497
Kyu J. ORMR	STREED WARE WORKS - POSSAGE 2018 REVERSED AND A REPORT OF	त सर मोखि
90H = TON	STE CANCINA - BOOKS (4-2) CALL ON (4-1) BY	
And a grant	TEL AVOLATION DE ASTRACIÓNES THAT DE L'EMPLE HUR CEL	

McMaster University Math2Z03 Fall 2014

(3 marks) A flagpole is being blown by the wind. The base of the flagpole is at x = 0, while the top of the pole is at $x = x_b$. If

$$EI\frac{d^4y}{dx^4} = w(x)$$

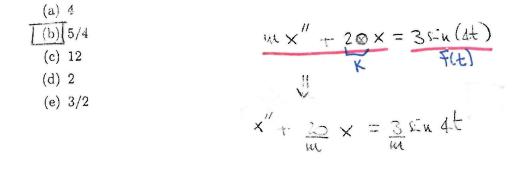
is an ODE for the deflection of the pole from vertical, with E and I constants, what are the boundary conditions?

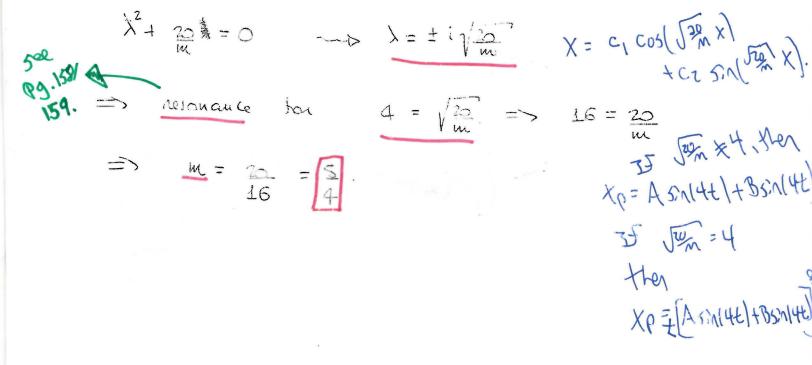
(a)
$$y(0) = 0$$
, $y''(0) = 0$ $y'(x_b) = 0$ $y''(x_b) = 0$
(b) $y(0) = 0$, $y''(0) = 0$ $y(x_b) = 0$ $y'(x_b) = 0$
(c) $y'(0) = 0$, $y''(0) = 0$ $y(x_b) = 0$ $y''(x_b) = 0$
(d) $y'(0) = 0$, $y'''(0) = 0$ $y''(x_b) = 0$ $y'''(x_b) = 0$
(e) $y(0) = 0$, $y'(0) = 0$ $y''(x_b) = 0$ $y'''(x_b) = 0$

McMaster University Math2Z03 Fall 2014

Page 3 of 16

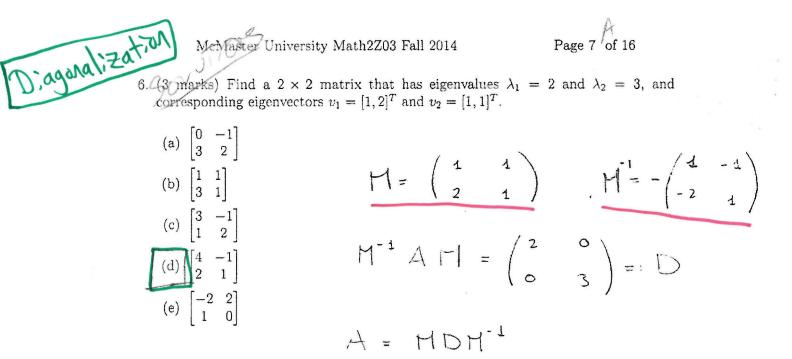
McMaster University Math2Z03 Fall 2014


Derings


Page 4 pf 16

3. (3 marks) The displacement of a mass on a spring is given by x(t), where the spring is at rest when x(t) = 0. The motion of the mass is given by Newton's Law of motion:

F = ma


The forces acting on the mass are a spring force of -kx, and a "driving force" of $3\sin(4t)$. We will assume there is no friction. If k = 20, for what mass, m, do we get resonance, creating and oscillation whose amplitude grows linearly in time, t?

McMaster University Math2Z03 Fall 2014

Page 4 of 16

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$$

at a star i far i far ging

McMaster University Math2Z03 Fall 2014

Page 7 of 16