Math 1B03/1ZC3 - Tutorial 6

Feb. 11th/ 14th, 2014

Tutorial Info:

- Website: http://ms.mcmaster.ca/~dedieula.
- Review Session: I'll be TAing a review session for the midterm on Mon. Feb. 24th, 4:30-6:30pm, in JHE 264. There will also be 4 other reviews happening this day at different times. See Avenue for the times/ rooms.
- Math Help Centre: Wednesdays 2:30-5:30pm.
- Email: dedieula@math.mcmaster.ca .

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right) .
$$

- a) Find a matrix P that diagonalizes A.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right)
$$

- a) Find a matrix P that diagonalizes A.
- Recall: A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. (i.e. $P^{-1} A P=D$, where D is a diagonal matrix).

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right)
$$

- a) Find a matrix P that diagonalizes A.
- Recall: A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. (i.e. $P^{-1} A P=D$, where D is a diagonal matrix).
- Procedure for Diagonalizing a Matrix:

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right)
$$

- a) Find a matrix P that diagonalizes A.
- Recall: A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. (i.e. $P^{-1} A P=D$, where D is a diagonal matrix).
- Procedure for Diagonalizing a Matrix:

1. Find the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and eigenvectoes v_{1}, \ldots, v_{l} of your matrix A.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right)
$$

- a) Find a matrix P that diagonalizes A.
- Recall: A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. (i.e. $P^{-1} A P=D$, where D is a diagonal matrix).
- Procedure for Diagonalizing a Matrix:

1. Find the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and eigenvectoes v_{1}, \ldots, v_{l} of your matrix A.
2. Create a matrix P by putting your eigenvectors as the columns of P.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right)
$$

- a) Find a matrix P that diagonalizes A.
- Recall: A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. (i.e. $P^{-1} A P=D$, where D is a diagonal matrix).
- Procedure for Diagonalizing a Matrix:

1. Find the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and eigenvectoes v_{1}, \ldots, v_{l} of your matrix A.
2. Create a matrix P by putting your eigenvectors as the columns of P.
3. Create a matrix D by putting your eigenvalues along the diagonal such that the eigenvalue in column i corresponds to the eigenvector in column i of P.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right)
$$

- a) Find a matrix P that diagonalizes A.
- Recall: A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. (i.e. $P^{-1} A P=D$, where D is a diagonal matrix).
- Procedure for Diagonalizing a Matrix:

1. Find the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and eigenvectoes v_{1}, \ldots, v_{l} of your matrix A.
2. Create a matrix P by putting your eigenvectors as the columns of P.
3. Create a matrix D by putting your eigenvalues along the diagonal such that the eigenvalue in column i corresponds to the eigenvector in column i of P.
4. Find P^{-1}.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right)
$$

- a) Find a matrix P that diagonalizes A.
- Recall: A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. (i.e. $P^{-1} A P=D$, where D is a diagonal matrix).
- Procedure for Diagonalizing a Matrix:

1. Find the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and eigenvectoes v_{1}, \ldots, v_{l} of your matrix A.
2. Create a matrix P by putting your eigenvectors as the columns of P.
3. Create a matrix D by putting your eigenvalues along the diagonal such that the eigenvalue in column i corresponds to the eigenvector in column i of P.
4. Find P^{-1}.
5. Check to make sure $A=P D P^{-1}$.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right)
$$

- a) Find a matrix P that diagonalizes A.
- Recall: A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. (i.e. $P^{-1} A P=D$, where D is a diagonal matrix).
- Procedure for Diagonalizing a Matrix:

1. Find the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and eigenvectoes v_{1}, \ldots, v_{l} of your matrix A.
2. Create a matrix P by putting your eigenvectors as the columns of P.
3. Create a matrix D by putting your eigenvalues along the diagonal such that the eigenvalue in column i corresponds to the eigenvector in column i of P.
4. Find P^{-1}.
5. Check to make sure $A=P D P^{-1}$.

- b) Find A^{100}.

Examples:

- 1. Consider

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right)
$$

- a) Find a matrix P that diagonalizes A.
- Recall: A is said to be diagonalizable if there exists an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix. (i.e. $P^{-1} A P=D$, where D is a diagonal matrix).
- Procedure for Diagonalizing a Matrix:

1. Find the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and eigenvectoes v_{1}, \ldots, v_{l} of your matrix A.
2. Create a matrix P by putting your eigenvectors as the columns of P.
3. Create a matrix D by putting your eigenvalues along the diagonal such that the eigenvalue in column i corresponds to the eigenvector in column i of P.
4. Find P^{-1}.
5. Check to make sure $A=P D P^{-1}$.

- b) Find A^{100}.
- Recall) If $A=P D P^{-1}$, then $A^{k}=P D^{k} P^{-1}$.

Examples:

- 2. Consider

$$
A=\left(\begin{array}{rrr}
-2 & -27 & 9 \\
0 & -2 & 0 \\
0 & -18 & 4
\end{array}\right)
$$

Find A^{k}.

Examples:

- 3. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.

Examples:

- 3. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.

Examples:

- 3. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

Examples:

- 3. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

- b) Is T a regular stochastic matrix?

Examples:

- 3. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

- b) Is T a regular stochastic matrix?
- Recall: A square matrix A is called a stochastic matrix is each of its columns is a probability vector (i.e. the entries of each column sum to 1).

Examples:

- 3. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

- b) Is T a regular stochastic matrix?
- Recall: A square matrix A is called a stochastic matrix is each of its columns is a probability vector (i.e. the entries of each column sum to 1).
- c) Does T have a steady-state vector? If so, what is it?

Examples:

- 3. Suppose the population of raccoons in the city in 2010 is 100 and the population of raccoons in the nearby forest is 300 . Suppose we also know that 10% of the racoons in the forest move to the city, and 5% of the raccoons in the city move to the forest each year.
- a) Set up a transition matrix to describe this phenomenon.
- Recall: Our transition matrix takes us from time k to time $k+1$:

$$
\binom{w_{k+1}}{c_{k+1}}=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)\binom{w_{k}}{c_{k}}
$$

- b) Is T a regular stochastic matrix?
- Recall: A square matrix A is called a stochastic matrix is each of its columns is a probability vector (i.e. the entries of each column sum to 1).
- c) Does T have a steady-state vector? If so, what is it?
- Recall: If P is a regular transition matrix for a Markov chain, then \exists ! probability vector q such that $P q=q$ (i.e. q is an eigenvector corresponding to $\lambda=1$ and q 's entries sum to 1). This vector is called the steady-state vector.
- d) In the long term, how will the population of raccoons in the city and woods be distributed?
- d) In the long term, how will the population of raccoons in the city and woods be distributed?
- Recall: If q is a steady-state vector for a regular Markov chain, then for any initial probability vector $x_{0}, \lim _{k \rightarrow \infty} P^{k} x_{0}=q$, where P is the transition matrix for this chain.
- d) In the long term, how will the population of raccoons in the city and woods be distributed?
- Recall: If q is a steady-state vector for a regular Markov chain, then for any initial probability vector $x_{0}, \lim _{k \rightarrow \infty} P^{k} x_{0}=q$, where P is the transition matrix for this chain.
- e) How many raccoons will be in the city after 20 years?
- d) In the long term, how will the population of raccoons in the city and woods be distributed?
- Recall: If q is a steady-state vector for a regular Markov chain, then for any initial probability vector $x_{0}, \lim _{k \rightarrow \infty} P^{k} x_{0}=q$, where P is the transition matrix for this chain.
- e) How many raccoons will be in the city after 20 years?
- Recall: We know $x_{n}=P^{n} x_{0}$, where x_{0} is the initial state vector, x_{n} is the state vector at time n, and P is the transition matrix.

