Math 1B03/1ZC3 - Tutorial 4

Jan. 31st/ Feb. 4th, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

Examples:

- 1. Consider

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
1 & 1 & 2 \\
1 & 5 & 3
\end{array}\right)
$$

- Recall: For a 2×2 matrix

$$
B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

$\operatorname{det}(B)=a d-b c$.

- Recall: If D is a square, then the minor of entry $\mathbf{a}_{\mathbf{i j}}, \mathbf{M}_{\mathbf{i j}}$ is the determinant of the submatrix that remains after the $i^{\text {th }}$ row and $j^{\text {th }}$ column are deleted from D.
- Cofactor of entry $\mathbf{a}_{\mathbf{i j}}, \mathbf{C}_{\mathbf{i j}}$: is $k M_{i j}$, where $k=1$ or -1 in accordance with the pattern in the checkerboard array:

$$
B=\left(\begin{array}{cccccc}
+ & - & + & - & + & \ldots \\
- & + & - & + & - & \ldots \\
+ & - & + & - & + & \ldots \\
- & + & - & + & - & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

Examples:

- a) Find $M_{11}, M_{12}, M_{13}, C_{11}, C_{12}$, and C_{13}
- b) Find $\operatorname{det}(A)$.
- Recall: You can find $\operatorname{det}(A)$ by multiplying the entries in any row or column by their corresponding cofactor and adding the resulting products.
- Note: We could have chosen a different row or column.

Examples:

- 2. Consider

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
1 & 0 & 2
\end{array}\right)
$$

Find $\operatorname{det}(A)$.

- Note: Choosing a row or column with lots of zeros makes things easier!

Examples:

- 2. Consider

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 5 & 7
\end{array}\right)
$$

- a Find $\operatorname{det}(A)$.
- Recall: How do elementary row operations affect matrices?
- Let B be a square matrix, and let C denote what B becomes after each row operation.

1. Multiply row by nonzero scalar k : $\operatorname{det}(C)=k \operatorname{det}(B)$.
2. Switch any 2 rows: $\operatorname{det}(C)=-\operatorname{det}(B)$.
3. Add a multiple of a row to an existing row: $\operatorname{det}(C)=\operatorname{det}(B)$.

- Doing the same operations on B 's columns yield the same results.

Examples:

- b) Consider

$$
B=\left(\begin{array}{ccc}
t & 2 t & 3 t \\
2 & 4 & 6 \\
3 & 5 & 7
\end{array}\right)
$$

for $t \in \mathbb{R}$. Find $\operatorname{det}(B)$.

Examples:

- 4. Suppose $\operatorname{det}(A)=3, \operatorname{det}(B)=9, \operatorname{det}(C)=2$. What is $\operatorname{det}(X)$, if $B X=6 C^{T} A$.
- Recall: We know the following properties concerning determinants:
(a) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(b) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(c) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
(d) $\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is invertible.
(e) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Examples:

- 5.a) Consider

$$
A=\left(\begin{array}{ccc}
1 & x & 2 \\
3 & 1 & -1 \\
-1 & 2 & 2
\end{array}\right)
$$

When is A singular?

- Recall: A matrix A is called singular if A is not invertible.
- Also, we know that A invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$, so A singular $\Leftrightarrow \operatorname{det}(A)=0$.
- So, we're looking for the values of x such that $\operatorname{det}(A)=0$.
- b) When is A invertible?

Examples:

- 6. Consider

$$
A=\left(\begin{array}{lcr}
0 & 2 & 1 \\
-1 & -3 & 1 \\
-2 & -1 & -2
\end{array}\right)
$$

- Find A^{-1} using the adjoint method.
- Recall: If A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$, where

$$
\operatorname{adj}(A)=\left(\begin{array}{cccc}
C_{11} & C_{12} & \ldots & C_{1 n} \\
C_{21} & C_{22} & \ldots & C_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
C_{n 1} & C_{n 2} & \ldots & C_{n n}
\end{array}\right)^{T}
$$

Examples:

- 7. Solve the following linear system using Cramer's Rule: $3 x+2 y=1,5 x+4 y=-1$.
- Cramer's Rule: If $A x=b$ is a system of n linear equations in n unknowns such that $\operatorname{det}(A) \neq 0$, then $A x=b$ has a unique solution.
This solutions is: $x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots, x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}$, where A_{j} is the matrix obtained by replacing the entries in the jth column of A by the entries in the matrix b.

