Math 1B03/1ZC3 - Tutorial 7

Feb. 28th/ Mar. 4th, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

Examples:

- 1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.

Examples:

- 1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.

Examples:

- 1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

Examples:

- 1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

- b) Is T a regular stochastic matrix?

Examples:

- 1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

- b) Is T a regular stochastic matrix?
- Recall: A square matrix A is called a stochastic matrix is each of its columns is a probability vector (i.e. the entries of each column sum to 1).

Examples:

- 1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

- b) Is T a regular stochastic matrix?
- Recall: A square matrix A is called a stochastic matrix is each of its columns is a probability vector (i.e. the entries of each column sum to 1).
- c) Does T have a steady-state vector? If so, what is it?

Examples:

- 1. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

- b) Is T a regular stochastic matrix?
- Recall: A square matrix A is called a stochastic matrix is each of its columns is a probability vector (i.e. the entries of each column sum to 1).
- c) Does T have a steady-state vector? If so, what is it?
- Recall: If P is a regular transition matrix for a Markov chain, then \exists ! probability vector q such that $P q=q$ (i.e. q is an eigenvector corresponding to $\lambda=1$ and q 's entries sum to 1). This vector is called the steady-state vector.
- Recall: A stochastic matrix A is called regular if A, or some positive power of A, has all positive entries.
- Recall: A stochastic matrix A is called regular if A, or some positive power of A, has all positive entries.
- d) In the long term, how will the population of raccoons in the city and woods be distributed?

- Recall: A stochastic matrix A is called regular if A, or some positive power of A, has all positive entries.
- d) In the long term, how will the population of raccoons in the city and woods be distributed?
- Recall: If q is a steady-state vector for a regular Markov chain, then for any initial probability vector $x_{0}, \lim _{k \rightarrow \infty} P^{k} x_{0}=q$, where P is the transition matrix for this chain.
- Recall: A stochastic matrix A is called regular if A, or some positive power of A, has all positive entries.
- d) In the long term, how will the population of raccoons in the city and woods be distributed?
- Recall: If q is a steady-state vector for a regular Markov chain, then for any initial probability vector $x_{0}, \lim _{k \rightarrow \infty} P^{k} x_{0}=q$, where P is the transition matrix for this chain.
- e) How many raccoons will be in the city after 20 years?
- Recall: A stochastic matrix A is called regular if A, or some positive power of A, has all positive entries.
- d) In the long term, how will the population of raccoons in the city and woods be distributed?
- Recall: If q is a steady-state vector for a regular Markov chain, then for any initial probability vector $x_{0}, \lim _{k \rightarrow \infty} P^{k} x_{0}=q$, where P is the transition matrix for this chain.
- e) How many raccoons will be in the city after 20 years?
- Recall: We know $x_{n}=P^{n} x_{0}$, where x_{0} is the initial state vector, x_{n} is the state vector at time n, and P is the transition matrix.

Examples:

- 2. Express $\frac{1+2 i}{3-4 i}+\frac{2-i}{5 i}$ as a real number.

Examples:

- 3. Consider $z=\frac{i}{-2-2 i}$.

Examples:

- 3. Consider $z=\frac{i}{-2-2 i}$.
- a) Express z in rectangular form.

Examples:

- 3. Consider $z=\frac{i}{-2-2 i}$.
- a) Express z in rectangular form.
- b) Express z in polar form.

Examples:

- 3. Consider $z=\frac{i}{-2-2 i}$.
- a) Express z in rectangular form.
- b) Express z in polar form.
- c) What is $\operatorname{Arg} z$?

Examples:

- 3. Consider $z=\frac{i}{-2-2 i}$.
- a) Express z in rectangular form.
- b) Express z in polar form.
- c) What is $\operatorname{Arg} z$?
- Recall: The argument of z is multivalued, i.e. $\arg z=\theta+2 \pi k, k \in \mathbb{Z}$.
- The principal argument, $\operatorname{Arg} z$, is such that $-\pi<\operatorname{Arg} z \leq \pi$.

Examples:

- 3. Consider $z=\frac{i}{-2-2 i}$.
- a) Express z in rectangular form.
- b) Express z in polar form.
- c) What is $\operatorname{Arg} z$?
- Recall: The argument of z is multivalued, i.e. $\arg z=\theta+2 \pi k, k \in \mathbb{Z}$.
- The principal argument, $\operatorname{Arg} z$, is such that $-\pi<\operatorname{Arg} z \leq \pi$.
- d) What is \bar{z} ?

Examples:

- 3. Consider $z=\frac{i}{-2-2 i}$.
- a) Express z in rectangular form.
- b) Express z in polar form.
- c) What is $\operatorname{Arg} z$?
- Recall: The argument of z is multivalued, i.e. $\arg z=\theta+2 \pi k, k \in \mathbb{Z}$.
- The principal argument, $\operatorname{Arg} z$, is such that $-\pi<\operatorname{Arg} z \leq \pi$.
- d) What is \bar{z} ?
- Recall: If $z=a+b i$, then the complex conjugate of z is: $\bar{z}=a-b i$.

Examples:

- 4. Express $(\sqrt{3}-i)^{6}$ in polar form.

Examples:

- 5. Find the solutions to the equation $z^{3}=-1$.

Examples:

- 5. Find the solutions to the equation $z^{3}=-1$.
- Recall: $z^{\frac{1}{n}}=\sqrt[n]{r}\left[\cos \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)\right], k=0,1, \ldots, n-1$.

Examples:

- 6. a) Find the square roots of $2 i$.

Examples:

- 6. a) Find the square roots of $2 i$.
- b) Express your two roots in rectangular coordinates.

