Math 1B03/1ZC3 - Tutorial 4

Jan. 31st/ Feb. 4th, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

■ 1. Consider

$$A = \left(\begin{array}{rrr} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 1 & 5 & 3 \end{array}\right).$$

Recall: For a 2×2 matrix

$$B = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right),$$

 $\det(B) = ad - bc$.

- **Recall:** If D is a square, then the **minor of entry \mathbf{a_{ij}}**, $\mathbf{M_{ij}}$ is the determinant of the submatrix that remains after the i^{th} row and i^{th} column are deleted from D.
- Cofactor of entry $\mathbf{a_{ij}}$, $\mathbf{C_{ij}}$: is kM_{ij} , where k = 1 or -1 in accordance with the pattern in the checkerboard array:

$$B = \left(\begin{array}{ccccccc} + & - & + & - & + & \dots \\ - & + & - & + & - & \dots \\ + & - & + & - & + & \dots \\ - & + & - & + & - & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right),$$

- **a)** Find M_{11} , M_{12} , M_{13} , C_{11} , C_{12} , and C_{13}
- **b)** Find det(*A*).
- **Recall:** You can find det(*A*) by multiplying the entries in any row or column by their corresponding cofactor and adding the resulting products.
- Note: We could have chosen a different row or column.

■ 2. Consider

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{array}\right).$$

Find det(A).

• Note: Choosing a row or column with lots of zeros makes things easier!

• 2. Consider

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right).$$

- \bullet a Find det(A).
- **Recall:** How do elementary row operations affect matrices?
- Let B be a square matrix, and let C denote what B becomes after each row operation.
 - 1. Multiply row by nonzero scalar k: det(C) = k det(B).
 - 2. Switch any 2 rows: det(C) = -det(B).
 - 3. Add a multiple of a row to an existing row: det(C) = det(B).
- Doing the same operations on *B*'s columns yield the same results.

b) Consider

$$B = \left(\begin{array}{ccc} t & 2t & 3t \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{array}\right),$$

for $t \in \mathbb{R}$. Find det(B).

- 4. Suppose det(A) = 3, det(B) = 9, det(C) = 2. What is det(X), if $BX = 6C^TA$.
- **Recall:** We know the following properties concerning determinants:
 - (a) $det(A) = det(A^T)$
 - (b) det(AB) = det(A) det(B)
 - (c) $\det(kA) = k^n \det(A)$, where $k \in \mathbb{R}$, and A is a $n \times n$ matrix.
 - (d) $det(A) \neq 0 \Leftrightarrow A$ is invertible.
 - (e) $\det(A^{-1}) = \frac{1}{\det(A)}$.

■ 5.a) Consider

$$A = \left(\begin{array}{ccc} 1 & x & 2 \\ 3 & 1 & -1 \\ -1 & 2 & 2 \end{array}\right).$$

When is A singular?

- **Recall:** A matrix *A* is called **singular** if *A* is *not* invertible.
- Also, we know that *A* invertible $\Leftrightarrow \det(A) \neq 0$, so *A* singular $\Leftrightarrow \det(A) = 0$.
- So, we're looking for the values of x such that det(A) = 0.
- **b)** When is *A* invertible?

• 6. Consider

$$A = \left(\begin{array}{ccc} 0 & 2 & 1 \\ -1 & -3 & 1 \\ -2 & -1 & -2 \end{array}\right).$$

- Find A^{-1} using the adjoint method.
- **Recall:** If *A* is invertible, then $A^{-1} = \frac{1}{\det(A)} adj(A)$, where

$$adj(A) = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{pmatrix}^{T}.$$

- 7. Solve the following linear system using Cramer's Rule: 3x + 2y = 1, 5x + 4y = -1.
- **Cramer's Rule:** If Ax = b is a system of n linear equations in n unknowns such that $det(A) \neq 0$, then Ax = b has a unique solution.

This solutions is: $x_1 = \frac{\det(A_1)}{\det(A)}$, $x_2 = \frac{\det(A_2)}{\det(A)}$, ..., $x_n = \frac{\det(A_n)}{\det(A)}$, where A_j is the matrix obtained by replacing the entries in the jth column of A by the entries in the matrix b.

