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Test # 2 / Math 2703 -2-

NAME: I <

Part I:  Provide all details and fully justify your answer in order to receive credit.

@ QV (12 pts.) Find all of the eigenvalues, and the corresponding eigenfunctions for the

boundary value problem,

y' (1) + (3+ X)) y(t) =0, y'(0) =0,y (m) =0.

Make sure to consider all the cases.

Solution. The auxiliary equation is m? + (3 + A) = 0. There are 3 cases to consider:
S+A<D, 3+ A=080d 3+ X>0.

“\ :*,m
Case 1: 3+ X < 0:

We can let 3 + A = —w? where w > 0. The auxiliary equation becomes m?2 — w? = 0 and has
roots m = Fw. The general solution is then

J—Cle + ™" and ¢ = Chwe”® — Guwe™>",

—— e,

The condition q '(0) = = 0 yields Ciw — Cow = 0 or Ciu=.Cy The condition y g7r2 = () yields
Crw (e — e~ ) = O and thus € =0 since w > 0 and e“™ — e~“" > (. Thus no non-trivial

S —————.
solution exists in this case.

Case 2: 3+ )\ =0:
The auxiliary equation becomes m? = 0 and m = 0 is a double root. The general solution is

y=C1+Coz and ¢ = (.
e i Y

e —————

The condition_y'(0) = 0 yields Co =0 and thus the other condition y'(7) = 0 automatically

P e #

holds. The function | ¢go(x) = 1| is thus an eigenfunction corresponding to the eigenvalue

'
P

Case 3: atiel
We can let 3 4+ A = w? where w > 0. The auxiliary equation becomes m? + w? = 0 and has
roots m = £ w.

The general solution is then

y = (1 cos(wz) + Oy sin(wz) and 3 = —Cjw sin(wz) + Cyw cos(wz).

The condition y'(0) = 0 yields Cow = 0 or L5 =0. Thus, y' = —C} sin(wz). The condition
y'(m) =0 implies that C; sin(wm) = 0. For non-trivial solutions to exist, we need sin(wn) = 0
which can only happen if w = w =k, where k > 1 is an_integer. This ylelds the eigenfunctions

@& (z) = cos(kz) | corresponding to the eigenvalues |\, = k2 — 5.0 = 1,

Continued. ..
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B VARS
a) [3 marks| The elgenvee-m of 2x2 matrix A satisfy the characteristic polynomial
M =3\ +2=0 ' 3 2
L 7’
Determine A if
-14 6
2 _
A= [ —45 19 } e

~-3AXI0

b) [2marks] You are given that

2 -8 2 16
X=15 is an eigenvector of A= | as aypm ass
1 31 Az Qaszg

But you are only given the entries for the first row of matrix A. Knowing what it means
for X to be an eigenvector of A, what value is the associated eigenvalue of X7

Av= AX3 v lorlo= A =] L0=a4 )=5
\

END OF TEST QUESTIONS
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1. (% z?wr‘{s) Which of the following could be a particular solution to the following

non-homogeneous equation

o (LTQWC*\Q»\,U‘:U‘E’

L? (X‘)
\-'umm

YV —y=¢ ? 'Bj w\&);\qm}r{& CoQy - \NNS‘ ﬁ»rr/\

‘3

¢ Ave . 0"\3 chowe > [B],

. A& # Axe®

ﬂq}Ae A—AXQ
‘39‘3?64’\‘“@'“\”}\/

.'.\:jq’ Y Xe]

=yt {=" =N A =t [
——
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2':,~””{13I’/fnarks) A flagpole is being blown by the wind. The base of the flagpole is at
"z =0, while the top of the pole is at & = zp. If

%QNI\S El% = w(z)

is an ODE for the deflection of the pole from vertical, with E and / constants, what
are the boundary conditions?

(a) y(0) =0, ¥"(0)=0 y(zs)=0 y'(ze) =0
(b) ¥(0) =0, ¥ (0)=0 y(z)=0 y(z)=0
(C) '0) =0, ¥'(0)=0 ylr)=0 y'(zs) =0

¥(0) =0, y"(0)=0 y"(z)=0 y"(x)=0
y<0>—-o YO =0 ¢(e)=0 y"(z) =0

Q.N\\'*'&&} \\{O\: o e Yo “"x’ 6"*\(
vf (C) T "V«»L“\ = ’\w

A é }(xb) 2 {3 ~

Sre

Y

\.} ///C Xgm) o !
J
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3. 3 maﬂb) The displacement of a mass on a spring is given by z(t), where the spring

is at rost when z(t) = 0. The motion of the mass is given by Newton’s Law of

motion:

F = mu
The forces acting on the mass are a spring force of —kz, and a “driving force” of
3sin(4t). We will assume there is no friction. If k = 20, for what mass. m, do we
get, resonance. creating and oscillation whose amplitude grows linearly in time, {7

(a) 4
[ )54 wox” e 20 % = 350 ()
r——————
(c) 12 % T
(d) 2 i
() 3/2 b
X,/ o % =3 Y 4{:
WA, A
i wd 0\
23 L el 2= E L \‘ X= C COS\@ A
5 & T \ A
Q%-\ Q‘\ %Cq 5\'\\.
WA T snaste o 4 = /2 = es 22
2 20

pcci WMoz -
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6. .(3”}1‘!/9,1*%5} Find a 2 x 2 matrix that has eigenvalues Ay = 2 and A, = 3, and
corrésponding eigenvectors vy = [1,2]7 and vy = [1,1]7.

@[3 7]
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