Math 1B03/1ZC3 - Tutorial 11

Mar. 28st/ Apr. 1st, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

Examples:

- 1. Consider the following sets of vectors:

$$
\begin{gathered}
S_{1}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\right\}, S_{2}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{r}
4 \\
6 \\
-3
\end{array}\right)\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right)\right\} \\
S_{3}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)\right\} .
\end{gathered}
$$

- a) Which sets span \mathbb{R}^{3} ?
- Recall: The span of a set $S=\left\{w_{1}, \ldots, w_{r}\right\}$, is the subspace formed by taking all possible linear combinations of the vectors in S. i.e. $\operatorname{span}(S)=\left\{\alpha_{1} w_{1}+\ldots \alpha_{r} w_{r} \mid \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}\right\}$.
- Recall: If A is square, then $A x=b$ is consistent for every $n \times 1$ matrix b $\operatorname{det}(A) \neq 0$.

Examples:

- b) Is the vector

$$
\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right) \text { in the span of } S_{1} ? S_{2} ? S_{3} ?
$$

- c) Which of these sets are linearly independent?
- Recall: If a set of vectors $S=\left\{v_{1}, \ldots, v_{r}\right\}$ is such that the equation $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{r} v_{r}=\overline{0}$ has only the trivial solution (i.e. $\alpha_{1}=\ldots=\alpha_{r}=0$), then these vectors are said to be linearly independent. If there exist nontrivial solutions, then the vectors are said to be linearly dependent.

Examples:

- 2. Which of the following form a basis for \mathbb{R}^{2} ?
- Recall: A set $S=\left\{v_{1}, \ldots, v_{n}\right\}$ of vectors, where $v_{1}, \ldots, v_{n} \in V$ is called a basis for V if:

1. The vectors in S are linearly independent.
2. S spans V.

- $S=\{(1,0),(0,1)\}$ is called the standard basis for \mathbb{R}^{2}.
- If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V then:

1. If a set S of vectors from V has $>n$ vectors, then S is linearly dependent.
2. If S has $<n$ vectors, then S does not span V.

- a)

$$
S:=\left\{\binom{1}{0},\binom{1}{1}\binom{0}{2}\right\} .
$$

- b)

$$
T:=\left\{\binom{1}{1},\binom{1}{-1}\right\} .
$$

Examples:

- 3. We know

$$
T:=\left\{\binom{1}{1},\binom{1}{-1}\right\} .
$$

forms a basis for \mathbb{R}^{2}.

- a) Find the coordinate vector of $v=(3,5)$ relative to the basis T. i.e. Find $[v]_{T}$.
- Recall: If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, and $w=k_{1} v_{1}+k_{2} v_{2}+\ldots+k_{n} v_{n}$ for $k_{1}, \ldots, k_{n} \in \mathbb{R}$, then $[w]_{S}=\left(k_{1}, \ldots, k_{n}\right)$ is called the coordinate vector of v relative to S.
- b) Find the vector $w \in \mathbb{R}^{2}$ whose coordinate vector relative to T is $[w]_{T}=(4,2)$.

Examples:

- 4.) Which of the following are a basis for P_{2} (where P_{2} is the vector space of all polynomials of degree ≤ 2; i.e. $P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}$.
- $\mathrm{W}=\left\{x^{2}, x+1, x^{2}+x+1\right\}$
- $\mathrm{X}=\{x, 1,0\}$
- $\mathrm{T}=\left\{x^{2}+x+1, x^{2}+x, x+1\right\}$
- $\mathrm{Y}=\left\{x^{2}, x, 1,0\right\}$

