Math 1B03/1ZC3 - Tutorial 10

Mar. 21st/25th, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Review Session: I'll be doing a review session Mon. March 24th, 6:30-8:30pm, HH302. (See Avenue to Learn for additional review sessions.)
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

Examples:

- 1. Let $V=\mathbb{R}^{2}$ and define addition and scalar multiplication as follows: If $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right)$, then

$$
\begin{gathered}
u+v=\binom{x_{1}-2 x_{2}+1}{2 y_{1}+3 y_{2}-4}, \\
\alpha u=\binom{\frac{1}{\alpha} x_{1}}{y_{1} \alpha^{2}}
\end{gathered}
$$

Examples:

- 1. Let $V=\mathbb{R}^{2}$ and define addition and scalar multiplication as follows: If $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right)$, then

$$
\begin{gathered}
u+v=\binom{x_{1}-2 x_{2}+1}{2 y_{1}+3 y_{2}-4}, \\
\alpha u=\binom{\frac{1}{\alpha} x_{1}}{y_{1} \alpha^{2}} .
\end{gathered}
$$

- Is V a vector space with these stated operations? Specify which axioms hold, and which fail.

Examples:

- 1. Let $V=\mathbb{R}^{2}$ and define addition and scalar multiplication as follows: If $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right)$, then

$$
\begin{gathered}
u+v=\binom{x_{1}-2 x_{2}+1}{2 y_{1}+3 y_{2}-4}, \\
\alpha u=\binom{\frac{1}{\alpha} x_{1}}{y_{1} \alpha^{2}} .
\end{gathered}
$$

- Is V a vector space with these stated operations? Specify which axioms hold, and which fail.
- Recall: A vector space is a set V together with a binary operation " + " and a rule for scalar multiplication satisfying 10 axioms.

Examples:

- 1. Let $V=\mathbb{R}^{2}$ and define addition and scalar multiplication as follows: If $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right)$, then

$$
\begin{gathered}
u+v=\binom{x_{1}-2 x_{2}+1}{2 y_{1}+3 y_{2}-4}, \\
\alpha u=\binom{\frac{1}{\alpha} x_{1}}{y_{1} \alpha^{2}} .
\end{gathered}
$$

- Is V a vector space with these stated operations? Specify which axioms hold, and which fail.
- Recall: A vector space is a set V together with a binary operation " + " and a rule for scalar multiplication satisfying 10 axioms. i.e. If the axioms hold for all vectors $v, u, w \in V$ and for all scalars $\alpha, \beta \in \mathbb{R}$, then V is a vector space.

Examples:

- 1. Let $V=\mathbb{R}^{2}$ and define addition and scalar multiplication as follows: If $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right)$, then

$$
\begin{gathered}
u+v=\binom{x_{1}-2 x_{2}+1}{2 y_{1}+3 y_{2}-4}, \\
\alpha u=\binom{\frac{1}{\alpha} x_{1}}{y_{1} \alpha^{2}} .
\end{gathered}
$$

- Is V a vector space with these stated operations? Specify which axioms hold, and which fail.
- Recall: A vector space is a set V together with a binary operation " + " and a rule for scalar multiplication satisfying 10 axioms. i.e. If the axioms hold for all vectors $v, u, w \in V$ and for all scalars $\alpha, \beta \in \mathbb{R}$, then V is a vector space.
- Note: Scalars do not have to be in \mathbb{R}, but for simplicity I'll use \mathbb{R} here.

Vector Space Axioms:

1. " + " Closure: $v, w \in V \Rightarrow v+w \in V$.

Vector Space Axioms:

1. " + " Closure: $v, w \in V \Rightarrow v+w \in V$.
2. "+" Commutativity: $v, w \in V \Rightarrow v+w=w+v$.

Vector Space Axioms:

1. " + " Closure: $v, w \in V \Rightarrow v+w \in V$.
2. " + " Commutativity: $v, w \in V \Rightarrow v+w=w+v$.
3. "+" Associativity: $u, v, w \in V \Rightarrow(u+v)+w=u+(v+w)$.

Vector Space Axioms:

1. "+" Closure: $v, w \in V \Rightarrow v+w \in V$.
2. "+" Commutativity: $v, w \in V \Rightarrow v+w=w+v$.
3. "+" Associativity: $u, v, w \in V \Rightarrow(u+v)+w=u+(v+w)$.
4. "+" Identity: \exists a vector $\overline{0} \in V$, such that $v+\overline{0}=v, \forall v \in V$.

Vector Space Axioms:

1. " + " Closure: $v, w \in V \Rightarrow v+w \in V$.
2. "+" Commutativity: $v, w \in V \Rightarrow v+w=w+v$.
3. " + " Associativity: $u, v, w \in V \Rightarrow(u+v)+w=u+(v+w)$.
4. "+" Identity: \exists a vector $\overline{0} \in V$, such that $v+\overline{0}=v, \forall v \in V$.
5. "+" Inverse: For each $v \in V \exists(-v) \in V$ such that $v+(-v)=\overline{0}$.

Vector Space Axioms:

1. " + " Closure: $v, w \in V \Rightarrow v+w \in V$.
2. "+" Commutativity: $v, w \in V \Rightarrow v+w=w+v$.
3. "+" Associativity: $u, v, w \in V \Rightarrow(u+v)+w=u+(v+w)$.
4. "+" Identity: \exists a vector $\overline{0} \in V$, such that $v+\overline{0}=v, \forall v \in V$.
5. "+" Inverse: For each $v \in V \exists(-v) \in V$ such that $v+(-v)=\overline{0}$.
6. " α " Closure: $v \in V \Rightarrow \alpha v \in V \forall \alpha \in \mathbb{R}$.

Vector Space Axioms:

1. " + " Closure: $v, w \in V \Rightarrow v+w \in V$.
2. " + " Commutativity: $v, w \in V \Rightarrow v+w=w+v$.
3. "+" Associativity: $u, v, w \in V \Rightarrow(u+v)+w=u+(v+w)$.
4. "+" Identity: \exists a vector $\overline{0} \in V$, such that $v+\overline{0}=v, \forall v \in V$.
5. "+" Inverse: For each $v \in V \exists(-v) \in V$ such that $v+(-v)=\overline{0}$.
6. " α " Closure: $v \in V \Rightarrow \alpha v \in V \forall \alpha \in \mathbb{R}$.
7. " α " Distributivity: $\alpha(v+w)=\alpha v+\alpha w \forall v, w \in V, \alpha \in \mathbb{R}$.

Vector Space Axioms:

1. " + " Closure: $v, w \in V \Rightarrow v+w \in V$.
2. " + " Commutativity: $v, w \in V \Rightarrow v+w=w+v$.
3. "+" Associativity: $u, v, w \in V \Rightarrow(u+v)+w=u+(v+w)$.
4. "+" Identity: \exists a vector $\overline{0} \in V$, such that $v+\overline{0}=v, \forall v \in V$.
5. "+" Inverse: For each $v \in V \exists(-v) \in V$ such that $v+(-v)=\overline{0}$.
6. " α " Closure: $v \in V \Rightarrow \alpha v \in V \forall \alpha \in \mathbb{R}$.
7. " α " Distributivity: $\alpha(v+w)=\alpha v+\alpha w \forall v, w \in V, \alpha \in \mathbb{R}$.
8. Vector Distributivity: $(\alpha+\beta) v=\alpha v+\beta v \forall v \in V, \alpha, \beta \in \mathbb{R}$.

Vector Space Axioms:

1. " + " Closure: $v, w \in V \Rightarrow v+w \in V$.
2. " + " Commutativity: $v, w \in V \Rightarrow v+w=w+v$.
3. "+" Associativity: $u, v, w \in V \Rightarrow(u+v)+w=u+(v+w)$.
4. "+" Identity: \exists a vector $\overline{0} \in V$, such that $v+\overline{0}=v, \forall v \in V$.
5. " + " Inverse: For each $v \in V \exists(-v) \in V$ such that $v+(-v)=\overline{0}$.
6. " α " Closure: $v \in V \Rightarrow \alpha v \in V \forall \alpha \in \mathbb{R}$.
7. " α " Distributivity: $\alpha(v+w)=\alpha v+\alpha w \forall v, w \in V, \alpha \in \mathbb{R}$.
8. Vector Distributivity: $(\alpha+\beta) v=\alpha v+\beta v \forall v \in V, \alpha, \beta \in \mathbb{R}$.
9. " α " Associativity: $(\alpha(\beta v)=(\alpha \beta) v \forall v \in V, \alpha, \beta \in \mathbb{R}$.

Vector Space Axioms:

1. " + " Closure: $v, w \in V \Rightarrow v+w \in V$.
2. "+" Commutativity: $v, w \in V \Rightarrow v+w=w+v$.
3. "+" Associativity: $u, v, w \in V \Rightarrow(u+v)+w=u+(v+w)$.
4. "+" Identity: \exists a vector $\overline{0} \in V$, such that $v+\overline{0}=v, \forall v \in V$.
5. "+" Inverse: For each $v \in V \exists(-v) \in V$ such that $v+(-v)=\overline{0}$.
6. " α " Closure: $v \in V \Rightarrow \alpha v \in V \forall \alpha \in \mathbb{R}$.
7. " α " Distributivity: $\alpha(v+w)=\alpha v+\alpha w \forall v, w \in V, \alpha \in \mathbb{R}$.
8. Vector Distributivity: $(\alpha+\beta) v=\alpha v+\beta v \forall v \in V, \alpha, \beta \in \mathbb{R}$.
9. " α " Associativity: $(\alpha(\beta v)=(\alpha \beta) v \forall v \in V, \alpha, \beta \in \mathbb{R}$.
10. " α " Identity: $1 \times v=v \forall v \in V, 1 \in \mathbb{R}$.

Examples:

- 2. If $V=\mathbb{R}^{2}$ is a set with addition and scalar multiplication defined as $u+v=\left(u_{1}+v_{1}+1, u_{2}+v_{2}+1\right), \alpha u=\left(\alpha u_{1}, \alpha u_{2}\right)$, where $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right)$, then what must $\overline{0}$ be?

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.
- Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.
- Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.
- Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \Longleftrightarrow$ the following hold:

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.
- Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.
- Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \Longleftrightarrow$ the following hold:

1. W is nonempty.

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.
- Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.
- Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \Longleftrightarrow$ the following hold:

1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \Rightarrow u+v \in W \forall$ scalars α).

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.
- Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.
- Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \Longleftrightarrow$ the following hold:

1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \Rightarrow u+v \in W \forall$ scalars α).
3. W is closed under scalar multiplication (i.e. $u \in W \Rightarrow \alpha u \in W \forall$ scalars α).

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.
- Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.
- Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \Longleftrightarrow$ the following hold:

1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \Rightarrow u+v \in W \forall$ scalars α).
3. W is closed under scalar multiplication (i.e. $u \in W \Rightarrow \alpha u \in W \forall$ scalars α).

- a) $W=\left\{r\left(1+x^{2}\right) \mid r \in \mathbb{R}\right\}$.

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.
- Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.
- Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \Longleftrightarrow$ the following hold:

1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \Rightarrow u+v \in W \forall$ scalars α).
3. W is closed under scalar multiplication (i.e. $u \in W \Rightarrow \alpha u \in W \forall$ scalars α).

- a) $W=\left\{r\left(1+x^{2}\right) \mid r \in \mathbb{R}\right\}$.
- b) $Y=$ \{quadratic polynomials with only real roots $\}$.

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.
- Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.
- Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \Longleftrightarrow$ the following hold:

1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \Rightarrow u+v \in W \forall$ scalars α).
3. W is closed under scalar multiplication (i.e. $u \in W \Rightarrow \alpha u \in W \forall$ scalars α).

- a) $W=\left\{r\left(1+x^{2}\right) \mid r \in \mathbb{R}\right\}$.
- b) $Y=$ \{quadratic polynomials with only real roots $\}$.
- c) $Z=\left\{a+b x \mid a, b \in \mathbb{R}, a^{2}=b^{2}\right\}$.

Examples:

- 3. Determine which of the following sets are subspaces of P_{2} (where P_{2} is the vector space of polynomials of degree ≤ 2. e.g. $\left.\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}\right)$.
- Recall: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and multiplication operations defined on V.
- Subspace Criterion: A subset $W \subseteq V$ is a subspace of $V \Longleftrightarrow$ the following hold:

1. W is nonempty.
2. W is closed under addition (i.e. $u, v \in W \Rightarrow u+v \in W \forall$ scalars α).
3. W is closed under scalar multiplication (i.e. $u \in W \Rightarrow \alpha u \in W \forall$ scalars α).

- a) $W=\left\{r\left(1+x^{2}\right) \mid r \in \mathbb{R}\right\}$.
- b) $Y=$ \{quadratic polynomials with only real roots $\}$.
- c) $Z=\left\{a+b x \mid a, b \in \mathbb{R}, a^{2}=b^{2}\right\}$.
- d) $J=\left\{p+q x+r x^{2} \mid p, q, r \in \mathbb{R}, r \geq 0\right\}$.

Examples:

- 4. Is the set $W_{1}=\left\{\left(v_{1}, v_{2}, 0\right) \mid v_{1}, v_{2} \in \mathbb{R}\right\}$ a subspace of \mathbb{R}^{3} ?

Examples:

- 5. Consider the following sets of vectors:

$$
\begin{gathered}
S_{1}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\right\}, S_{2}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{r}
4 \\
6 \\
-3
\end{array}\right)\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right)\right\} \\
S_{3}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)\right\}
\end{gathered}
$$

Examples:

- 5. Consider the following sets of vectors:

$$
\begin{gathered}
S_{1}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\right\}, S_{2}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{r}
4 \\
6 \\
-3
\end{array}\right)\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right)\right\} \\
S_{3}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)\right\}
\end{gathered}
$$

- a) Which sets span \mathbb{R}^{3} ?

Examples:

- 5. Consider the following sets of vectors:

$$
\begin{gathered}
S_{1}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\right\}, S_{2}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{r}
4 \\
6 \\
-3
\end{array}\right)\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right)\right\} \\
S_{3}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)\right\} .
\end{gathered}
$$

- a) Which sets span \mathbb{R}^{3} ?
- Recall: The span of a set $S=\left\{w_{1}, \ldots, w_{r}\right\}$, is the subspace formed by taking all possible linear combinations of the vectors in S. i.e. $\operatorname{span}(S)=\left\{\alpha_{1} w_{1}+\ldots \alpha_{r} w_{r} \mid \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}\right\}$.

Examples:

- 5. Consider the following sets of vectors:

$$
\begin{gathered}
S_{1}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\right\}, S_{2}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{r}
4 \\
6 \\
-3
\end{array}\right)\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right)\right\} \\
S_{3}:=\left\{\left(\begin{array}{r}
9 \\
-4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
8
\end{array}\right)\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)\right\} .
\end{gathered}
$$

- a) Which sets span \mathbb{R}^{3} ?
- Recall: The span of a set $S=\left\{w_{1}, \ldots, w_{r}\right\}$, is the subspace formed by taking all possible linear combinations of the vectors in S. i.e. $\operatorname{span}(S)=\left\{\alpha_{1} w_{1}+\ldots \alpha_{r} w_{r} \mid \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}\right\}$.
- Recall: If A is square, then $A x=b$ is consistent for every $n \times 1$ matrix b $\operatorname{det}(A) \neq 0$.

Examples:

- b) Is the vector

$$
\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right) \text { in the span of } S_{1} ? S_{2} ? S_{3} ?
$$

Examples:

- b) Is the vector

$$
\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right) \text { in the span of } S_{1} ? S_{2} ? S_{3} ?
$$

- c) Which of these vectors are linearly independent?

Examples:

- b) Is the vector

$$
\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right) \text { in the span of } S_{1} ? S_{2} ? S_{3} ?
$$

- c) Which of these vectors are linearly independent?
- Recall: If a set of vectors $S=\left\{v_{1}, \ldots, v_{r}\right\}$ is such that the equation $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{r} v_{r}=\overline{0}$ has only the trivial solution (i.e. $\alpha_{1}=\ldots=\alpha_{r}=0$), then these vectors are said to be linearly independent. If there exist nontrivial solutions, then the vectors are said to be linearly dependent.

