Math 1B03/1ZC3 - Tutorial 2

Jan. 21st/24th, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

Does the Commutative Law for Multiplication hold for Matrices?, i.e. is it always true that $A B=B A$?

- Well, we know that that if A and B are not the same size, then $B A$ may not even be defined.
- e.g. If

$$
A=\left(\begin{array}{ll}
3 & 1 \\
2 & 1 \\
2 & 3
\end{array}\right), B=\left(\begin{array}{llll}
3 & 0 & -1 & -1 \\
1 & 2 & 3 & -1
\end{array}\right)
$$

then

$$
A B=\left(\begin{array}{llll}
10 & 2 & 0 & -4 \\
7 & 2 & 1 & -3 \\
9 & 6 & 7 & -5
\end{array}\right)
$$

but $B A$ is not defined.

- So no, it is not true in general that $A B=B A$.

Does the Commutative Law for Multiplication hold for Matrices?

- What if A and B are both square (i.e. A and B are both $n \times n$ matrices)?
- Does $A B=B A$ for any possible A and B ?
- Can you think of a counterexample?

Does the Commutative Law for Multiplication hold for Matrices?

- Is it ever possible to find an A and B such that $A B=B A$?

Zero Divisors?

- For real numbers, we know that $a b=0 \Rightarrow a=0$ or $b=0$.
- Is this true for matrices? (i.e. if we have two matrices A and B such that $A B=0$, is it true that we must have $A=0$ or $B=0$?)

Cancellation Law?

- For real numbers, we know that $a b=a c \Rightarrow b=c$.
- Does this hold true in general for matrices? (i.e. $A B=A C \Rightarrow B=C$?

Recap: In general, it is not true that:

- $A B=B A$ (i.e. multiplicative commutativity fails)
- $A B=0 \Rightarrow A=0$ or $B=0$ (i.e. \exists non-zero zero divisors)
- $A B=A C \Rightarrow B=C$ (i.e. cancellation law fails)

Multiplicative Identity

- In \mathbb{R} we have the number 1 , and we know $a \times 1=1 \times a=a$.
- For matrices, this "1" is known as the identity matrix, e.g. if A is $m \times n$, then $A \times I_{n \times n}=A$.
- e.g.

Multiplicative Inverse

- In \mathbb{R} we know that for every a such that $a \neq 0$ there exists a^{-1} such that $a a^{-1}=a^{-1} a=1$. e.g $2 \times \frac{1}{2}=1=\frac{1}{2} \times 2$.
- If A is a square ($n \times n$) matrix such that \exists a B such that $A B=I_{n \times n}=B A$, then A is said to be invertible, (a.k.a nonsingular), and B is called the inverse of $A,\left(B=A^{-1}\right)$.
- If A is a 2×2 matrix, then

$$
A^{-1}=\frac{1}{a d-b c}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

b/c:

For 2x2 Matrices:

- $\operatorname{det}(A)=a d-b c$.
- A is nonsingular $\Leftrightarrow \operatorname{det}(A) \neq 0$.
- So, $\operatorname{det}(A)=0 \Leftrightarrow A$ is singular (i.e. A is not invertible).

Examples:

- 1. Let

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right), B=\left(\begin{array}{ll}
2 & 5 \\
3 & 8
\end{array}\right)
$$

- a) Is A invertible?
- b) Find A^{-1}.
- c) Is B invertible?.
- d) Find B^{-1}.
- e) Find $(A B)^{-1}$.

Examples:

- 2. Let

$$
A=\left(\begin{array}{ll}
4 & x \\
x & 1
\end{array}\right)
$$

For what values of x is A singular?

Examples:

- 3. Solve for $X: A(X+B)=C A$ (where A is invertible).

Examples:

- 4. Solve for $X:(2 E+F)^{T}=G^{-1} X^{T}+F^{T}$.

Examples:

- 5. Find the inverse of

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
6 & 7 & 5 \\
3 & 2 & 3
\end{array}\right)
$$

using row operations.

Examples:

- 6. a) Solve for $W: 2 E W F^{2}=\left(E^{T} F\right)^{2}$.
- b) What sizes must F and W be in order for W to have a unique solution if E is $3 \times n$?

